Reduction of Radiation to Children
Our Responsibility to Change
Maria Grazia Andreassi, MSc, PhD; Eugenio Picano, MD, PhD

Medical radiation from x-rays and nuclear medicine is the largest man-made source of radiation exposure in Western countries and accounts for a mean effective dose (ED) of 3.0 mSv/y per person, equivalent to a radiation dose of 150 chest x-rays. In the United States, cardiologists are responsible for 40% of the entire cumulative ED to the population from all sources, excluding radiotherapy.1 In pediatric patients with congenital heart disease (CHD), the annual ED is relatively low (<3 mSv/y), but this extra yearly exposure accrues over the lifetime and can reach high values (>100 mSv) in selected cohorts of pediatric chronic patients;2 especially those undergoing interventional fluoroscopy procedures and serial computerized tomography (CT) evaluations.3 The benefits of ionizing imaging in children, especially in those with CHD, are immense and often life-saving, even more so with the advent of invasive fluoroscopy and CT, yet the use of radiation in children raises special concerns and offers a unique challenge for the current generation of pediatric cardiologists.

The Challenge of Radiation Damage in Children
For any given radiological ED, younger pediatric patients receive higher radiation doses than older children, and overall, pediatric patients receive higher radiation doses than adult patients. Thus, the risk is 3 to 4 times higher in children than in adults.4 Children are at a substantially higher risk than adults because they have more rapidly dividing cells and greater life expectancy, allowing the clinical manifestation of radiation-induced cancers with decades-long latency periods,5 although this is more often true for some organs, such as the brain, and less for others, such as the lungs.6,7 At the age of 15 to 20 years, grown-up patients with CHD have already accumulated an ED corresponding to 20 to 40 mSv, with an estimated lifetime attributable extrarisk of cancer of 1 in 10 to 1 in 100, with a detectable 2-fold increase compared with controls in chromosome aberrations,8 which are intermediate end points and long-term predictors of cancer and appear soon after cardiac catheterization.9,10 Among pediatric patients with CHD, fluoroscopy-guided diagnosis and interventions account for 1.5% to 3.5% of all radiological examinations performed and 60% to 84% of their total collective dose.24 In the United States, the issue of radiological responsibility was addressed in the Image Gently, Step Lightly Campaign, focusing on the risks of unnecessary and excessive medical radiation exposure from interventional radiology administered to pediatric patients.11 A single invasive fluoroscopy procedure can reach values as high as 40 mSv per single procedure, especially if no systematic audit of dose is implemented in the cardiac cath laboratory. This is especially important in pediatric cardiology, because the increasing use and complexity of imaging and interventional techniques in pediatric patients has not been matched by increasing awareness and knowledge by prescribers and practitioners.11 Even in top-level pediatric cardiology centers, most interventional cardiologists and radiologists grossly underestimate the radiation doses for most commonly requested tests, and almost 50% of them ignore or deny that x-rays are a proven carcinogen.12

The Opportunity for Better Radiation Protection in Pediatric Cardiology
As far as radiation damage is concerned, we should make every effort to bring the pediatric cardiology community from an evidence-poor to an evidence-rich milieu. Additional data are needed, especially in the low-dose range (<100 mSv). Biologic Effects of Ionizing Radiation VII listed among top-research needs future medical imaging studies, including “studies of infants who experience diagnostic exposures related to cardiac cath”.5 Similar studies were performed on Australian and British cohorts of 120,00013 and 680,00014 children undergoing CT studies and showed that a CT head scan increases the subsequent risk of brain cancer by 20%.15 A similar effort should be made by the pediatric cardiology community, and ≥1 nationwide study is currently underway to assess the long-term risk of cancer in children with CHD.15 Pediatric cohorts are also ideally suited to identify the individual factors important in translating population into individual risk (Figure) and to assess other major noncancer effects of radiation exposure, including atherosclerosis, brain aging, and reproductive effects.

The Governance of Radiological Responsibility: The 4 A’s Approach
Today, it is possible for a child with heart disease to be admitted to a tertiary care referral center and be cared for by a cardiologist, invasive cardiologist, or cardiac radiologist who is unaware of the dose(s) he administers to the patient. The child can be given a dose that is 10-fold higher than the reference dose, and this dose is not reported anywhere in paper or digital records. The dose is not mentioned anywhere in the

The opinions expressed in this article are not necessarily those of the editors or of the American Heart Association.
From the National Research Council Institute of Clinical Physiology, Pisa, Italy.
Correspondence to Maria Grazia Andreassi, MSc, PhD, National Research Council Institute of Clinical Physiology, Via Moruzzi 1, I-56124 Pisa, Italy. E-mail mariagrazia.andreassi@ifc.cnr.it.
(Circulation. 2014;130:135-137.)
© 2014 American Heart Association, Inc.
Circulation is available at http://circ.ahajournals.org
DOI: 10.1161/CIRCULATIONAHA.114.010699

