Fetal Aortic Valvuloplasty for Evolving Hypoplastic Left Heart Syndrome
Postnatal Outcomes of the First 100 Patients

Lindsay R. Freud, MD; Doff B. McElhinney, MD; Audrey C. Marshall, MD; Gerald R. Marx, MD; Kevin G. Friedman, MD; Pedro J. del Nido, MD; Sitaram M. Emani, MD; Terra Lafranchi, NP-C; Virginia Silva, RN; Louise E. Wilkins-Haug, MD, PhD; Carol B. Benson, MD; James E. Lock, MD; Wayne Tworetzky, MD

Background — Fetal aortic valvuloplasty can be performed for severe midgestation aortic stenosis in an attempt to prevent progression to hypoplastic left heart syndrome (HLHS). A subset of patients has achieved a biventricular (BV) circulation after fetal aortic valvuloplasty. The postnatal outcomes and survival of the BV patients, in comparison with those managed as HLHS, have not been reported.

Methods and Results — We included 100 patients who underwent fetal aortic valvuloplasty for severe midgestation aortic stenosis with evolving HLHS from March 2000 to January 2013. Patients were categorized based on postnatal management as BV or HLHS. Clinical records were reviewed. Eighty-eight fetuses were live-born, and 38 had a BV circulation (31 from birth, 7 converted after initial univentricular palliation). Left-sided structures, namely aortic and mitral valve sizes and left ventricular volume, were significantly larger in the BV group at the time of birth \((P<0.01)\). After a median follow-up of 5.4 years, freedom from cardiac death among all BV patients was 96±4% at 5 years and 84±12% at 10 years, which was better than HLHS patients \((\text{log-rank } P=0.04)\). There was no cardiac mortality in patients with a BV circulation from birth. All but 1 of the BV patients required postnatal intervention; 42% underwent aortic or mitral valve replacement. On the most recent echocardiogram, the median left ventricular end-diastolic volume \(z\) score was +1.7 \((-1.3 \text{ to } +8.2)\), and 80% had normal ejection fraction.

Conclusions — Short- and intermediate-term survival among patients who underwent fetal aortic valvuloplasty and achieved a BV circulation postnatally is encouraging. However, morbidity still exists, and ongoing assessment is warranted. (Circulation. 2014;130:638-645.)

Key Words: aortic valve stenosis ■ balloon valvuloplasty ■ fetal heart ■ heart defects, congenital ■ hypoplastic left heart syndrome ■ pediatrics ■ treatment outcome
postnatal BV outcome for FAV at our institution.12,13,15,17-19 However, the postnatal outcomes of patients who achieved a BV circulation after fetal intervention in comparison with those managed as HLHS have not been described. The aim of this study is to report the short- and intermediate-term survival and clinical status of the first 100 patients to undergo FAV at our institution, with an emphasis on the patients who achieved a BV circulation.

Methods

Patients

We included consecutive patients who underwent attempted FAV at our institution from March 2000 to January 2013. As previously reported, our original patient selection criteria included fetuses with severe valvar AS and physiological aberrations consistent with evolving HLHS, such as LV dysfunction and retrograde flow in the transverse aortic arch.12,13 In 2009, a multivariable threshold scoring system was devised to allow better discrimination of fetal candidates with salvageable left hearts for a BV circulation postnatally.19 Our selection criteria were revised at that time to include fetuses with less hypoplastic left-sided structures and higher LV pressures. The criteria regarding the physiological aberrations indicative of evolution to HLHS have not changed over the course of our experience.

The technical aspects of the procedure, as well as the management and outcomes of fetal hemodynamic instability, have been previously described.17-19 For the purposes of the current study, technical success was defined as balloon inflation across the aortic valve with improved antegrade flow. Patients who underwent fetal cardiac interventions for other diagnoses or indications, including atrial septoplasty for established HLHS with an intact or highly restrictive atrial septum20 or FAV for AS with severe mitral regurgitation and hydrops22 were excluded.

Patients were categorized according to postnatal status at most recent follow-up or before death as having a BV or univentricular circulation, ie, HLHS. A BV circulation was defined as the LV pumping the full cardiac output systemically without a shunt or other palliative strategy. A functionally univentricular circulation or HLHS was defined as any stage of palliation to enable the right ventricle to pump antegrade flow. Patients who underwent fetal cardiac interventions were 11 patients who died of noncardiac causes were censored event-free at the time of death. Both the intention-to-treat and landmark analyses are depicted with Kaplan–Meier figures, with the log-rank test used to compare survival between groups. SPSS version 20.0 (IBM Corp, Armonk, NY) was used for statistical analysis.

