An Aspirin a Day to Keep the Clots Away
Can Aspirin Prevent Recurrent Thrombosis in Extended Treatment for Venous Thromboembolism?

Thomas W. Wakefield, MD; Andrea T. Obi, MD; Peter K. Henke, MD

Patients presenting with deep vein thrombosis (DVT) in the absence of any identifiable risk factors are said to have an unprovoked or idiopathic DVT. Recurrent events are much more common in these patients (10% versus ≤ 3% at 1 year) compared with patients with a DVT provoked by a reversible risk factor, and such events represent a major healthcare problem. Three months of anticoagulation is sufficient to decrease the risk of recurrent thrombosis related to the initial DVT. However, once therapy is discontinued, the risk for recurrence rises dramatically. It has been suggested that 30% to 50% of patients experience a recurrence at 10 years. Factors associated with a higher likelihood of recurrence are male sex, elevated D dimer, incomplete resolution of DVT, body mass index ≥30, and post-thrombotic syndrome. In fact, a number of tools have been developed to determine the risk of recurrence after DVT.

In the current management paradigm, patients with unprovoked DVT are evaluated for long-term anticoagulation after initial treatment with 3 to 6 months of anticoagulation. The risks of major bleeding during prolonged therapy are periodically weighed against the benefits of continuing anticoagulation in high-risk patients. Data supporting this approach come from 4 studies demonstrating a decrease in recurrent venous thromboembolism (VTE) by 90% with extended conventional dose vitamin K antagonists (VKA) therapy. Major bleeding occurs in 20 per 1000 patients, and as of yet no validated prediction tool exists to predict risk–benefit ratio of extended therapy. Factors associated with an increased risk of bleeding include advanced age (>75 years), history of gastrointestinal bleeding, noncardioembolic stroke, renal or hepatic disease, concomitant antiplatelet usage, and poor control of anticoagulation. In the interest of diminishing the bleeding risk while conferring protection against recurrent venous thromboembolism several approaches have been taken: subtherapeutic anticoagulation with VKA, new oral anticoagulant agents, and aspirin.

Two trials randomized patients after completing fully VKA anticoagulation (3–6 months) to either placebo or subtherapeutic VKA therapy (target international normalized ratio of 1.5–1.9). Patients receiving indefinite sub therapeutic anticoagulation had a 62% to 64% relative risk reduction of recurrent VTE. Although low-intensity VKA was more effective than placebo, it was less efficacious than full-dose VKA. Use of a lower international normalized ratio target did not decrease the number of clinically important bleeding events, dampening overall enthusiasm for this approach.

New oral anticoagulants (NOACs) which do not require monitoring nor dosage adjustment have emerged as a convenient alternative for long-term prevention of recurrent VTE. To date, 3 trials have evaluated NOACs against placebo for an additional 12 months of therapy beyond initial anticoagulation (Table). In a pooled meta-analysis of the data, NOACs decreased the risk of recurrent VTE or VTE-related death by 84% with a number needed to treat of 17 compared with placebo. However, bleeding remained a significant source of morbidity with a higher risk of major or clinically relevant bleeding (4.6% versus 2.0%; odds ratio, 2.69; 95% confidence interval, 1.25–5.77) in the NOAC group and a number needed to harm of 39. One trial has evaluated dabigatran compared with warfarin for the extended treatment of VTE. In this trial, patients were randomized to either dabigatran 150 mg twice daily or warfarin (with a goal international normalized ratio of 2.0–3.0) for 12 months after completion of acute anticoagulation. The primary end point of symptomatic DVT, fatal pulmonary embolism, and all-cause mortality was similar between the 2 groups. A lesser risk of major bleeding (5.6% versus 10.2%, P=0.001) was offset by the increased incidence of acute coronary syndrome in the dabigatran group (0.9% versus 0.2%, P=0.02). The expense and lack of any commonly available reversal agents represent drawbacks to the use of NOACs.

