Efficacy and Safety of Rivaroxaban Compared With Warfarin Among Elderly Patients With Nonvalvular Atrial Fibrillation in the Rivaroxaban Once Daily, Oral, Direct Factor Xa Inhibition Compared With Vitamin K Antagonism for Prevention of Stroke and Embolism Trial in Atrial Fibrillation (ROCKET AF)

Jonathan L. Halperin, MD; Graeme J. Hankey, MD; Daniel M. Wojdyla, MS; Jonathan P. Piccini, MD, MHS; Yuliya Lokhnygina, PhD; Manesh R. Patel, MD; Günter Breithardt, MD; Daniel E. Singer, MD; Richard C. Becker, MD; Werner Hacke, MD; John F. Paolini, MD; Christopher C. Nessel, MD; Kenneth W. Mahaffey, MD; Robert M. Califf, MD; Keith A.A. Fox, MB, ChB; on behalf of the ROCKET AF Steering Committee and Investigators

Methods and Results—There were 6229 patients (44%) aged ≥75 years with atrial fibrillation and ≥2 stroke risk factors randomized to warfarin (target international normalized ratio=2.0–3.0) or rivaroxaban (20 mg daily; 15 mg if creatinine clearance <50 mL/min), double blind. The primary end point was stroke and systemic embolism by intention to treat. Over 10 866 patient-years, older participants had more primary events (2.57% versus 2.05%/100 patient-years; \(P=0.0068\)) and major bleeding (4.63% versus 2.74%/100 patient-years; \(P<0.0001\)). Stroke/systemic embolism rates were consistent among older (2.29% rivaroxaban versus 2.85% warfarin per 100 patient-years; hazard ratio=0.80; 95% confidence interval, 0.63–1.02) and younger patients (2.00% versus 2.10%/100 patient-years; hazard ratio=0.95; 95% confidence interval, 0.76–1.19; interaction \(P=0.313\)), as were major bleeding rates (≥75 years: 4.86% rivaroxaban versus 4.40% warfarin per 100 patient-years; hazard ratio=1.11; 95% confidence interval, 0.92–1.34; <75 years: 2.69% versus 2.79%/100 patient-years; hazard ratio=0.96; 95% confidence interval, 0.78–1.19; interaction \(P=0.336\)). Hemorrhagic stroke rates were similar in both age groups; there was no interaction between age and rivaroxaban response.

Conclusions—Elderly patients had higher stroke and major bleeding rates than younger patients, but the efficacy and safety of rivaroxaban relative to warfarin did not differ with age, supporting rivaroxaban as an alternative for the elderly. (Circulation. 2014;130:138-146.)

Key Words: aging ■ anticoagulant ■ elderly ■ hemorrhage ■ stroke

Anticoagulation with warfarin reduces the risk of ischemic stroke,1 and the net benefit of warfarin rises with age.4 The risk of bleeding during anticoagulant therapy is also...
amplified by age, thus requiring frequent anticoagulation monitoring. Sensitivity to warfarin, polypharmacy, and comorbidities\(^5\) make it difficult for elderly patients to maintain stable anticoagulation. Consequently, elderly patients are often not prescribed anticoagulation or are unable to sustain warfarin therapy over time, leaving many at high risk of stroke.\(^6\) Novel anticoagulants that specifically inhibit factor IIa or Xa do not require regular monitoring and have few drug and food interactions. These advantages could facilitate more effective stroke prophylaxis across a wider proportion of elderly patients with AF than is generally achieved with warfarin.

Clinical Perspective on p 146

Rivaroxaban, the first oral factor Xa inhibitor approved as an alternative to warfarin for several thromboembolic indications, was noninferior to adjusted-dose warfarin (target international normalized ratio [INR]=2.0–3.0) in the Rivaroxaban Once Daily, Oral, Direct Factor Xa Inhibition Compared With Vitamin K Antagonism for Prevention of Stroke and Embolism Trial in Atrial Fibrillation (ROCKET AF)\(^7,8\) among patients with nonvalvular AF at moderate to high risk of stroke (mean CHADS2 score 3.5±0.9 [SD]) and caused less intracranial and fatal bleeding. Because elderly patients with AF bear the highest risk of stroke and greatest susceptibility to adverse drug effects, the balance of risk and benefit is a key therapeutic consideration for older patients. The purpose of this prespecified secondary analysis of the ROCKET AF study was to compare the efficacy (prevention of stroke and systemic embolism) and safety (bleeding) results between warfarin and rivaroxaban in patients aged ≥75 versus <75 years at entry.

Methods

The rationale, design, and outcomes of the ROCKET AF trial have been described.\(^7\) This international, double-blind, double-dummy, event-driven, parallel-group trial randomized 14,264 patients to treatment with either fixed-dose rivaroxaban or adjusted-dose warfarin to facilitate more effective stroke prophylaxis across a wider proportion of elderly patients with AF than is generally achieved with warfarin. For all analyses, \(P\) values ≤0.05 were considered statistically significant. Hazard ratios (HRs) comparing randomized treatments along with their 95% confidence intervals (CIs) and \(P\) values were derived from a Cox regression model with treatment as the only covariate. Interactions between the randomized treatment and the age grouping were tested by Cox regression modeling. For all analyses, \(P\) values ≤0.05 were considered statistically significant. Hazard ratios (HRs) comparing randomized treatments along with their 95% confidence intervals (CIs) and \(P\) values were derived from a Cox regression model with treatment as the only covariate. Interactions between the randomized treatment and the age grouping were tested by Cox regression modeling.

