Reprogramming Fibroblasts to Endothelial Cells
Converted or Born Again?

Lianghui Zhang MD, PhD; Asrar B. Malik, PhD; Jalees Rehman, MD

These results show that a nucleus can promote the formation of a differentiated intestine cell and at the same time contain the genetic information necessary for the formation of all other types of differentiated somatic cell in a normal feeding tadpole. It is concluded that the differentiation of a cell cannot be dependent on the incapacity of its nucleus to give rise to other types of differentiated cell.

J.B. Gurdon, 1962

This is the concluding paragraph of Sir John Gurdon’s seminal study published in 1962 in which he demonstrated that nuclei from differentiated intestinal epithelial cells could give rise to normal tadpoles after transfer into an enucleated recipient egg. Half a century later, Gurdon received the Nobel Prize with Shinya Yamanaka, whose equally seminal work had shown that adult mouse fibroblasts could be reprogrammed to a fully pluripotent stem cell state, for their contributions to the formation of all other types of differentiated somatic cell in a normal feeding tadpole, and during a second phase, iPSCs have to then be differentiated into desired cell types such as neurons, hepatocytes, or cardiomyocytes.

The prescient formulation in Gurdon’s 1962 article emphasizes the reversibility of cell fate decisions without necessarily invoking pluripotency. A differentiated somatic cell such as an intestinal epithelial cell or an adult fibroblast harbors the potential of becoming any other differentiated cell. This idea fueled the search for approaches that would enable the direct conversion of adult differentiated cells into other lineages without generating an intermediate iPSC. Such a direct conversion of fibroblasts or other adult somatic cells into desired cell types would have the pragmatic advantage of expediency. It takes multiple weeks to first generate iPSCs from adult cells, and during a second phase, iPSCs have to then be differentiated into, for example, neurons, cardiomyocytes, or hematopoietic cells. In addition to this practical advantage, direct lineage conversion may also allay concerns about the formation of teratomas or spontaneous differentiation into undesired cell types which could potentially arise when using iPSC-derived cells for therapeutic, regenerative purposes in patients. Undifferentiated pluripotent stem cells can form teratomas, and even though therapeutic applications would most likely use differentiated iPSC-derived cells, there is always a small risk that the iPSC-derived cell populations obtained might be contaminated by some undifferentiated or only partially differentiated iPSC, which could form teratomas or give rise to other undesirable cell types after transplantation into the recipient.

At least 2 distinct approaches have been used to successfully convert adult fibroblasts into functional cardiomyocytes. One approach involves expressing cocktails of selected transcription factors involved in the specification of the cardiomyocyte lineage during embryonic development. These cardiogenic transcription factor cocktails can also be applied in vivo, where they can directly convert cardiac fibroblasts into functional cardiomyocytes. An alternative means of converting fibroblasts into cardiomyocytes relies on briefly expressing the Yamanaka factors in fibroblasts but preventing the formation of pluripotent iPSCs. Instead, the fibroblasts are guided toward the cardiomyocyte lineage by providing the cells with appropriate cardiogenic growth factors and small molecules. The transient activation of pluripotency genes appears to thrust the fibroblasts toward a partially dedifferentiated or more pliable state, which then enables the reprogramming with exogenous cardiogenic growth factors and molecules. This latter approach of combining brief activation of pluripotency genes with exogenous differentiation cues (and thus circumventing the formation of pluripotent iPSCs) has also been used successfully to convert fibroblasts into vascular endothelial cells, whereas the approach using lineage-specific transcription factors to generate endothelial cells was successful only in converting amniotic cells to endothelial cells. The successful amniotic-to-endothelial cell conversion underscores that lineage-specific transcription factors can indeed be used to generate endothelial cells, but its practical use for generating patient-specific endothelial cells was rather limited. Fibroblasts can be easily obtained in the clinical setting through a simple skin biopsy, whereas amniotic cells are quite difficult to come by.

In this issue of Circulation, Han and colleagues now show that adult mouse fibroblasts can be converted into endothelial cells using a lineage-specific transcription factor approach that overexpresses a cocktail of 5 transcription factors: Foxo1, Er71, Klf2, Tal1, and Lmo2. They initially screened combinations of 11 transcription factors that they deemed important...
for endothelial cell development and narrowed the transcription factor combination down to the above-mentioned 5 factors. The screening was performed using mouse fibroblasts with a fluorescent Tie-2 reporter, but flow cytometry confirmed that the generated endothelial cells indeed expressed endothelium-specific surface proteins. More important, the newly generated induced endothelial cells also functionally behaved like endothelial cells in that they released nitric oxide on stimulation with acetylcholine or vascular endothelial growth factor and enhanced angiogenesis in vivo. According to Han and colleagues, this specific combination of transcription factors was able to generate endothelial cells only from fibroblasts, not from bone marrow mononuclear cells, thus indicating that the starting cell type may dictate what factors are required for lineage conversion to endothelial cells. The fraction of fibroblasts that generated induced endothelial cells was roughly 4%, as defined either by the Tie-2 reporter or by using the expression of the endothelium-specific surface protein VE-cadherin as an indicator. This percentage may seem low, but it broadly corresponds to the range of reprogramming success reported for other forms of lineage conversion.