Within the BV group only, a cross-sectional descriptive assessment was performed with a focus on the following postnatal variables: cardiac procedures, including interventional catheterizations and surgeries; the presence of a permanent pacemaker; current or prior use of a gastrostomy tube; medications; and most recent echocardiographic findings. Hemodynamic data from the cardiac catheterization laboratory were not reported, because catheterization was most commonly undertaken to perform an intervention or for evaluation before surgery, both of which would have resulted in significant changes in hemodynamics. Furthermore, some patients had either had no postnatal cardiac catheterization or none since the time of neonatal aortic valvuloplasty.

Results

Procedural and Prenatal Outcomes

FAV for severe AS and evolving HLHS was attempted in 100 patients from March 2000 to January 2013. The median gestational age at intervention was 23.8 weeks (19.3, 32.0). The procedure was technically successful in 77 cases. There were 11 fetal deaths after FAV (11%): 4 within 24 hours of the procedure, and the remainder at a median of 11 days (4, 39) following the procedure, which included the delivery of

Data Analysis

Data are reported as median (minimum, maximum) or frequency (\%). We compared demographic characteristics; technical success of FAV; echocardiographic dimensions at birth; number of cardiac procedures, including interventional catheterizations and surgeries; and most recent anthropometric parameters between the BV and HLHS patients. Catheterizations in which the only intervention was occlusion of aortopulmonary collaterals were not considered interventional procedures for the purposes of this study. Continuous parameters were assessed for normality by using the Shapiro–Wilk test. Variables were compared by using the 2-sided t-test, 2-sample test of proportions, \(\chi^2 \) analysis, or Fisher’s exact test where appropriate. Odds ratios are presented with 95% confidence intervals. To compare outcome by patient order of intervention in quartiles, analysis of variance was used.

An intention-to-treat survival analysis was performed among all patients who underwent FAV from the time of fetal diagnosis, considered the date of fetal intervention (there were no deaths between diagnosis and intervention), with stratification by technical success of the procedure. In addition, a landmark analysis was performed, with survival to birth as the landmark criterion, and the date of birth as time 0. This postnatal analysis was performed with stratification by BV and HLHS outcome and with 2 event definitions: (1) any death and (2) cardiac death. An analysis of cardiac death was also performed with stratification by initial postnatal management as BV or HLHS. In analyses of freedom from cardiac death, patients who died of noncardiac causes were censored event-free at the time of death. Both the intention-to-treat and landmark analyses are depicted with Kaplan–Meier figures, with the log-rank test used to compare survival between groups. SPSS version 20.0 (IBM Corp, Armonk, NY) was used for statistical analysis.

An intention-to-treat survival analysis was performed among all patients who underwent FAV from the time of fetal diagnosis, considered the date of fetal intervention (there were no deaths between diagnosis and intervention), with stratification by technical success of the procedure. In addition, a landmark analysis was performed, with survival to birth as the landmark criterion, and the date of birth as time 0. This postnatal analysis was performed with stratification by BV and HLHS outcome and with 2 event definitions: (1) any death and (2) cardiac death. An analysis of cardiac death was also performed with stratification by initial postnatal management as BV or HLHS. In analyses of freedom from cardiac death, patients who died of noncardiac causes were censored event-free at the time of death. Both the intention-to-treat and landmark analyses are depicted with Kaplan–Meier figures, with the log-rank test used to compare survival between groups. SPSS version 20.0 (IBM Corp, Armonk, NY) was used for statistical analysis.

Within the BV group only, a cross-sectional descriptive assessment was performed with a focus on the following postnatal variables: cardiac procedures, including interventional catheterizations and surgeries; the presence of a permanent pacemaker; current or prior use of a gastrostomy tube; medications; and most recent echocardiographic findings. Hemodynamic data from the cardiac catheterization laboratory were not reported, because catheterization was most commonly undertaken to perform an intervention or for evaluation before surgery, both of which would have resulted in significant changes in hemodynamics. Furthermore, some patients had either had no postnatal cardiac catheterization or none since the time of neonatal aortic valvuloplasty.