Statistical Analyses

Baseline demographic and clinical characteristics in patients aged ≥75 and <75 years were summarized by randomized treatment as frequencies and percentages for categorical variables and as medians and quartiles for continuous variables. The distribution of the CHADS2 score was presented as a categorical variable and summarized as mean and SD. Baseline characteristics were compared between the 2 age groups with the \(\chi^2\) and Wilcoxon tests for categorical and continuous variables, respectively. Efficacy and safety events are presented as rates per 100 patient-years of follow-up. Adjustment of efficacy and safety end points for differences in inclusion criteria related to the age of participants was performed to assess for potential confounding.

For all analyses, \(P\) values ≤0.05 were considered statistically significant. Hazard ratios (HRs) comparing randomized treatments along with their 95% confidence intervals (CIs) and \(P\) values were derived from a Cox regression model with treatment as the only covariate. Interactions between the randomized treatment and the age grouping were tested by Cox regression modeling.

Treatment Allocation

Patients were randomized to treatment with either a fixed dose of rivaroxaban (20 mg once daily; 15 mg daily for those with moderately impaired renal function [creatinine clearance 30–49 mL/min])\(^9\) or adjusted-dose warfarin (target INR=2.0–3.0). The anticoagulants were administered in a double-blind fashion with sham INR monitoring and dose adjustment for patients allocated to rivaroxaban and placebo warfarin. For all patients, warfarin (or placebo) doses were adjusted according to local clinical practice, with INR measurements at least every 4 weeks. Treatment allocation was balanced according to previous stroke or TIA, aspirin therapy at entry, and country, according to an adaptive allocation algorithm.

End Points and Assessments

Patients were reviewed at 1, 2, and 4 weeks after initiation of randomized treatment and monthly thereafter for detection of primary end points (stroke [ischemic or hemorrhagic] and systemic embolism), TIA, acute myocardial infarction, or bleeding complications. A standardized stroke symptom questionnaire was used to enhance primary event detection. A positive response prompted (1) additional evaluation by local study-affiliated neurologists or stroke specialists blinded to treatment assignment, performed as early after symptom onset as possible, and (2) event diagnosis based on clinical findings and the result of brain computed tomography or magnetic resonance imaging. An independent, blinded, central event adjudication committee reviewed the source data.

Definitions

Stroke was defined as a sudden focal neurological deficit in the distribution of a single brain artery that persisted beyond 24 hours and was not due to another identifiable cause. An event matching this definition but lasting <24 hours was deemed a TIA. Systemic embolism was defined as abrupt vascular insufficiency associated with clinical or radiological evidence of arterial occlusion in the absence of another likely mechanism such as atherosclerosis. Myocardial infarction was defined by typical symptoms and cardiac biomarker elevation above the upper limit of normal, new pathological Q waves in at least 2 contiguous ECG leads, or confirmation at autopsy. Bleeding was categorized as major when it was clinically overt and associated with a fatal outcome; a critical anatomic site (intracranial, spinal, ocular, pericardial, articular, retroperitoneal, or intramuscular with compartment syndrome) was involved; there was a fall in hemoglobin concentration >2 g/dL; or there was a transfusion of >2 U of whole blood or packed red blood cells. Clinically relevant nonmajor bleeding was overt bleeding that did not meet criteria for major bleeding but entailed medical intervention, unscheduled contact (visit or telephone) with a physician, temporary interruption of study drug (ie, delayed dosing), pain, or impairment of daily activities.

Statistical Analyses

Baseline demographic and clinical characteristics in patients aged ≥75 and <75 years were summarized by randomized treatment as frequencies and percentages for categorical variables and as medians and quartiles for continuous variables. The distribution of the CHADS2 score was presented as a categorical variable and summarized as mean and SD. Baseline characteristics were compared between the 2 age groups with the \(\chi^2\) and Wilcoxon tests for categorical and continuous variables, respectively. Efficacy and safety events are presented as rates per 100 patient-years of follow-up. Adjustment of efficacy and safety end points for differences in inclusion criteria related to the age of participants was performed to assess for potential confounding.

For all analyses, \(P\) values ≤0.05 were considered statistically significant. Hazard ratios (HRs) comparing randomized treatments along with their 95% confidence intervals (CIs) and \(P\) values were derived from a Cox regression model with treatment as the only covariate. Interactions between the randomized treatment and the age grouping were tested by Cox regression modeling.

Efficacy end points were analyzed in the intention-to-treat population, which included all patients randomized in the trial, excluding those at 1 site (n=93 patients) before unblinding because of violations of good clinical practice that made data unreliable. Safety end points were analyzed in the safety population, which included all patients receiving at least 1 dose of study drug. Statistical analyses were
performed with the use of SAS version 9.2 (SAS Institute, Cary, NC) without correction for multiple testing.