Despite universal availability, inexpensive cost, and well-established drug safety profile, the use of aspirin previously has not been extensively studied outside of the orthopedic surgery population for the treatment or prevention of VTE. Practically, aspirin may represent a convenient intermediate therapy between no treatment and indefinite anticoagulation, balancing the risk of bleeding with the benefit of preventing recurrent thrombosis in a moderate risk population. Two trials recently were completed to address this question: the Warfarin and Aspirin (WARFASA) study and the Aspirin to Prevent Recurrent Venous Thromboembolism (ASPIRE) study. In both trials, aspirin was compared against placebo after completion of a minimum of 6 weeks of anticoagulation in patients with unprovoked VTE. Patients were treated with 100 mg of aspirin or placebo for 2 to 4 years. In both trials a decrease in recurrent VTE was demonstrated with a low risk of major bleeding. However, neither study was powered to
by guest on January 15, 2018 http://circ.ahajournals.org/ Downloaded from

vein wall.17,18 This is because of the classic dogma that the last 2 decades has focused on the role of the leukocyte and platelets directly contributed to acute venous thrombosis,16 soing the role of the platelet in DVT were generally lacking.

for DVT prevention. However, experimental data directly su-

ing the treatment effect over time. The absolute reduction of

O.008) corresponding to a number needed to treat of 42 to prevent 1 symptomatic

VTE occurrence. Additional data garnered from this analysis

for recurrent VTE, although as a result of slow enrollment

It was initially powered to detect with 80% confidence a 30% reduc-

nication among different subgroups of patients.

The Aspirin for the prevention of recurrent venous thrombo-

embolism study (INSPIRE)15 was designed to more accurately
delineate the treatment effects of the WARFASA and ASPIRE

trials in prespecified subgroups by combining the results at a

patient level before unblinding of the 2 arms. The study was

ultimately powered to detect with 80% confidence a 30% reduc-

ion in recurrent VTE, although as a result of slow enrollment

was ultimately powered to detect a 35% reduction in recur-

VTE occurred in 18.4% of patients on placebo and in

13.1% of patients assigned to aspirin (hazard ratio, 0.68; 95%

confidence interval, 0.51–0.90; P=0.008) corresponding to a

number needed to treat of 42 to prevent 1 symptomatic

VTE occurrence. Additional data garnered from this analysis

were most valuable in identifying the populations most likely
to benefit (men and individuals aged ≥65 years) and evaluat-

ing the treatment effect over time. The absolute reduction of

recurrent events was significantly greater over the first year

when the risk of recurrence was highest.

It is surprising, given that platelets are known to be central
to thrombosis, that antiplatelet therapy was not considered
sooner to be compared in a rigorous randomized, control trial
for DVT prevention. However, experimental data directly sup-

porting the role of the platelet in DVT were generally lacking.

One early report with an experimental rodent model suggests

platelets directly contributed to acute venous thrombosis,16

but most experimental venous thrombosis research over the

last 2 decades has focused on the role of the leukocyte and

vein wall.17,18 This is because of the classic dogma that the

fibrin rich red clot formation in venous thrombosis is primar-
ily driven by the clotting pathway, whereas arterial thrombosis

is thought to be more platelet driven. However, recent experi-

mental data using murine models suggest that the platelet

is a critical component of early DVT. First, the assembling

and colocalization of the coagulation cascade occurs on the

platelet surface in juxtaposition to the endothelium.19 Second,

release of von Willebrand Factor provides a bridge between

the platelet and endothelium. Studies using von Willebrand

Factor gene–deleted mice confirmed decreased thrombus

size that was not reversed with exogenous factor VIII, in a

flow-limited venous thrombosis model.20 Extrapolation of
data to humans is somewhat limited with any animal model

system of human disease, including partial or total stasis DVT

models.21 Particularly relevant to the current INSPIRE study is

that there are no animal models (yet) of recurrent DVT.

The pathophysiology of recurrent unprovoked DVT may be
different than primary DVT. How? It is likely the vein wall is
damaged with the initial thrombus insult, even in those who

fully lyse their DVT. Although direct tissue histopathologic

eamples are rare, post-DVT vein wall changes are exempli-

ified physiologically by valve reflux and thickened and

noncompliant vein walls, which together culminate in post-

thrombotic syndrome. Thus, the endothelium that is regen-

erated after the thrombus has cleared may be more likely to

thrombose. Intriguingly then, the current clinical data suggest

the platelet may be more central to recurrent DVT than pri-

mary DVT.