Results

Procedural and Prenatal Outcomes

FAV for severe AS and evolving HLHS was attempted in 100 patients from March 2000 to January 2013. The median gestational age at intervention was 23.8 weeks (19.3, 32.0). The procedure was technically successful in 77 cases. There were 11 fetal deaths after FAV (11%): 4 within 24 hours of the procedure, and the remainder at a median of 11 days (4, 39) following the procedure, which included the delivery of
2 infants who were nonviable secondary to prematurity, as described previously.15,19 One mother elected to terminate pregnancy after an unsuccessful intervention. There were no maternal deaths or significant complications related to the fetal intervention.

Estimated survival for the entire cohort of fetuses was 80±4% at 1 year after FAV and 75±5% at 5 years. Survival over time was better for patients who underwent a technically successful procedure than for those in whom the procedure was technically unsuccessful (log-rank P=0.03; Figure 1).

Postnatal Management: Outcome Groups

Of the 88 live-born patients, 57 neonates were initially managed with a univentricular palliative strategy (ie, HLHS) and 31 with a BV circulation. In the HLHS group, 54 patients proceeded to have stage 1 surgery. Of the 3 patients who did not undergo stage 1 palliative surgery, 1 received comfort measures only, 1 died of sepsis, and 1 received a heart transplant and died in the early postoperative period. There were 4 additional neonatal deaths in the HLHS group following stage 1 surgery (7.4% of those who underwent stage 1). The overall neonatal mortality in the HLHS group, including the 3 patients who did not undergo stage 1, was 12.3%. No neonatal deaths occurred in the BV cohort, yielding a significant difference in neonatal mortality between the 2 groups (P=0.04).

Seven patients in the HLHS group were converted to a BV circulation at a median age of 32 months (18 days, 6.2 years): 1 after stage 1 surgery, 4 after the bidirectional Glenn procedure, and 2 after the Fontan operation. The technical process and short-term outcomes of staged left heart rehabilitation at our center, in both fetal intervention and other borderline left heart patients, have been described previously.22–24 Thus, the total number of patients managed with a BV circulation at latest follow-up was 38, which was 43% of all live-born patients (Figure 2).

Thirty-five (92%) of the patients with a BV circulation had a technically successful FAV. Therefore, among the 77 technically successful interventions, 45% resulted in a BV outcome, and among the 70 technically successful interventions that proceeded to live birth, 50% had a BV outcome. Among all live-born patients, those who underwent a technically successful intervention were significantly more likely to have a BV outcome than those in whom the FAV was unsuccessful (odds ratio, 5.0; 95% confidence interval, 1.3–18.8; P=0.01). There was a progressive increase in the likelihood of BV outcome over the course of our experience and following the implementation of the revised patient selection criteria in 2009; however, these differences were not statistically significant (P values 0.44 and 0.19, respectively; Figure I in the online-only Data Supplement).

Three patients had a technically unsuccessful intervention but achieved a BV repair. These procedures were performed later in gestation: 2 at 28 weeks and 1 at 32 weeks. Two of the patients were initially managed as HLHS and subsequently were converted to a BV circulation: 1 had a hybrid stage 1 procedure with aortic valvotomy before BV repair, and 1 was converted after the Fontan operation. The third patient had a Ross procedure with mitral valve replacement and endocardial fibroelastosis resection in the neonatal period.

Comparison of Outcomes Between BV and HLHS Groups

Among live-born patients, gestational age and weight at birth did not differ between the BV and HLHS groups. Before any postnatal intervention, left heart structures at birth were significantly larger in patients ultimately managed as BV compared with those in whom the procedure failed (log-rank values 0.44 and 0.19, respectively; Figure I in the online-only Data Supplement).

Data are represented as median (minimum, maximum). BV indicates biventricular; HLHS, hypoplastic left heart syndrome; and LV, left ventricle.

The BV group includes patients who were initially managed with univentricular palliation and subsequently were converted to a BV circulation.