Results

Patients

The outcomes of the 14,264 randomized participants during the course of the trial have been described previously. Of the 6229 patients (44%) aged ≥75 years at entry, the median age was 79 years in both men and women compared with 66 years for younger patients. In the elderly group, 46% were female versus 35% of younger patients, and 42% versus 65%, respectively, had prior stroke, TIA, or systemic embolism. The mean CHADS2 score was 3.7 for elderly patients versus 3.3 for younger patients. Total patient follow-up was 25,709 patient-years at risk. The median follow-up for elderly patients was 696 days (25th and 75th percentiles, 507 and 873 days) and for younger patients 721 days (25th and 75th percentiles, 533 and 894 days). Patients aged ≥75 years were treated for a median of 19.4 months (9381 patient-years) and younger patients for a median of 20.2 months (13,071 patient-years).

There was a history of hypertension in 91.1% of older men and 94.7% of older women; the mean systolic blood pressure at entry was 132 mm Hg in older men and 134 mm Hg in older women. Mainly because of a history of coronary artery disease, 34.7% of older men and 34.3% of older women were taking aspirin at randomization. There were no differences between treatment groups with regard to these or other key demographic characteristics.

Table 1. Baseline Characteristics of Patients According to Age Category and Treatment Allocation: Intention-to-Treat Population

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Age ≥75 y</th>
<th>Warfarin</th>
<th>Age <75 y</th>
<th>Warfarin</th>
<th>P Value*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Overall (n=6229)</td>
<td></td>
<td>Overall (n=8035)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rivaroxaban (n=3120)</td>
<td>Warfarin (n=3109)</td>
<td>Rivaroxaban (n=4011)</td>
<td>Warfarin (n=4024)</td>
<td></td>
</tr>
<tr>
<td>Age, median (25th, 75th percentiles), y</td>
<td>79 (76, 82)</td>
<td>79 (76, 82)</td>
<td>79 (76, 82)</td>
<td>66 (60, 71)</td>
<td>66 (60, 71)</td>
</tr>
<tr>
<td>Female, No. (%)</td>
<td>2878 (46.2)</td>
<td>1446 (46.4)</td>
<td>1432 (46.1)</td>
<td>2782 (34.6)</td>
<td>1384 (34.5)</td>
</tr>
<tr>
<td>BMI, median (25th, 75th percentiles), kg/m²</td>
<td>27.3 (24.6, 30.5)</td>
<td>27.4 (24.7, 30.7)</td>
<td>27.2 (24.6, 30.4)</td>
<td>29.0 (25.6, 33.1)</td>
<td>29.1 (25.6, 33.3)</td>
</tr>
<tr>
<td>BP, median (25th, 75th percentiles), mm Hg</td>
<td>130 (120, 140)</td>
<td>130 (120, 140)</td>
<td>130 (120, 141)</td>
<td>130 (120, 140)</td>
<td>130 (120, 140)</td>
</tr>
<tr>
<td>Systolic</td>
<td>80 (70, 84)</td>
<td>80 (70, 84)</td>
<td>80 (70, 85)</td>
<td>80 (72, 88)</td>
<td>80 (73, 88)</td>
</tr>
<tr>
<td>Diastolic</td>
<td>1060 (17.0)</td>
<td>527 (16.9)</td>
<td>533 (17.1)</td>
<td>1454 (18.1)</td>
<td>718 (17.9)</td>
</tr>
<tr>
<td>Newly diagnosed/new onset</td>
<td>99 (1.6)</td>
<td>46 (1.5)</td>
<td>53 (1.7)</td>
<td>103 (1.3)</td>
<td>54 (1.4)</td>
</tr>
<tr>
<td>Prior aspirin use</td>
<td>2150 (34.5)</td>
<td>1076 (34.5)</td>
<td>1074 (34.5)</td>
<td>3055 (38.0)</td>
<td>1510 (37.7)</td>
</tr>
<tr>
<td>Prior VKA use</td>
<td>4111 (66.0)</td>
<td>2055 (65.9)</td>
<td>2056 (66.1)</td>
<td>4793 (59.7)</td>
<td>2388 (59.5)</td>
</tr>
<tr>
<td>Prior TIA/stroke or systemic embolism, No. (%)</td>
<td>1152 (18.5)</td>
<td>543 (16.9)</td>
<td>509 (16.4)</td>
<td>1200 (29.9)</td>
<td>1123 (27.9)</td>
</tr>
<tr>
<td>congestive HF, No. (%)</td>
<td>3650 (58.6)</td>
<td>1839 (58.9)</td>
<td>1811 (58.3)</td>
<td>5258 (65.5)</td>
<td>2628 (65.5)</td>
</tr>
<tr>
<td>Hypertension, No. (%)</td>
<td>2507 (40.3)</td>
<td>1242 (39.8)</td>
<td>1265 (40.7)</td>
<td>3709 (46.2)</td>
<td>1816 (45.3)</td>
</tr>
<tr>
<td>Diabetes mellitus, No. (%)</td>
<td>1768 (29.3)</td>
<td>892 (28.6)</td>
<td>876 (28.2)</td>
<td>2323 (28.9)</td>
<td>1200 (29.9)</td>
</tr>
<tr>
<td>Prior MI, No. (%)</td>
<td>1123 (18.0)</td>
<td>588 (18.9)</td>
<td>535 (17.2)</td>
<td>690 (8.6)</td>
<td>344 (8.6)</td>
</tr>
<tr>
<td>CrCl, median (25th, 75th), mL/min‡</td>
<td>55 (44, 68)</td>
<td>55 (44, 68)</td>
<td>55 (44, 68)</td>
<td>80 (63, 100)</td>
<td>80 (63, 100)</td>
</tr>
<tr>
<td>COPD, No. (%)</td>
<td>781 (12.5)</td>
<td>413 (27.6)</td>
<td>368 (24.6)</td>
<td>716 (8.9)</td>
<td>341 (22.8)</td>
</tr>
</tbody>
</table>

AF indicates atrial fibrillation; BMI, body mass index; BP, blood pressure; COPD, chronic obstructive pulmonary disease; CrCl, creatinine clearance; HF, heart failure; MI, myocardial infarction; PVD, peripheral vascular disease; TIA, transient ischemic attack; and VKA, vitamin K antagonist.