How to take this information and make current recommenda-
dations? We suggest that for patients who have unprovoked

(idiopathic) VTE and are at high risk for recurrence and would

normally need long-term or life-long anticoagulation, they

remain on either oral VKA or 1 of the NOACs and not undergo

aspirin therapy (Figure). On the other hand, for patients with

unprovoked VTE and moderate risk for recurrence, the use

of 1 aspirin per day rather than nothing would be indicated.

For those patients with an unprovoked VTE and low risk for

recurrence, no further therapy is indicated. For patients with a

provoked VTE, a total of 3 months of anticoagulation is indi-
cated. Many questions remain and are not answered from the

current data, including the following:

1. Is there an optimal length of aspirin therapy in patients with unprovoked VTE and a moderate risk for recurrence?
2. Should aspirin be used in those patients with unprovoked VTE and low risk for recurrence?
3. For patients with a provoked VTE who normally would not need long-term anticoagulation (a patient with a first episode of VTE and a cause which has reversed such as VTE associated with surgery or with the use of oral

Table. Effect of Antithrombotic Agents on Recurrent VTE and Major Bleeding During Extended Therapy for Treatment of Unprovoked VTE

<table>
<thead>
<tr>
<th></th>
<th>Recurrent VTE* HR (95% CI)</th>
<th>Major Bleeding* HR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VKA (INR 2.0–3.0)*</td>
<td>0.12 (0.09–0.38)</td>
<td>2.63 (1.02–6.76)</td>
</tr>
<tr>
<td>NOAC††</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apixaban</td>
<td>0.18 (0.11–0.28)</td>
<td>0.38 (0.08–1.68)</td>
</tr>
<tr>
<td>Rivaroxaban</td>
<td>0.80 (0.08–3.08)</td>
<td>8.94 (0.48–166.41)</td>
</tr>
<tr>
<td>Dabigatran</td>
<td>0.13 (0.06–0.30)</td>
<td>4.83 (0.23–100.83)</td>
</tr>
<tr>
<td>ASA</td>
<td>0.68 (0.51–0.90)</td>
<td>1.24 (0.46–3.33)</td>
</tr>
</tbody>
</table>

ASA indicates aspirin; CI, confidence interval; HR, hazard ratio; INR, international normalized ratio; NOAC, new oral anticoagulant; VKA, vitamin K antagonist; and VTE, venous thromboembolism.

†At minimum 1 y (range 12–48 mo) of follow up; compared with placebo.
††73% to 93% of patients with unprovoked VTE.

Figure. Incorporation of ASA into VTE extended treatment para-
digm. Low risk = patients with normal D dimer and no risk factors for venous thrombosis. Moderate risk = patients with ≥1 risk fac-
tors for recurrent thrombosis. High risk = patients with inherited thrombophilias, >1 episode of venous thrombosis. ASA indicates aspirin; and VTE, venous thromboembolism.
contraceptives), is taking 1 aspirin per day at the end of a full course of anticoagulation beneficial?
4. Will other medications such as statins synergize with aspirin to reduce the incidence of recurrent VTE?
5. Will the more potent antiplatelet thienopyridines be more or less effective than aspirin?
6. Because patients with cancer represented only a small proportion of patients and patients with coronary artery disease were excluded, what are the recommendations in these groups of patients?
7. Finally, will the current data on only a little >1200 patients hold up in day to day clinical use?

As is the case with all good studies, more questions remain to be answered and are the seeds for future studies.

Disclosures
None.

References

Key Words: Editorials aspirin clinical trial embolism prevention thrombosis
An Aspirin a Day to Keep the Clots Away: Can Aspirin Prevent Recurrent Thrombosis in Extended Treatment for Venous Thromboembolism?
Thomas W. Wakefield, Andrea T. Obi and Peter K. Henke

Circulation. 2014;130:1031-1033; originally published online August 25, 2014; doi: 10.1161/CIRCULATIONAHA.114.012235
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2014 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/130/13/1031

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation_ is online at:
http://circ.ahajournals.org//subscriptions/