* Z scores were calculated from Boston Children’s Hospital data by using previously validated models.25

Table 1. Demographic Characteristics and Dimensions of Left Heart Structures on the First Neonatal Echocardiogram Among Patients With HLHS or a BV Circulation

<table>
<thead>
<tr>
<th></th>
<th>HLHS (n=43)</th>
<th>BV Circulation* (n=38)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gestational age at birth, wk</td>
<td>38.7 (29.4, 41.1)</td>
<td>37.9 (30.6, 41.1)</td>
<td>0.57</td>
</tr>
<tr>
<td>Birth weight, kg</td>
<td>3.0 (1.4, 4.4)</td>
<td>3.2 (2.0, 4.1)</td>
<td>0.44</td>
</tr>
<tr>
<td>Aortic valve annulus diameter z score†</td>
<td>−3.7 (−6.5, −1.4)</td>
<td>−2.5 (−4.0, −0.5)</td>
<td><0.001</td>
</tr>
<tr>
<td>Aortic root diameter z score</td>
<td>−2.6 (−4.1, −0.4)</td>
<td>−1.1 (−3.2, +1.1)</td>
<td><0.001</td>
</tr>
<tr>
<td>Ascending aorta diameter z score</td>
<td>−1.4 (−4.2, +1.2)</td>
<td>0.3 (−2.0, +2.0)</td>
<td><0.001</td>
</tr>
<tr>
<td>Mitral valve lateral diameter z score</td>
<td>−2.3 (−4.5, +1.0)</td>
<td>−1.5 (−4.2, +2.6)</td>
<td>0.002</td>
</tr>
<tr>
<td>Mitral valve anteroposterior diameter z score</td>
<td>−2.4 (−3.8, −0.4)</td>
<td>−1.0 (−2.4, +1.9)</td>
<td><0.001</td>
</tr>
<tr>
<td>LV end-diastolic dimension z score</td>
<td>−2.1 (−6.2, +1.9)</td>
<td>−0.5 (−5.2, +4.7)</td>
<td><0.001</td>
</tr>
<tr>
<td>Long-axis LV length z score</td>
<td>−3.8 (−6.5, −0.9)</td>
<td>−1.2 (−4.9, +3.0)</td>
<td><0.001</td>
</tr>
<tr>
<td>LV end-diastolic volume z score</td>
<td>−2.8 (−9.2, +1.4)</td>
<td>−1.5 (−4.3, +6.6)</td>
<td><0.001</td>
</tr>
</tbody>
</table>
and the other died of ventricular assist device complications while awaiting heart transplantation 9 months after conversion. In the HLHS cohort, a total of 11 deaths, 1 noncardiac and 10 cardiac, occurred, including the 7 deaths in the neonatal period.

As depicted in the landmark analysis Kaplan–Meier curves in Figure 4, postnatal survival \((P=0.07)\) and freedom from cardiac death \((P=0.04)\) were worse among HLHS patients than among those with a BV outcome at latest follow-up. The steeper early hazard in the HLHS group was followed by near convergence of the curves at 7 years. If patients were categorized based on initial postnatal management as BV or HLHS, with patients who were converted to a BV circulation later in life included in the HLHS cohort, then there were no cardiac deaths in the BV group. In this case, freedom from cardiac death was significantly different \((P=0.009)\), favoring the BV group, and there was no convergence at follow-up.

Among surviving patients, the median age at latest follow-up was 4.8 years (2 months, 11.5 years) in the BV group \((n=35)\) and 4.7 years (2 weeks, 13.2 years) in the HLHS cohort \((n=39)\). The HLHS survivors underwent more cardiac surgeries than the BV survivors \((3 [2, 6] \text{ versus } 1 [0, 8]; P=0.02)\); however, there was no significant difference in the number of interventional catheterizations performed \((2 [0, 8] \text{ versus } 1 [0, 6]; P=0.29)\).

At latest follow-up, the median height percentile of the BV survivors was 20.4 (0.1, 95.0), and the median weight percentile was 18.5 (0.1, 93.0). These percentiles were not significantly different from the HLHS survivors: 25.6 (0.1, 89.7) and 26.0 (0.1, 78.4) for height and weight, respectively. There was also no statistically significant difference between the proportion of patients below the fifth percentile for weight in the BV and HLHS groups \((14\% \text{ versus } 18\%)\).
Table 2. Major Interventional Catheterizations and Surgeries in Patients Managed as BV from Birth (n=31) and in Patients Converted to a BV Circulation After Initial Univentricular Palliation (n=7)