*P value comparing patients ≥75 vs <75 y (randomized treatment combined).
†There were 3 patients with CHADS2 scores of 1: 1 in the rivaroxaban arm and 2 in the warfarin arm.
‡Using the Cockcroft-Gault formula.
Compliance With Randomized Therapy
Among older patients, 59.4% of patients on warfarin and 59.3% of patients on rivaroxaban completed the trial taking their assigned treatment compared with 69.9% and 68.7% in younger patients. Details of patient withdrawal and time in the therapeutic range of 2.0 to 3.0 during warfarin treatment have been reported. During clinical follow-up, INR measurements were slightly more frequent for elderly than for younger patients (average interval, 26 versus 26.4 days; \(P = 0.0018 \)). Among elderly patients assigned to warfarin, the mean INR was 2.44±0.86 (SD) across all measurements during the course of the study versus 2.40±0.89 (SD) for younger patients. The mean time within the therapeutic range for individual patients was 56.9±21.6% for those aged ≥75 years (58.4% in men and 55.1% in women) versus 53.9±20.9% among younger patients. Supratherapeutic (INR ≥3.2) and subtherapeutic (INR ≤1.8) anticoagulation occurred during 11.6% and 19.2%, respectively, of the follow-up duration in elderly patients taking warfarin, and excessive anticoagulation (INR ≥5.0) occurred 1.3% of the time. Correspondingly, in younger patients, anticoagulation was subtherapeutic, supra-therapeutic, and excessive 11.2%, 21.9%, and 1.0% of the time, respectively.

Treatment Efficacy
The intention-to-treat population comprised 14 171 patients. Clinical characteristics of all patients by age are summarized in Table 1. Figure 1 shows the cumulative proportion of patients in each age group experiencing primary end points over 24 months. CI indicates confidence interval; and HR, hazard ratio.

![Figure 1](https://example.com/figure1.png)

Figure 1. Cumulative proportion of patients in each age group experiencing primary end points over 24 months. CI indicates confidence interval; and HR, hazard ratio.

Table 2. Efficacy, Safety End Points, and Score by Decade of Age at Entry

<table>
<thead>
<tr>
<th>Event</th>
<th>Age Group</th>
<th>Rate* (Events)</th>
<th>Rate* (Events)</th>
<th>Rate* (Events)</th>
<th>Rate* (Events)</th>
<th>Rate* (Events)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary efficacy end point (stroke/systemic embolism)</td>
<td><55 y (n=786)</td>
<td>1.49 (21)</td>
<td>1.90 (87)</td>
<td>2.21 (188)</td>
<td>2.56 (251)</td>
<td>2.61 (28)</td>
</tr>
<tr>
<td>Stroke, systemic embolism, vascular death</td>
<td>55–64 y (n=2508)</td>
<td>3.70 (52)</td>
<td>3.55 (162)</td>
<td>4.35 (369)</td>
<td>5.33 (522)</td>
<td>7.07 (76)</td>
</tr>
<tr>
<td>Stroke, systemic embolism, MI, vascular death</td>
<td>65–74 y (n=4741)</td>
<td>4.44 (62)</td>
<td>4.16 (189)</td>
<td>5.12 (431)</td>
<td>6.19 (601)</td>
<td>7.97 (85)</td>
</tr>
<tr>
<td>Primary safety end point†</td>
<td>75–84 y (n=5566)</td>
<td>8.10 (97)</td>
<td>10.70 (404)</td>
<td>13.42 (916)</td>
<td>18.16 (1328)</td>
<td>23.77 (179)</td>
</tr>
<tr>
<td>Major bleeding</td>
<td>≥85 y (n=663)</td>
<td>1.17 (15)</td>
<td>2.50 (103)</td>
<td>3.14 (236)</td>
<td>4.39 (367)</td>
<td>6.97 (60)</td>
</tr>
<tr>
<td>Intracranial bleeding</td>
<td></td>
<td>0.15 (2)</td>
<td>0.67 (28)</td>
<td>0.51 (39)</td>
<td>0.69 (59)</td>
<td>1.25 (11)</td>
</tr>
<tr>
<td>Scores, mean (SD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHADS2</td>
<td></td>
<td>3.19 (0.85)</td>
<td>3.29 (0.84)</td>
<td>3.32 (0.84)</td>
<td>3.70 (1.01)</td>
<td>3.66 (0.99)</td>
</tr>
<tr>
<td>CHA2-VASc</td>
<td></td>
<td>3.55 (1.02)</td>
<td>3.77 (1.06)</td>
<td>4.93 (1.08)</td>
<td>5.38 (1.22)</td>
<td>5.42 (1.20)</td>
</tr>
<tr>
<td>HAS-BLED</td>
<td></td>
<td>2.05 (0.95)</td>
<td>2.10 (0.87)</td>
<td>3.06 (0.90)</td>
<td>2.94 (0.81)</td>
<td>2.90 (0.79)</td>
</tr>
</tbody>
</table>

