ADAMTS7 in Cardiovascular Disease
From Bedside to Bench and Back Again?

Alicia G. Arroyo, MD, PhD; Vicente Andrés, PhD

Metzincins, a family of zinc metalloproteinases able to process all the extracellular matrix components, include the matrix metalloproteinase, a disintegrin and metalloproteinase (ADAM), and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) subfamilies. Metzincins are important regulators of tissue remodeling, particularly vascular remodeling during atherosclerosis development. In the atherosclerotic artery wall, these enzymes cause profound alterations to the extracellular matrix, and these alterations instigate changes in the behavior of endothelial cells (ECs) and vascular smooth muscle cells (VSMCs). Recent genome-wide association studies have identified ADAMTS7 as a novel locus associated with human coronary atherosclerosis. However, a larger fibrous cap, a finding that should be fully explored to determine whether targeting ADAMTS7 in patients might result not only in decreased atherosclerosis but also in more stable plaques. Studies are also needed to investigate whether atherosclerosis-associated ADAMTS7 genetic variants are associated with restenosis or arterial calcification, as recently suggested. Overall, the studies presented by Bauer at al provide the first firm evidence that mouse Adamts7 plays a proatherogenic role, likely through the promotion of VSMC migration.

The long-term success of percutaneous coronary intervention is limited by restenosis, a pathological process characterized by excessive neointimal thickening caused by the inflammatory response associated with mechanical injury to the vessel wall. Like native atherosclerosis, restenosis involves activation of zinc metalloproteinases that alter the extracellular matrix. The studies by Bauer and colleagues and Kessler and colleagues, a second study also published in this issue of Circulation, both report that genetic deletion of Adamts7 reduces neointimal thickening after wire injury to the femoral and carotid arteries. These results are consistent with previous studies showing that Adamts7 increases neointima formation in balloon-injured rat arteries by stimulating VSMC migration through the degradation of cartilage oligomeric matrix protein (COMP; also called thrombospondin-5). Kessler and colleagues shed further light on the role of Adamts7 in vascular remodeling by focusing on vessel re-endothelialization, which is inversely related to neointima formation. They found that Adamts7 inhibits EC proliferation and migration in vitro and that re-endothelialization is strongly augmented in the injured vessels in Adamts7-null mice. Surprisingly, COMP expression did not affect EC proliferation/migration in vitro, and Comp deficiency had no effect on re-endothelialization in injured arteries, suggesting that Adamts7 retards endothelium repair via COMP-independent mechanisms. Using label-free liquid chromatography mass spectrometry secretome analysis, communoprecipitation strategies, and mammalian 2-hybrid analysis, Kessler and coworkers found that Adamts7 can bind directly to thrombospondin-1 and degrade it in vitro. In agreement with earlier mouse studies showing the beneficial effects of thrombospondin-1 inactivation on re-endothelialization and neointima formation, the inhibitory effect of Adamts7 overexpression on EC proliferation and migration was blunted in Tsp-1–silenced ECs in vitro, and Adamts7-dependent inhibition of re-endothelialization was circumvented in Tsp-1–null mice. The study by Kessler et al thus suggests that ADAMTS7 exerts complementary functions in neointima formation by selective and cell type–dependent substrate processing: COMP cleavage mediates augmented VSMC migration, whereas thrombospondin-1 degradation mediates impaired

The opinions expressed in this article are not necessarily those of the editors or of the American Heart Association.

From Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain.

Correspondence to Vicente Andrés, PhD, CNIC, Melchor Fernández Almagro 3, 28029 Madrid, Spain. E-mail vandres@cnic.es

(Circulation. 2015;131:1156-1159. DOI: 10.1161/CIRCULATIONAHA.115.015711.) © 2015 American Heart Association, Inc.

Circulation is available at http://circ.ahajournals.org
DOI: 10.1161/CIRCULATIONAHA.115.015711

1156
EC recovery (Figure 1). However, the in vivo relevance of Adamts7-mediated processing in EC responses during neo-intima formation remains undefined. EC-specific Adamts7 deletion in conditional mouse models will help to confirm the EC-selective function of Adamts7 and reconcile the data about its expression and function in ECs in vivo (see below).