<table>
<thead>
<tr>
<th>BV from birth (n=31)</th>
<th>Performed in Neonatal Period</th>
<th>Total Performed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interventional catheterizations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balloon dilation of aortic valve</td>
<td>28 (90)</td>
<td>40</td>
</tr>
<tr>
<td>Balloon dilation of mitral valve*</td>
<td>6 (19)</td>
<td>10</td>
</tr>
<tr>
<td>Balloon dilation of aortic arch</td>
<td>4 (13)</td>
<td>4</td>
</tr>
<tr>
<td>Surgeries</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mitral valve repair</td>
<td>18 (58)</td>
<td>29</td>
</tr>
<tr>
<td>Endocardial fibroelastosis resection</td>
<td>17 (55)</td>
<td>22</td>
</tr>
<tr>
<td>Aortic valve repair</td>
<td>14 (45)</td>
<td>19</td>
</tr>
<tr>
<td>Ross procedure (pulmonary autograft)</td>
<td>12 (39)</td>
<td>12</td>
</tr>
<tr>
<td>Subaortic resection or Konno</td>
<td>9 (29)</td>
<td>10</td>
</tr>
<tr>
<td>Mitral valve replacement</td>
<td>5 (16)</td>
<td>6</td>
</tr>
<tr>
<td>Coarctation repair</td>
<td>4 (13)</td>
<td>4</td>
</tr>
<tr>
<td>Aortic valve replacement (mechanical)</td>
<td>1 (3)</td>
<td>1</td>
</tr>
</tbody>
</table>

Converted to BV circulation (n=7)		
Interventional catheterizations		
Balloon dilation of aortic valve	4 (57)	7
Balloon dilation of mitral valve	1 (14)	1
Balloon dilation of aortic arch	1 (14)	1
Staged palliative surgeries		
Stage 1 (Norwood)	7 (100)	7
Bidirectional Glenn	6 (86)	6
Fontan	2 (29)	2
Other surgeries		
Endocardial fibroelastosis resection	6 (86)	19
Mitral valve repair	6 (86)	18
Aortic valve repair	6 (86)	14
Mitral valve replacement	3 (43)	5
Ross procedure (pulmonary autograft)	2 (29)	2
Subaortic resection or Konno	1 (14)	1

Listed in order of the most common procedures performed. BV indicates biventricular; and HLHS, hypoplastic left heart syndrome.

Procedures and Follow-Up Status in the BV Outcome Group

Among the 38 patients in the BV group (survivors [n=35] and nonsurvivors [n=3]), 37 (97%) had at least 1 postnatal catheterization or surgery (Table 2). At least 1 interventional catheterization was performed in 58% of patients in the neonatal period and in 74% by latest follow-up. The median number of interventional catheterizations was 1 (0, 7). Similarly, 55% of patients underwent at least 1 cardiac surgical procedure in the neonatal period and 84% at latest follow-up. Six patients did not have cardiac surgery. Including initial univentricular palliation, the median number of cardiac surgeries was 2 (0, 8).

Valve replacements were among the most common surgical procedures performed. The primary mode of aortic valve replacement was the Ross procedure (pulmonary autograft), which was performed in 14 patients at a median age of 11 months (7 days, 6.2 years), including 4 in the neonatal period. One patient had a mechanical aortic valve replacement at 5.2 years. Eight patients underwent mitral valve replacement at a median age of 17.5 months (4, 72 months), either with a tissue or mechanical prosthesis (n=5) or a modified Melody valve (Medtronic Inc., Minneapolis, MN) implanted surgically (n=3). Three patients who initially had a tissue prosthesis underwent a repeat mitral valve replacement with either a mechanical valve (n=2) or a modified Melody valve (n=1) at a median age of 6.7 years. Seven patients (18%) had both aortic and mitral valve replacements. All patients that underwent valve replacement had previous attempts at balloon dilation and surgical repair of the affected valve.

In addition to catheterization and surgical management, 3 patients had a permanent pacemaker placed for sinus node dysfunction, high-grade atroventricular block, and cardiac resynchronization therapy after BV conversion. Sixteen patients (42%) had a gastrostomy tube placed at some point for poor weight gain, 5 of which were subsequently removed. Among survivors (n=35), 71% were on cardiac medications at latest follow-up, including 3 (9%) who were managed on pulmonary vasodilator therapy with sildenafil. No patients were treated with chronic oxygen therapy.

Echocardiographic parameters among survivors at latest follow-up are displayed in Table 3. Notably, among patients with native aortic or mitral valves, the median annulus diameters measured within the normal range. The median LV end-diastolic volume was also within the normal range; no patient had an LV end-diastolic volume z score < -2, whereas 13 patients (37%) had a z score > +2. The estimated right ventricular pressure was ≤ ½ systemic in 89% of patients.