MI indicates myocardial infarction.
*Rate per 100 patient-years of follow-up.
†International Society on Thrombosis and Haemostasis major or clinically relevant nonmajor bleeding.
experiencing primary end points over 24 months, and Table 2 shows the event rates in relation to conventional stroke and bleeding risk scores in the population categorized according to age by decade. During 10866 patient-years of exposure, 279 stroke or systemic embolism events occurred among patients aged ≥75 years. Stroke and systemic embolism were more common in patients aged ≥75 years than in those aged <75 years (2.57 versus 2.05 per 100 patient-years; P=0.0068).

In older patients, the primary event rate was 2.29 (95% CI, 1.92–2.73) per 100 patient-years with rivaroxaban compared with 2.85 (95% CI, 2.43–3.34) per 100 patient-years with warfarin (HR=0.80; 95% CI, 0.63–1.02). In younger patients, the primary event rate was 2.00 (95% CI, 1.69–2.35) per 100 patient-years with rivaroxaban compared with 2.10 (95% CI, 1.79–2.46) per 100 patient-years with warfarin (HR=0.95; 95% CI, 0.76–1.19). There was no significant interaction of treatment efficacy with age for the primary end point (P=0.3131).

Relative treatment efficacy with rivaroxaban and warfarin is shown in Table 3. Prevention of ischemic stroke (1.71 [1.30–2.10] per 100 patient-years with rivaroxaban versus 1.95 [1.61–2.36] with warfarin) among older patients (HR=0.88; 95% CI, 0.67–1.16) was comparable to that in younger patients (1.55 [1.29–1.86] per 100 patient-years with rivaroxaban versus 1.40 [1.15–1.70] with warfarin; HR=1.10 [95% CI, 0.84–1.44]; interaction P=0.2448). Stroke and systemic embolism occurred at a rate of 2.31 (1.96–2.74) in older men and 2.87 (2.43–3.38) in older women per 100 patient-years (Figure 1). The primary event rate in elderly men assigned to rivaroxaban was 2.07 (1.61–2.66) per 100 patient-years versus 2.56 (2.04–3.21) with warfarin (HR=0.81; 95% CI, 0.58–1.14; P=0.2234) and in elderly women was 2.54 (1.99–3.25) per 100 patient-years with rivaroxaban versus 3.19 (2.56–3.98) with warfarin (HR=0.80; 95% CI, 0.57–1.11; P=0.1761).

Hemorrhagic Stroke and Bleeding Events

Rates of major bleeding were higher among older patients (4.63 [4.21–5.09] per 100 patient-years) than in younger patients (2.74 [2.47–3.04]; P<0.0001). There were no significant differences, however, in rates of major bleeding among patients on rivaroxaban compared with those on warfarin in either age group (Figure 2), and the relative risk of bleeding in the 2 treatment groups was comparable among older and younger patients (Table 4; interaction P=0.336). Older patients randomized to rivaroxaban had higher rates of the combined end point of major or clinically relevant nonmajor bleeding, however, than those assigned to warfarin, whereas there was no difference by treatment in rates of bleeding among younger patients (interaction P=0.009). This interaction was restricted to extracranial bleeding and driven primarily by...
gastrointestinal bleeding, which was more frequent among elderly patients in the rivaroxaban group than in the warfarin group.

Rates of hemorrhagic stroke were similar in elderly and younger patients and consistent with the overall trial results; there was no significant interaction between patient age and the relative safety of rivaroxaban compared with warfarin (interaction $P=0.2654$). Additional safety data are presented in Tables 4 and 5, and the relative risks of selected efficacy and safety outcomes according to randomized treatment are shown in Figure 3.

Adjustment of the main efficacy and safety end points for the inclusion criteria and based on all variables that were significantly different between patients in the 2 age strata (Table 1; ie, all variables except the pattern of AF) revealed only small differences that were not clinically meaningful.

Discussion

In this prespecified secondary analysis of patients with nonvalvular AF randomized in the ROCKET AF trial, the absolute rates of stroke and systemic embolism and major bleeding were higher among elderly patients compared with younger patients, and the relative effects of the oral factor Xa inhibitor rivaroxaban, administered once daily in a fixed dose without coagulation monitoring, compared with adjusted-dose warfarin were consistent among elderly and younger patients for prevention of stroke and systemic embolism and with respect to the risk of major bleeding. With 6215 elderly

Table 4. Bleeding Events According to Age Category and Treatment Allocation

<table>
<thead>
<tr>
<th>Clinical End Point</th>
<th>Age \geq75 y</th>
<th>Age $<$75 y</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rivaroxaban</td>
<td>Warfarin</td>
</tr>
<tr>
<td>Primary safety end point</td>
<td>19.83 (n=3111)*</td>
<td>17.55 (n=3104)*</td>
</tr>
<tr>
<td>Major bleeding</td>
<td>4.86</td>
<td>4.40</td>
</tr>
<tr>
<td>Hemoglobin drop</td>
<td>3.85</td>
<td>2.98</td>
</tr>
<tr>
<td>Transfusion</td>
<td>2.28</td>
<td>1.86</td>
</tr>
<tr>
<td>Clinical organ</td>
<td>1.07</td>
<td>1.42</td>
</tr>
<tr>
<td>Fatal bleeding</td>
<td>0.28</td>
<td>0.61</td>
</tr>
<tr>
<td>Intracranial hemorrhage</td>
<td>0.66</td>
<td>0.83</td>
</tr>
</tbody>
</table>

CI indicates confidence interval; and HR, hazard ratio.