Both Adamts7-null mouse strains have a LacZ reporter gene in the gene-trapping cassette, allowing X-gal staining as readout of active Adamts7 expression, which was detected in heart tissue and pulmonary vasculature.\(^5\) This staining allowed analysis of the dynamics of Adamts7 expression in smooth muscle-\(\alpha\)-actin-immunoreactive cells in response to mechanical vascular injury and hyperlipidemia, revealing an early, transient upregulation,\(^6\) consistent with the action of ADAMTS7 as a positive regulator of neointimal thickening. Notably, previous in vitro findings showed upregulation of ADAMTS7 expression in VSMCs by inflammatory cytokines (tumor necrosis factor-\(\alpha\), interleukin-1, platelet-derived growth factor-B) but not by anti-inflammatory cytokines (transforming growth factor-\(\beta\)) or oxidized low-density lipoprotein.\(^4\) This would suggest that ADAMTS7 responds to inflammation rather than to hyperlipidemia, in line with the recognized role of ADAMTS7 in arthritis.\(^4\) The study by Bauer et al\(^5\) also provides insight into the cell distribution of Adamts7, which is detected mainly in the media and adventitia of mouse aortas but not in ECs. Further expression studies are needed to clarify the spatial and temporal patterns of ADAMTS7 expression in the cell types of the injured vessel wall, including direct immunohistochemical detection of Adamts7 in rodent arteries using specific antibodies and quantification of expression levels (eg, real-time polymerase chain reaction, Western blot). In contrast to the Adamts7 expression pattern in the media and adventitia of mouse arteries, immunohistochemistry analysis in human coronary and carotid arteries revealed ADAMTS7 expression in only a proportion of VSMCs in atherosclerotic plaques, predominantly near the media-intima border and the fibrous cap.\(^5,11\) The absence of ADAMTS7 staining in CD68-labeled macrophages indicates the need for further work to expand the repertoire of molecular markers for selective cell subsets to better define the populations expressing ADAMTS7 in the intima of human atherosclerotic plaques. It will be also important to analyze ADAMTS7 expression in human atherosclerotic and restenotic lesions at different stages of disease progression.

The study by Bauer et al\(^5\) positions ADAMTS7 in primary aortic VSMCs in specialized membrane protrusions called podosomes, which are actively involved in matrix degradation and cell invasiveness. In this location, ADAMTS7 might associate with adhesion receptors such as integrins or other proteases to exert coordinated functions in vascular remodeling.\(^12\) Given the emerging idea that podosomes can sense matrix stiffness,\(^13\) it is appealing to propose that ADAMTS7 modulates matrix tension in the vessel wall by processing COMP near podosomes to interfere with its binding to \(\alpha7\beta1\) integrin, a recognized mechanosensor at myotendinous junctions,\(^14\) which could ultimately lead to pathological vascular remodeling.\(^15\) ADAMTS7 possesses mucin-proteoglycan domains and interacts with COMP through its 4 C-terminal thrombospondin repeats.\(^4\) Additional structural studies of the ADAMTS7/COMP complex will shed light on the potential value of targeting the ADAMTS7 catalytic site or selective exosite-binding motifs to avoid adverse effects on related proteases such as ADAMTS12, which is also able to process COMP.\(^16\)

Figure 1. ADAMTS7-mediated actions on vascular smooth muscle cells (VSMCs) and endothelial cells (ECs) promote neointima formation. ADAMTS7 expression is upregulated in VSMCs on vascular injury, leading to processing of the \(\alpha7\beta1\) integrin ligand cartilage oligomeric matrix protein (COMP) and increased VSMC migration. Complementary actions of ADAMTS7 have been proposed in ECs via cleavage of thrombospondin-1 (TSP-1), resulting in bioactive TSP-1 fragments that would reduce EC migration and proliferation and thus impair EC recovery. However, more evidence is needed for ADAMTS7 expression and actions on ECs in vivo. The combined effect of Adamts7-mediated increased VSMC migration and impaired re-endothelialization ultimately leads to increased neointima formation.
The identification by Kessler et al of the matricellular protein thrombospondin-1 as a novel ADAMTS7 substrate in ECs is important, but its role in vascular remodeling are as yet unclear because thrombospondin-1 can be cleaved by other metalloproteinases, including ADAMTS1, ADAMTS13, and MT1–matrix metalloproteinase.10 It will also be important to identify the ADAMTS7 cleavage sites in COMP and thrombospondin-1 and to define whether they are unique or shared with other metalloproteinases, as well as whether cleavage can generate bioactive polypeptide fragments able to bind cell receptors that trigger EC and VSMC responses. The identification of specific ADAMTS7 cleavage sites would also permit direct in vivo investigation of the relevance of COMP and thrombospondin-1 processing to atherosclerosis by generating cleavage-resistant knock-in mice, as previously achieved for collagen I processing.11 Because ADAMTS7 is thought to be a nonredundant member of the ADAMTS family,2 the search for other unique ADAMTS7 substrates and interacting proteins in the artery wall might also provide new opportunities for therapeutic intervention.