Discussion

We have previously reported the rationale for fetal intervention for severe midgestation AS with evolving HLHS, our patient selection criteria, and aspects of the procedure, including predictors of technical success and a postnatal BV outcome. The current study builds on this work by reporting the postnatal outcomes and short- and intermediate-term survival of the first 100 patients who underwent FAV at our institution. We particularly focused on patients with a BV circulation, because...
achieving a BV outcome postnatally is the goal of fetal intervention for this disease. As formerly described and further demonstrated in the present study, a substantial proportion of patients who underwent technically successful FAV were able to achieve a BV circulation. Among all live-born patients, cardiac survival was better in the BV group than in the HLHS cohort at latest follow-up, primarily because of differences in left heart dimensions prior to the development of growth arrest and severe left heart hypoplasia. We previously documented that FA V does, in fact, improve long-term survival in patients with HLHS and a Fontan circulation. The achievement of a BV circulation with this aggressive approach may, on the one hand, offer insights into the potential for LV rehabilitation, but, on the other hand, may potentially engender as yet undetermined long-term morbidity. Because 2 of the 7 patients managed with univentricular palliation before being converted to a BV circulation. Consistent with the strategy of rehabilitating the left heart at our institution, these patients had modifications at the time of the staged palliative procedures to promote continued LV growth. The achievement of a BV circulation with this aggressive approach may, on the one hand, offer insights into the potential for LV rehabilitation, but, on the other hand, may potentially engender as yet undetermined long-term morbidity. Because 2 of the 7 patients managed with this strategy died, ongoing assessment of this approach, with more rigorous selection criteria, will need to be sought. Where as the long-term morbidity of the BV cohort is yet to be determined, there are substantial data regarding the significant long-term morbidities, impaired quality of life, and premature death in patients with HLHS and a Fontan circulation. Although heart transplantation is an option for select patients with failing Fontan physiology, survival is significantly lower among patients with a prior Fontan operation than in patients with other forms of congenital heart disease or cardiomyopathy. Thus, even if there are substantial ongoing issues among patients with a BV circulation after FAV, the potential for improved long-term prognosis and survival compared to patients with a univentricular circulation is the real question. A multicenter, case-control study to systemically study outcomes over time may help address this question, with patients treated with FA V and a BV rehabilitation strategy at one center matched to patients treated with staged univentricular palliation at another center.

As previously reported by our group, there is a risk of fetal death associated with the procedure. Despite death in 11% of fetuses in our experience, the 10-year survival of the entire cohort was 72%, which is comparable to, if not better than, the 10-year survival reported for patients with HLHS in other contemporary series. Importantly, patients who

Table 3. Echocardiographic Parameters of Patients Surviving With a BV Outcome at Latest Follow-Up (n=35)

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>Median (Minimum, Maximum) or Number of Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Native aortic annulus diameter z score</td>
<td>−0.6 (−3.9, +3.0)</td>
</tr>
<tr>
<td>Native ascending aorta diameter z score</td>
<td>1.5 (−1.9, +5.0)</td>
</tr>
<tr>
<td>Native mitral valve lateral diameter z score</td>
<td>+0.1 (−3.1, +2.3)</td>
</tr>
<tr>
<td>Native mitral valve anteroposterior diameter z score</td>
<td>−0.3 (−3.4, +1.9)</td>
</tr>
<tr>
<td>LV end-diastolic dimension z score</td>
<td>+1.4 (−1.6, +7.9)</td>
</tr>
<tr>
<td>LV long-axis length z score</td>
<td>+1.1 (−1.2, +3.2)</td>
</tr>
<tr>
<td>LV end-diastolic volume z score</td>
<td>+1.7 (−1.3, +8.2)</td>
</tr>
</tbody>
</table>

Valve function

- **Aortic valve gradient**
 - Native (22) Max 31 (0, 60); mean 21 (0, 32)
 - Ross (13) Max 0 (0, 22); mean 0 (0, 12)
- **Aortic regurgitation, mild or less**
 - Native (22) 18 (77%)
 - Ross (13) 13 (100%)
- **Mitral valve gradient**
 - Native (28) Mean 4 (0, 16)
 - Prosthetic (7) Mean 6 (4, 7)
- **Mitral regurgitation, mild or less**
 - Native (28) 25 (89%)
 - Prosthetic (7) 7 (100%)

Ventricular function and pressure

- **LV ejection fraction >55%** 28 (80%)
- **LV shortening fraction >30%** 29 (83%)
- **Right ventricular pressure ≤1/3 systemic** 31 (89%)

Data are represented as median (minimum, maximum) or number of patients (%). BV indicates biventricular; LV, left ventricle; and Max, maximum.