*Event rates per 100 patient-years of follow-up.

Table 5. Bleeding Sites According to Age Category and Treatment Allocation

<table>
<thead>
<tr>
<th>Clinical End Point</th>
<th>Age \geq75 y</th>
<th>Age $<$75 y</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rivaroxaban</td>
<td>Warfarin</td>
</tr>
<tr>
<td>Gastrointestinal (upper, lower, and rectal)</td>
<td>2.81 (n=3111)*</td>
<td>1.66 (n=3104)*</td>
</tr>
<tr>
<td>Intracranial</td>
<td>0.66</td>
<td>0.83</td>
</tr>
<tr>
<td>Intraparenchymal</td>
<td>0.41</td>
<td>0.49</td>
</tr>
<tr>
<td>Nontraumatic</td>
<td>0.34</td>
<td>0.47</td>
</tr>
<tr>
<td>Traumatic</td>
<td>0.06</td>
<td>0.02</td>
</tr>
<tr>
<td>Intraventricular</td>
<td>0.19</td>
<td>0.36</td>
</tr>
<tr>
<td>Subdural hematoma</td>
<td>0.23</td>
<td>0.32</td>
</tr>
<tr>
<td>Subarachnoid</td>
<td>0.11</td>
<td>0.19</td>
</tr>
<tr>
<td>Epidural hematoma</td>
<td>0.00</td>
<td>0.02</td>
</tr>
<tr>
<td>Macroscopic hematuria</td>
<td>0.32</td>
<td>0.19</td>
</tr>
<tr>
<td>Bleeding associated with noncardiac surgery</td>
<td>0.26</td>
<td>0.36</td>
</tr>
</tbody>
</table>

*Event rates per 100 patient-years of follow-up.
patients observed over 9381 patient-years of exposure, the ROCKET AF trial provides the largest prospective experience involving high-risk elderly patients with AF using oral anticoagulation.

Elderly patients are a particularly high-risk group for stroke in AF but also face the highest risk of adverse drug events. Indeed, even though the risk requirements for enrollment resulted in a higher prevalence of other stroke risk factors (such as prior stroke or TIA) in younger patients, the elderly participants in this trial exhibited higher absolute rates of stroke and systemic embolism and higher rates of bleeding. Rates of hemorrhagic stroke, however, were similar to those in younger patients. The relative effects of rivaroxaban and warfarin were consistent among elderly and younger patients for both treatment efficacy and safety. Anticoagulation with rivaroxaban was as effective as warfarin in reducing stroke and systemic embolism in older patients and was associated with less intracranial bleeding.

The efficacy of warfarin treatment in the large, international ROCKET AF trial was achieved with close monitoring of the INR. We found no difference between younger and older patients in time spent in the therapeutic range. Older patients developed more major and clinically relevant nonmajor bleeding events than younger patients, and rivaroxaban was associated with a higher risk of this combined bleeding end point in elderly patients compared with patients randomized to warfarin, mainly as a result of more frequent nonmajor bleeding. Rates of major bleeding were not significantly different between the rivaroxaban and warfarin groups. In younger patients on rivaroxaban, the lower risk of major and clinically relevant nonmajor bleeding was not statistically significant compared with patients on warfarin.

In a post hoc analysis of bleeding events in relation to age in a randomized trial of 2 doses of the oral direct thrombin inhibitor dabigatran etexilate, there was a significant interaction between treatment and age for major bleeding, such that the lower dose (110 mg twice daily) was associated with a rate of major bleeding similar to that with warfarin, whereas the higher dose (150 mg twice daily) was associated with a greater risk of major bleeding compared with warfarin among those aged ≥75 years. This interaction between treatment and age was evident for extracranial bleeding but not for intracranial bleeding, and the risk of intracranial bleeding was lower with both doses of dabigatran compared with warfarin, irrespective of patient age. Differences in the enrolled patient populations, treatment blinding, and other characteristics require the use of caution in drawing inferences based on comparisons.

Although there is no universally accepted method of calculating the net clinical benefit of antithrombotic therapy, one approach is based on avoidance of ischemic stroke, severe (life-threatening) bleeding, including intracranial hemorrhage, and all-cause mortality. When considered in this way, the benefit of rivaroxaban compared with warfarin is more pronounced in elderly patients than in younger patients, mainly as a result of prevention of nonhemorrhagic stroke (Figure 4).