The studies by Bauer and colleagues5 and Kessler and colleagues6 conclusively demonstrate a proatherogenic role for mouse Adams7. A key unanswered question is whether any of these laboratory findings in mouse models can be translated back to the clinic (Figure 2). Recent studies have begun to assess whether human ADAMTS7 alleles associated with high risk of coronary atherosclerosis are linked to higher ADAMTS7 expression or activity in tissues and cells involved in disease development. For example, the rs3825807 G/G genotype in the ADAMTS7 locus, which is associated with lower atherosclerosis prevalence and severity, reduces not the expression of ADAMTS7 but its maturation and activity, resulting in reduced COMP cleavage and attenuated VSMC migration.11 It will be of interest to assess whether the rs3825807 G/G genotype also affects thrombospondin-1 degradation in ECs. Further research in this area could lead to personalized medicine based on the identification of ADAMTS7 genetic variants in patients with atherosclerosis who could benefit from strategies targeting this proteolytic pathway. Quantification of COMP or thrombospondin-1 fragments in plasma of these patients might also provide valuable information about the severity or progression of atherosclerotic disease, as shown for COMP in arthritis.19 Despite the lack of success with inhibitors of the closely related matrix metalloproteinase subfamily, the strong genome-wide association study association of ADAMTS7 with atherosclerosis, together with the solid knowledge being generated about the mechanisms of action of ADAMTS7-mediated vascular remodeling, may pave the way for the development of novel strategies to ameliorate atherosclerosis and restenosis. These therapeutic approaches might include targeting ADAMTS7 catalytic or C-terminal exosites, locking the ADAMTS7 propeptide-catalytic domain conformation (as in the G/G rs3825807 variant), delivering substrates to restore homeostasis (eg, via viral-based approaches), inhibiting signaling pathways triggered by ADAMTS7 substrate fragments, or decreasing ADAMTS7 expression by miR29 mimics.20

Acknowledgments

We thank Simon Bartlett for editorial assistance. We apologize to colleagues whose work has been cited indirectly through review articles.

Sources of Funding

Work in Dr Andrés’s laboratory is supported by grants SAF2013-46663-R and RD12/0042/0028 from the Spanish Ministry of Economy and Competitiveness (MINECO) with cofunding from the Fondo Europeo de Desarrollo Regional (FEDER), the European Commission (Liphos, grant agreement No. 317916), and the Progeria Research Foundation (Established Investigator Award). Work in Dr Arroyo’s laboratory is supported by grants SAF2011-25619 and RD12/0042/0023 from MINECO (FEDER cofunded), the European Commission (CardioNext, grant agreement No. 608027), and La Marató de TV3 Foundation, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) is supported by the MINECO and the Pro-CNIC Foundation.

Disclosures

None.

References

Key Words: Editorials | ADAMTS7 | atherosclerosis | COMP1 | endothelialization | matrix metalloproteinases | smooth muscle | TSP-1
ADAMTS7 in Cardiovascular Disease: From Bedside to Bench and Back Again?
Alicia G. Arroyo and Vicente Andrés

Circulation. 2015;131:1156-1159; originally published online February 20, 2015; doi: 10.1161/CIRCULATIONAHA.115.015711
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2015 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/131/13/1156

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation_ is online at:
http://circ.ahajournals.org//subscriptions/