* Aortic and mitral stenosis maximum instantaneous and mean Doppler gradients are presented in mmHg.

† z scores were calculated from Boston Children’s Hospital data by using previously validated models.25

function. In particular, there was significant aortic and mitral valve disease, often characterized by a combination of stenosis and regurgitation and the need for valve intervention or replacement. Not surprisingly, the inherently abnormal aortic valve remained problematic, as indicated by the 32 patients (84% of the cohort) who underwent at least 1 postnatal balloon valvuloplasty and the 15 patients (39%) who underwent aortic valve replacement. Eight patients (21%) also underwent mitral valve replacement.

Although valves may be replaced, the development of the abnormal LV myocardium may be a more difficult problem to overcome. At most recent follow-up, BV patients generally had LV volume and systolic function within the normal range, although more than one-third had ventricular dilatation. Although the abnormal myocardium may play a role in this process, sequelae from endocardial fibroelastosis resection or valvar disease may also be contributing factors. Invasive hemodynamic data were not available to assess ventricular end-diastolic pressure, but diastolic dysfunction, with lower mitral annular and septal E’ tissue velocities and higher mitral inflow E/E’ ratios, has previously been characterized in these patients. We found normal right ventricular pressure as assessed by echocardiography in 89% of patients; however, the development of elevated pulmonary artery pressure secondary to left atrial hypertension from mitral valve disease or LV diastolic dysfunction will need to be monitored over time.

Of the 38 patients with a BV outcome, 7 were initially managed with univentricular palliation before being converted to a BV circulation. Consistent with the strategy of rehabilitating the left heart at our institution, these patients had modifications at the time of the staged palliative procedures to promote continued LV growth. The achievement of a BV circulation with this aggressive approach may, on the one hand, offer insights into the potential for LV rehabilitation, but, on the other hand, may potentially engender as yet undetermined long-term morbidity. Because 2 of the 7 patients managed with this strategy died, ongoing assessment of this approach, with more rigorous selection criteria, will need to be sought.

Whereas the long-term morbidity of the BV cohort is yet to be determined, there are substantial data regarding the significant long-term morbidities, impaired quality of life, and premature death in patients with HLHS and a Fontan circulation. Although heart transplantation is an option for select patients with failing Fontan physiology, survival is significantly lower among patients with a prior Fontan operation than in patients with other forms of congenital heart disease or cardiomyopathy. Thus, even if there are substantial ongoing issues among patients with a BV circulation after FAV, the potential for improved long-term prognosis and survival compared to patients with a univentricular circulation is the real question. A multicenter, case-control study to systemically study outcomes over time may help address this question, with patients treated with FAV and a BV rehabilitation strategy at one center matched to patients treated with staged univentricular palliation at another center.

As previously reported by our group, there is a risk of fetal death associated with the procedure. Despite death in 11% of fetuses in our experience, the 10-year survival of the entire cohort was 72%, which is comparable to, if not better than, the 10-year survival reported for patients with HLHS in other contemporary series. Importantly, patients who
underwent a technically successful intervention had significantly better survival than those who did not. Given that patients with a technically successful intervention were 5 times more likely to have a BV outcome than those with an unsuccessful intervention, this finding is consistent with our postnatal survival analysis between the BV and HLHS groups.

The 3 patients that had a technically unsuccessful fetal intervention but still went on to achieve a BV circulation postnatally warrant further discussion. These patients underwent attempted intervention later in gestation than most of the cohort at 28 to 32 weeks. This highlights the fact that, although we understand the natural history leading to HLHS in midgestation fetuses, the natural history of fetuses diagnosed with AS later in gestation is less clear and deserves further investigation. The later gestational age notwithstanding, all 3 of the patients were born with borderline left heart structures that were incapable of supporting the systemic circulation without aggressive interventions. As detailed previously, 2 of these patients initially underwent univentricular palliation, and the third had replacement of both the aortic and mitral valves in the neonatal period, along with endocardial fibroelastosis resection.