Management of warfarin therapy in clinical practice is challenging and often suboptimal even in well-organized centers. The low rate of major bleeding events in randomized trials does not always reflect the incidence in clinical practice, related to subject selection, the intensity of monitoring, and follow-up or other factors. The number of major bleeding episodes in this study may have been too small to detect a significant difference in subgroups. Previous studies
found INR values ≥5.0 to be an independent risk factor for warfarin-associated bleeding,14 and INR values ≥3.5 are associated with an increased risk of cerebral hemorrhage in older patients.15,16 In our study, excessive anticoagulation (INR ≥5) occurred 1.3% of the time in patients on warfarin treatment, and INR values ≥3.2 occurred 11.6% of the time. The risk of major bleeding with warfarin may be higher in clinical practice, where the INR is often less carefully monitored.17 In addition to the limitations inherent in any secondary analysis of clinical trial data, the duration of the ROCKE T AF trial may have been too short to expose potential adverse events of treatment over a longer period. Eligibility required relatively high stroke risk based on CHADS2 scores, and most patients had previous stroke or TIA, heart failure, or diabetes mellitus. Adverse events were more common among the elderly patients, including bleeding, but these did not differ significantly by treatment with rivaroxaban versus warfarin. There is no proven reversal strategy for rivaroxaban or for any of the direct factor Xa inhibitors or dabigatran, although anticoagulation with these agents is associated with lower rates of intracranial bleeding than with the use of warfarin in both older and younger patients.

The main clinical implication of this study is that in elderly patients with nonvalvular AF at high risk of stroke, factor Xa inhibition with rivaroxaban is as effective as adjusted-dose anticoagulation with warfarin. Although rivaroxaban caused more clinically relevant nonmajor bleeding, it carried less risk of intracranial bleeding, a particular concern in the elderly. Simplifying anticoagulation management in the elderly is a substantial advantage. The availability of rivaroxaban and other factor Xa inhibitors18,19 may allow anticoagulation of a higher proportion of high-risk elderly patients with AF, offering protection against stroke.

Sources of Funding

The ROCKE T AF trial was supported by research grants from Johnson & Johnson Pharmaceutical Research and Development (Raritan, NJ) and Bayer HealthCare AG (Leverkusen, Germany).

Disclosures

Dr Halperin reports consulting fees from Astellas Pharma, Boehringer Ingelheim, Bristol-Myers Squibb, Daiichi Sankyo, Pfizer, and Sanofi Aventis and serves as chair of the data safety monitoring committee for the Examining Use of ticagrelor in paDiabetic (EUCLID) trial, sponsored by AstraZeneca. Dr Hankey reports consulting and advisory board fees from Bayer Pharmaceuticals, Boehringer Ingelheim, Bristol-Myers Squibb, and Pfizer and honoraria from Bayer Pharmaceuticals and theHeart.org. Dr Piccini reports research grants from GE Healthcare and Janssen and consulting fees from Forest Laboratories, Janssen, Medtronic, Pfizer/Bristol-Myers Squibb, and Spectranetics. Dr Patel reports a research grant from AstraZeneca, Boehringer Ingelheim, Bristol-Myers Squibb, Daiichi Sankyo, Johnson & Johnson, Pfizer, and CSL Behring and a research grant from Johnson & Johnson. Dr Becker reports research support from Bayer and Johnson & Johnson (modest) and scientific advisory boards for Bayer. Dr Hacke reports honoraria from Johnson & Johnson and Bayer and advisory board fees from Boehringer Ingelheim. Dr Paolini is a former employee of Bayer HealthCare Pharmaceuticals. Dr Nessel is an employee of Janssen Research and Development. Dr Mahaffey reports consulting fees from Bayer, Boehringer Ingelheim, Bristol-Myers Squibb, Daiichi Sankyo, Eli Lilly, GlaxoSmithKline, Johnson & Johnson, Merck, Ortho/McNeill, Pfizer, and PolyMedix and grant support from AstraZeneca, Boehringer Ingelheim, Daiichi Sankyo, Eli Lilly, GlaxoSmithKline, Johnson & Johnson, Merck, Portola, Regado Biotechnologies, Sanofi, and The Medicines Company. Dr Califf reports consulting fees from Kowa, Nike, Orexigen, Sanofi Aventis, Novartis, and Xoma; grant support from Novartis, Merck, and Amlyn/Lilly; and equity interest in Nitrox. Dr Fox reports grant support and lecture fees from Eli Lilly and lecture fees from Sanofi Aventis and AstraZeneca. The other authors report no conflicts.

References

Downloaded from http://circ.ahajournals.org/ by guest on July 24, 2017

CLINICAL PERSPECTIVE

Atrial fibrillation is common among the elderly, who face high rates of disabling ischemic stroke if untreated but risk bleeding during anticoagulation with warfarin. The vitamin K antagonists require routine blood test monitoring of anticoagulation intensity, making it difficult for many elderly patients to sustain prophylaxis. The first oral factor Xa inhibitor, rivaroxaban, given once daily, proved noninferior to adjusted-dose warfarin (target international normalized ratio=2–3) for prevention of stroke and systemic embolism (primary events) in the double-blind Rivaroxaban Once Daily, Oral, Direct Factor Xa Inhibition Compared With Vitamin K Antagonism for Prevention of Stroke and Embolism Trial in Atrial Fibrillation (ROCKET AF) of >14,000 patients (mean CHADS2 score=3.5), with comparable rates of major and clinically relevant non-major bleeding and significantly lower rates of cerebral hemorrhage. This prespecified secondary analysis compares outcomes in 6229 patients aged ≥75 years with younger patients. The older participants had higher rates of primary events (2.57 versus 2.05%/100 patient-years; *P*=0.0068) and major bleeding (4.63 versus 2.74%/100 patient-years; *P*<0.0001), but the relative risks of stroke during treatment with rivaroxaban versus warfarin were consistent among older and younger patients (hazard ratio=0.80 versus 0.95; interaction *P*=0.313), as were risks of major bleeding (hazard ratio=1.11 versus 0.96; interaction *P*=0.336); hemorrhagic stroke rates were lower with rivaroxaban, as seen in younger patients. There was no interaction between age and response to rivaroxaban. Whereas the elderly patients with atrial fibrillation exhibited higher rates of stroke and major bleeding than younger patients, the relative efficacy and safety of rivaroxaban compared with warfarin did not differ with age. These results support use of rivaroxaban as an alternative to warfarin in elderly patients with atrial fibrillation.

