A previously fit 52-year-old man presented with severe progressive exertional dyspnea. He was in heart-failure with an elevated jugular-venous-pressure, edema, and increased plasma-NTpro-BNP levels of 4285 \(\mu\)g/mL (upper limit of normal <900 \(\mu\)g/mL). His ECG demonstrated sinus-rhythm with low limb and chest lead voltages (Figure 1). He had significant proteinuria with renal and bone marrow biopsies confirming light-chain amyloidosis. Cardiac magnetic resonance imaging revealed concentric left-ventricular hypertrophy with an ejection fraction of 65\%, left-ventricular end-diastolic volume of 146 mL, left-ventricular end-systolic volume of 51 mL, left-ventricular mass of 245 g, and left-atrial volume of 144 mL (Figure 2, Movie I in the online-only Data Supplement). Late gadolinium-enhanced imaging showed extensive diffuse subendocardial hyperenhancement in both ventricles (Figures 3 and 4, arrows), consistent with amyloid infiltration. He subsequently underwent successful autologous stem cell transplantation.

At follow-up, 2.5 years later, his functional status had markedly improved and he was exercising regularly. His cardiovascular examination and plasma-NTpro-BNP level (117 \(\mu\)g/mL) was normal. His ECG showed some recovery of voltages in the limb leads (Figure 5). Repeat cardiac magnetic resonance imaging showed minimal change in left-ventricular volumes, function, and mass (left-ventricular end-diastolic volume, 138 mL; left-ventricular end-systolic volume, 43mL; ejection fraction, 69\%; left-ventricular mass, 235 g), although left atrial volume was significantly reduced (105 mL; Figure 6, Movie I in the online-only Data Supplement). Late gadolinium-enhanced imaging demonstrated marked regression of the subendocardial hyperenhancement (Figures 7 and 8).

Prognosis for patients with light-chain amyloid and cardiac infiltration has historically been dismal, and extensive cardiac involvement has generally been regarded as a contraindication to stem cell transplantation.1–3 This case suggests that stem cell transplantation can lead to regression of cardiac amyloid and may be considered in selected patients.

Sources of Funding
Dr Brahmanandam was supported by National Institutes of Health grant T32HL072742.

Disclosures
None.

References
Figure 1. ECG showing sinus rhythm with low QRS voltages (<5 mm in the limb leads and <10 mm in the chest leads).

Figure 2. Cine imaging in the 4-chamber view, showing an ejection fraction of 65%, concentric left-ventricular hypertrophy, and an enlarged left atrium.

Figure 3. Late gadolinium enhancement imaging in the 4-chamber view, showing extensive diffuse subendocardial hyperenhancement involving both ventricles (arrows).

Figure 4. Late gadolinium enhancement imaging in the 3-chamber view, showing extensive diffuse subendocardial hyperenhancement (arrows).
Figure 5. Post transplant ECG showing sinus-rhythm with some recovery of voltages in the limb leads (>5 mm in leads I, III, aVR, aVL).

Figure 6. Post stem cell transplant cine imaging in the 4-chamber view, showing an ejection fraction of 69% with concentric left-ventricular hypertrophy. The left atrium has reduced in size.

Figure 7. Post stem cell transplant late gadolinium enhancement imaging in the 4-chamber view, showing significant regression of the subendocardial hyperenhancement.

Figure 8. Post stem cell transplant late gadolinium enhancement imaging in the 3-chamber view, showing significant regression of the subendocardial hyperenhancement.
Regression of Cardiac Amyloidosis After Stem Cell Transplantation Assessed by Cardiovascular Magnetic Resonance Imaging
Vikram Brahmanandam, Sloane McGraw, Omer Mirza, Ankit A. Desai and Afshin Farzaneh-Far

Circulation. 2014;129:2326-2328
doi: 10.1161/CIRCULATIONAHA.114.009135
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2014 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/129/22/2326

Data Supplement (unedited) at:
http://circ.ahajournals.org/content/suppl/2014/10/15/129.22.2326.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/