The current study highlights the concept behind fetal therapy, which has evolved from open surgery for noncardiac defects to minimally invasive, ultrasound-guided therapy for cardiac defects: namely, that by modifying a developing lesion in utero, postnatal outcome and survival may be improved. It is important to recognize that among patients with HLHS, only the subset of patients with mitral and aortic stenosis are likely to present with a dilated LV at midgestation and be potential candidates for FAV. In addition, a question to consider is why all of our patients did not respond as desired to FAV and achieve a BV circulation postnatally despite meeting our selection criteria. Most likely, a contributing factor in some of the patients was that they were referred for FAV at a point in the disease process when, despite maintenance of LV size, the ability to reverse the progression to HLHS was not possible. Had the procedure been performed earlier in the disease process, the left heart may have been capable of recovery. Because the disease evolves at slightly different points in gestation and at distinct rates—from fetus to fetus, we believe such patients should be referred for FAV as soon as AS is detected to enhance the possibility of a BV outcome. At the same time, given the complex and somewhat controversial nature of this endeavor, we must continue to strive to understand the subtleties of the natural history and to refine our patient selection for those in whom a BV outcome can be realistically achieved.

Limitations

One limitation of this study was its retrospective, cross-sectional design and the relatively small cohort of patients, although this is the largest reported series of patients who have undergone attempted fetal cardiac intervention to date. Some live-born patients did not return to our institution after birth, and, consequently, postnatal management decisions may have been made in a nonuniform fashion. Recent directly measured hemodynamic data, which are of particular interest in this patient population, were not available for 36 of the 38 BV patients. Although most patients underwent catheterization at some point, in virtually all cases, catheterization was undertaken to perform interventions and before surgery, which would have altered the hemodynamic parameters of interest. There is additional important follow-up information that we were not able to obtain for this study, including data on other functional outcomes, such as cardiopulmonary exercise capacity and neurodevelopmental status. We plan to study these outcomes in the future.

Conclusions

The current report gives reason for optimism, not only in terms of the substantial proportion of patients who achieved a BV circulation after successful FAV, but also for the excellent short- and intermediate-term survival of those managed as BV from birth. This survival was significantly different than patients managed as HLHS; however, the BV patients still carried a substantial burden of cardiac disease. Critical evaluation of longer-term outcomes will be needed to understand fully the benefits and shortcomings of fetal intervention for midgestation AS with evolving HLHS. Much of the success of the strategy is likely to depend on how the abnormal myocardium evolves over time. It remains to be seen which type of circulation and ventricle is better in the long-term—a univentricular circulation with a systematically functioning right ventricle or a BV circulation with a rehabilitated LV.

Sources of Funding

Dr Freud is funded by the National Institutes of Health (T32-HL757229) and the Kenrose Kitchen Foundation. The Ellianna Grace Foundation also supported this study.

Disclosures

None.

References

CLINICAL PERSPECTIVE

Fetal aortic valvuloplasty for severe midgestation aortic stenosis can be performed in an attempt to prevent progression to hypoplastic left heart syndrome. Building up on our prior work describing the rationale, patient selection criteria, and procedural aspects of fetal aortic valvuloplasty, the current study reports the postnatal outcomes and current status of the first 100 patients who underwent attempted intervention at our institution. We focused on patients who achieved a biventricular outcome, in particular, because this is the goal of fetal intervention for this disease. The survival of the cohort is reassuring thus far, and there have been no cardiac deaths among patients managed as biventricular from birth. However, there are associated morbidities with this strategy of management, and long-term follow-up will be essential. Clinicians managing such patients or considering referral of eligible candidates to a fetal intervention center may find the current study informative.
Fetal Aortic Valvuloplasty for Evolving Hypoplastic Left Heart Syndrome: Postnatal Outcomes of the First 100 Patients

Circulation. 2014;130:638-645; originally published online July 22, 2014; doi: 10.1161/CIRCULATIONAHA.114.009032

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2014 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/130/8/638

Data Supplement (unedited) at:
http://circ.ahajournals.org/content/suppl/2014/07/22/CIRCULATIONAHA.114.009032.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the _Permissions and Rights Question and Answer_ document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation_ is online at:
http://circ.ahajournals.org//subscriptions/
SUPPLEMENTAL MATERIAL

Supplemental Figure 1: Outcome of the first 100 fetal interventions by a) patient order in quartiles and b) using the original or revised patient selection criteria.

a)
b)

![Bar chart showing comparison between HLHS or Demise and BV under original and revised criteria.

- Original Criteria:
 - HLHS or Demise: 70%
 - BV: 30%

- Revised Criteria:
 - HLHS or Demise: 60%
 - BV: 40%

P value = 0.19