This new method of directly generating endothelial cells from fibroblasts has significant implications for generating patient-specific endothelial cells, especially for regenerative purposes. By providing a lineage-specific direct reprogramming approach, this work now opens up the possibility of future studies that may attempt the in vivo generation of endothelial cells, similar to what has been demonstrated for in vivo fibroblast-cardiomyocyte reprogramming. If new cardiac muscle can be generated by locally reprogramming resident cardiac fibroblasts to cardiomyocytes, then surely such a newly generated heart muscle would benefit from the concomitant generation of vascular endothelial cells to ensure oxygenation of the neomyocardium. Because previous fibroblast-to-endothelial conversion methods relied on transiently expressing pluripotency genes,7–9 they were not well suited for direct in vivo reprogramming of resident fibroblasts.

The reported success of direct reprogramming to cardiomyocytes varies widely between various research laboratories, even when they use the same transcription factors,3,12 which is why it will be important to await the results of reprogramming success when other research laboratories use the new method proposed by Han and colleagues to generate endothelial cells. The present study by Han and colleagues did not investigate whether human fibroblasts can also be reprogrammed to endothelial cells, and it remains to be seen how the results will translate to the human setting. In the case of fibroblast-to-cardiomyocyte conversion, human fibroblasts appear to generate functionally immature cardiomyocytes, as evidenced by low-amplitude calcium transients and rare spontaneous contractility,11 indicating that human fibroblast-to-endothelial reprogramming using endothelial lineage-specific transcription factors may be more challenging.

One limitation of the present study is that it provides little information about the long-term identity and functionality of the generated induced endothelial cells. Even mature primary endothelial cells in culture can experience a phenotypic drift, and this may be an even bigger concern for reprogrammed cells because it is possible that they may have retained some of their fibroblast identity. In fact, the recent CellNet study analyzed the gene expression patterns of various directly reprogrammed cell types, comparing them with the gene expression patterns of cell types derived from pluripotent stem cells, and found that directly reprogrammed cells appear to inadequately silence their source cell program. In practical terms, this suggests that fibroblasts that are first converted to a pluripotent iPSC state and only then differentiated into cardiomyocytes or endothelial cells may be more likely to erase their fibroblast identity than fibroblasts that are directly converted to cardiomyocytes or endothelial cells. The iPSC reprogramming process could provide the cells with a clean slate, allowing them to be “reborn” when they are redifferentiated into a new lineage.

With the variety of methods now available to generate endothelial cells from fibroblasts—derived from iPSCs, converted through the use of partial dedifferentiation, and converted by use of the endothelial transcription factor method proposed by Han and colleagues—how should one choose the optimal method? The answer is that the method of choice is probably context specific. For example, partial dedifferentiation may be well suited for generating >1 cell type but still avoiding the fully pluripotent state. Kurian and colleagues used a partial dedifferentiation approach and were able to generate “angioblasts,” which could give rise to both endothelial cells and smooth muscle cells and therefore could be used for vascular engineering that requires both vascular cell types. On the other hand, the method of Han and colleagues may be better suited for direct in vivo reprogramming of fibroblasts.

The field of reprogramming fibroblasts to endothelial cells is in its infancy, but the road ahead looks quite promising and exciting. We are only gradually realizing how important it is to study cell fate memory and identity during the dynamic process of reprogramming. As our knowledge of the intricate processes that occur during reprogramming increases, we will have greater confidence not only in the scientific validity of the results obtained with the newly generated endothelial cells but also in the safety of bringing cellular reprogramming to the bedside of cardiovascular patients.

Sources of Funding
This work is supported in part by National Institutes of Health grants R01-GM094220 (Dr Rehman), R01-HL118068 (Drs Malik and Rehman), R01-HL090152 (Dr Malik), and T32-HL07829 (to support Dr Zhang).

Disclosures
None.

References

Key Words: Editorials | cell differentiation | endothelial cells | regeneration | stem cells
Reprogrammed Fibroblasts to Endothelial Cells: Converted or Born Again?
Lianghui Zhang, Asrar B. Malik and Jalees Rehman

Circulation. 2014;130:1136-1138; originally published online September 3, 2014;
doi: 10.1161/CIRCULATIONAHA.114.012540

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2014 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://circ.ahajournals.org/content/130/14/1136

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/