Trends in Thoracic Aortic Aneurysms and Dissection

Out of the Shadows and Into the Light

Eric M. Isselbacher, MD

In this issue of Circulation, Sidloff and colleagues1 have presented their findings that, among 18 World Health Organization member states over a period of 16 years (1994–2010), there has been a reduction in the age-standardized mortality from both thoracic aortic aneurysm and dissection. If one considers the United States, the United Kingdom, and Sweden, 3 countries that have published extensively on the prevalence and mortality of thoracic aortic disease, the trends are quite favorable: Mortality from thoracic aortic aneurysm has declined by ≈5% to 10% among men and 3% to 6% among women, and mortality from aortic dissection has declined by ≈2% to 3% among men and 1% to 2% among women. However, and not surprisingly, the investigators discovered heterogeneity among mortality trends by country. For example, for men with thoracic aortic aneurysms, although there was a statistically significant reduction in mortality over time in 13 of the 18 countries, in 3 countries, there was instead an increase in mortality. Similarly, for men suffering from aortic dissection, although there was again a statistically significant reduction in mortality over time in 13 of the 18 countries, in 1 country, there was a significant rise in mortality. Japan and Romania were the 2 countries with the most consistent increases in mortality.

The investigators then considered the impact of changing prevalence of risk factors on the changing mortality from thoracic aortic disease. In all of the countries studied, there was a decline in systolic blood pressure of up to 6% over time, and there was a linear relationship between systolic blood pressure and mortality from both thoracic aortic aneurysm and dissection. This makes good mechanistic sense given the known association between hypertension and both aneurysms and dissection.

In all countries but Japan, there was a decline in cholesterol levels over time, and the investigators also found a linear relationship between cholesterol and mortality from thoracic aortic aneurysm. At first, it may seem logical that a reduction in cholesterol would result in a reduction in death caused by thoracic aortic disease because hyperlipidemia is a well-known cardiovascular risk factor. Moreover, atherosclerosis has been found to be strongly associated with abdominal aortic aneurysms,

although whether this association is causative remains unclear.2 However, the evidence actually indicates that atherosclerosis is negatively rather than positively associated with thoracic aortic aneurysms.3 So how might the apparent association between the downward trends in both cholesterol and thoracic aortic aneurysm mortality be explained? One possibility, albeit unlikely, is that, despite the negative association between atherosclerosis and thoracic aneurysms, there is an independent and positive association with cholesterol itself and thoracic aortic aneurysm. An alternative, and far more plausible, explanation is that much of the downward trend in cholesterol was the result, at least in part, of an increase in the use of statin drugs. For example, the use of statin drugs among American men 65 to 74 years of age climbed from 26% in 1999 to 2008 to 50% in 2005 to 2008, and in women ≥75 years of age, it increased from 18% to 39% over that same interval.4

However, if atherosclerosis is not itself mediating thoracic aortic aneurysms, why would statin therapy be beneficial in this disease? It is known that in thoracic aortic aneurysms there is increased activity of matrix metalloproteinases,5 which can degrade extracellular matrix proteins. It is also known that statin therapy can reduce tissue levels of matrix metalloproteinases6 and may therefore confer a protective effect. Indeed, in a mouse model of Marfan syndrome, McLoughlin et al7 demonstrated that therapy with pravastatin significantly reduced the rate of aortic root growth compared with the untreated Marfan mouse. Moreover, in humans, Goel et al8 found that among patients with bicuspid aortic stenosis undergoing elective aortic valve replacement surgery, those who had previously been treated with statin therapy had significantly smaller ascending thoracic aortic diameters than those not treated with a statin. It is therefore possible that the increased use of statin therapy rather than the actual decrease in cholesterol levels accounts for the association of decreasing thoracic aortic aneurysm mortality with decreasing cholesterol.

A more surprising finding in this report is that of a significant linear but inverse relationship between body mass index and thoracic aortic aneurysm mortality in men and women, as well as aortic dissection mortality in women. However, mechanistically, this association is difficult to explain. In fact, in contradistinction, in a cross-sectional population of subjects without known thoracic aortic disease, body mass index was positively associated with aortic root diameter.9 However, in a recent report, the same investigators found a very similar inverse association between body mass index and abdominal aortic aneurysms,10 suggesting that this finding is reproducible. However, a causal explanation is elusive, so, for now, we may consider this to be yet another example of the apparent “obesity paradox.”11

In their Discussion, Sidloff and colleagues note that “Changes in the treatment of thoracic aortic aneurysm have occurred over time,” yet curiously, they tend to dismiss the impact of such
changes on mortality from thoracic aortic disease. Although it is fair to argue that risk factor modification has clearly played a role in improved outcomes, there are 3 ways in which changes in clinical practice are likely to also have contributed to the observed reduction in mortality. First, most thoracic aneurysms are detected incidentally on a diagnostic imaging study ordered for another purpose, and because the rates of echocardiography, computed tomography scanning, and magnetic resonance imaging have increased steadily over recent decades, the rate at which aortic enlargement is detected has increased as well. To this point, Olsson et al.12 found that in the Swedish population the rates of detection of thoracic aortic aneurysms increased by 52% in men and 28% in women from 1987 to 2002. Second, the past 2 decades have seen a collective increased awareness of the risks of thoracic aortic disease and the need for timely intervention. For example, Olsson et al found that the rates of thoracic aortic repair increased 7-fold in men and 15-fold in women over that same time period, dramatically outpacing the increased rates of aneurysm detection. Third, with improvements in open surgical techniques and the advent of thoracic endovascular stent grafting, mortality from thoracic aortic repair has been steadily declining: In the Olsson et al report, 30-day mortality fell from 25% to 13% over the 15 years. Similarly, in England and Wales, hospital admissions for thoracic aortic aneurysms and dissection increased between 1999 and 2010, whereas mortality for both conditions steadily declined over that same period.13 In the United States, the rates of descending thoracic aortic repair have increased over the past decade and a half, primarily as a result of a rise in thoracic endovascular stent grafting, whereas the mortality rates of both open and endovascular repair have declined steadily for both intact and ruptured aneurysms.14

We have entered an era in which thoracic aortic disease has come out of the shadows and into the light, finally commanding the attention needed to improve outcomes. We are detecting thoracic aortic aneurysms more often; we are managing risk factors better; and we are intervening more often and with better results. Collectively, these have led to a reduction in overall mortality from thoracic aortic aneurysms and dissection. However, despite the favorable progress, there is still much work to be done. We have yet to find ways to detect thoracic aortic aneurysms proactively rather than incidentally. We must still determine optimal medical therapies to reduce aneurysm growth, rupture, and dissection. We should strive to better characterize the patient and aneurysm factors that should prompt timely intervention. And we must continue to educate our patients and our colleagues about the importance of consistent blood pressure control and lifelong surveillance.

Disclosures

None.

References

Key Words: Editorials | aneurysm | aortic diseases | dissection | thoracic diseases
Trends in Thoracic Aortic Aneurysms and Dissection: Out of the Shadows and Into the Light
Eric M. Isselbacher

Circulation. 2014;130:2267-2268; originally published online November 13, 2014;
doi: 10.1161/CIRCULATIONAHA.114.013603
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2014 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://circ.ahajournals.org/content/130/25/2267

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published
in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial
Office. Once the online version of the published article for which permission is being requested is located,
click Request Permissions in the middle column of the Web page under Services. Further information about
this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org/subscriptions/