135
informed consent, although the risks can be as high as 1 in 100 per test. Even worse, the patient can be admitted to an institution run with public money in which all imagers are encouraged to do more exams, especially with more costly techniques, such as CT or invasive cardiology. In this cultural and economic milieu, “pay per volume” is the rule, and implementing appropriateness and optimization in your laboratory can be dangerous for your professional survival.16 This praxis can no longer be accepted, and we need to have more efficient tools than “moral suasion” to force cardiologists to comply with high safety standards. In practice, this is best obtained through a systematic implementation of the 3 A’s strategy proposed by the International Atomic Energy Agency in 2012:16 (1) awareness, because knowledge of doses and risks is still primarily suboptimal in doctors and patients, but you have to know what you are going to do in terms of reference dose; (2) appropriateness, because at least one-third of examinations are inappropriate; and (3) audit, of the true delivered dose, because you need to know what you have done, and the dose should be written down in the electronic records. To this 3 A’s approach proposed by the International Atomic Energy Agency, a fourth A should probably be added: accountability. The radioprotection aspect is vital for the health of our children and should be safeguarded by political governance and verification of radiological activity. At present, in the words of Eric J. Topol, “we have a very important problem here with this runaway use of radiation procedures but no accountability with respect to patients’ exposure. (…) So, why don’t we tell patients when they have a particular imaging scan how many mSv they’re getting exposed to? (…) This is a serious breach of our responsibility to patients. In a digital world, this information could be collected from birth. Hopefully, we will see that change come about in the future, this is something that’s a big hole in the way we work in medicine.”17 The radiation issue is no longer a hidden variable ignored by doctors and patients but is a key factor in determining the rating of our pediatric cardiology division, the risk–benefit assessment of competing diagnostic and therapeutic options, the direction of future research, and the commercial success of new radiation-sparing technologies.

Take-Home Message

The interesting data of Johnson et al2 further reinforce the clinical message of the recent European Society of Cardiology position paper on medical radiation, which holds true even more for pediatric cardiologists: “X-rays and γ-rays used in radiology and nuclear medicine are proven (class I) carcinogens and cardiologists should make every effort to give the right imaging examination, with the right dose, to the right patient. The priority given to radioprotection in every cardiology department is an effective strategy for primary prevention of cancer, a strong indicator of the quality of the cardiology division, and the most effective shielding to enhance the safety of patients, doctors and staff. A smart cardiologist cannot be afraid of the essential and often life-saving use of medical radiation, but must be very afraid of radiation unawareness”1.

According to the European Society of Radiology, the expected scenario in the coming years will allow better protection of patients (and staff) through appropriateness,
optimization actions through technological improvements, dose recording and dose management through dose reference levels, and dedicated radiation protection training with certification (also for cardiologists). Pediatric cardiology should ideally be the first and most important stage to deploy in the field of this global approach to radiation protection.

In few fields of medicine can you obtain so much (in terms of improved quality of care of our patients) with so little (simply through increased knowledge of radioprotection essentials). You add awareness to the healthcare system and you obtain safety. You inject responsibility and you gain primary prevention of cancer. It is time to abandon old, time-honored practices of radiological unawareness and enter a new era of radiological responsibility, full of opportunities for patients, doctors, and scientists (Table). CT and invasive fluoroscopy in children are essential tools for pediatric cardiologists, but they must be used prudently and optimally. Fifty years ago, a pioneer in the field of pediatric cardiology, Forrest H. Adams, wrote an editorial in *Circulation* on “Reduction of Radiation to Children,” and he stated that “Properly controlled radiation can provide benefits that greatly outweigh the potential hazards if there are adequate indications for its use and the instrumentation and technics are optimal. (…) Ideally, radiation exposure records should be maintained for each patient, particularly the pediatric patient effective dose and acute radiation-induced chromosomal DNA damage in children with congenital heart disease. *Heart*. 2010;96:260–274.

Kennedy JF. Remarks upon signing the maternal and child health and welfare protection bill. October 1963.

References

Disclosures

None.

Key Words: Editorials ■ radiation
Reduction of Radiation to Children: Our Responsibility to Change
Maria Grazia Andreassi and Eugenio Picano

Circulation. 2014;130:135-137; originally published online June 9, 2014;
doi: 10.1161/CIRCULATIONAHA.114.010699

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2014 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://circ.ahajournals.org/content/130/2/135

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Circulation* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Circulation* is online at:
http://circ.ahajournals.org//subscriptions/