Go to http://cme.ahajournals.org to take the CME quiz for this article.
Efficacy and Safety of Rivaroxaban Compared With Warfarin Among Elderly Patients With Nonvalvular Atrial Fibrillation in the Rivaroxaban Once Daily, Oral, Direct Factor Xa Inhibition Compared With Vitamin K Antagonism for Prevention of Stroke and Embolism Trial in Atrial Fibrillation (ROCKET AF)

on behalf of the ROCKET AF Steering Committee and Investigators*

Circulation. 2014;130:138-146; originally published online June 3, 2014;
doi: 10.1161/CIRCULATIONAHA.113.005008

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2014 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/130/2/138

Data Supplement (unedited) at:
http://circ.ahajournals.org/content/suppl/2014/05/29/CIRCULATIONAHA.113.005008.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/
ROCKET AF Steering Committees and Trial Investigators

Executive Steering Committee

Richard C. Becker, Duke Clinical Research Institute, Duke University Medical Center, Durham, NC
John Paolini, Bayer HealthCare Pharmaceuticals, Montville, NJ
Günter Breithardt, Hospital of the University of Münster, Münster, Germany
Werner Hacke, Ruprecht-Karls-University, Heidelberg, Germany
Jonathan L. Halperin, Mount Sinai School of Medicine, New York, NY
Graeme J. Hankey, Royal Perth Hospital, Perth, Australia
Kenneth W. Mahaffey, Duke Clinical Research Institute, Duke University Medical Center, Durham, NC
Christopher C. Nessel, Johnson & Johnson Pharmaceutical Research & Development, Raritan, NJ
Daniel E. Singer, Massachusetts General Hospital and Harvard Medical School, Boston, MA
Robert M. Califf, Duke Translational Medicine Institute, Duke University Medical Center, Durham, NC (co-chair)
Keith A.A. Fox, University of Edinburgh and Royal Infirmary of Edinburgh, Edinburgh, United Kingdom (co-chair)

Steering Committee (National Coordinators)

Diego Ardissino, University of Parma, Parma, Italy
Alvaro Avezum, Dante Pazzanese Institute of Cardiology, São Paulo, Brazil
Phil Aylward, Flinders Medical Centre, Adelaide, Australia
Barbara Biedermann, Kantonsspital Bruderholz, Bruderholz, Switzerland
Günter Breithardt, Hospital of the University of Münster, Münster, Germany
Christoph Bode, University of Freiburg, Freiburg, Germany
Antonio Carolei, University of L’Aquila, L’Aquila, Italy
Ramón Corbalán, Pontificia Universidad Católica, Santiago, Chile
László Csiba, University of Debrecen, Debrecen, Hungary
Anthony Dalby, Milpark Hospital, Johannesburg, South Africa
Rafael Diaz, Instituto Cardiovascular de Rosario, Rosario, Argentina
Hans-Christoph Diener, University Hospital Essen, Essen, Germany
Geoffrey Donnan, University of Melbourne, Melbourne, Australia
Shaun Goodman, University of Toronto, Toronto, Canada
Hein Heidbüchel, University Hospital Gasthuisberg, Leuven, Belgium
Dai-Yi Hu, Tongji University, Shanghai, China
Kurt Huber, University of Vienna, Vienna, Austria
Gorm Jensen, Copenhagen University Hospital, Copenhagen, Denmark
Máté Keltai, Gottsegen György Hungarian Institute of Cardiology, Budapest, Hungary
Basil Lewis, Lady Davis Carmel Medical Center, Haifa, Israel
José López-Sendón, Hospital La Paz, Madrid, Spain
Gordon MacInnes, University of Glasgow, Glasgow, United Kingdom
Jean-Louis Mas, Hôpital Sainte-Anne, Paris, France
Ayrton Massaro, Federal University of São Paulo, São Paulo, Brazil
Bo Norrving, Lund University Hospital, Lund, Sweden
Martin Penicka, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
Dorairaj Prabhakaran, All India Institute of Health Sciences, New Delhi, India
Risto Roine, Turku University Hospital, Turku, Finland
Per Anton Sirnes, The Feiring Heart Clinic, Feiring, Norway
Veronika Skvortsova, Russian State Medical University, Moscow, Russia
Philippe Gabriel Steg, Hôpital Bichat, Paris, France
Ru San Tan, National Heart Centre, Singapore
Harvey White, Auckland City Hospital, Auckland, New Zealand
Lawrence Wong, Chinese University of Hong Kong, Hong Kong, China

ROCKET AF Trial Investigators