Comparing the Imperfect With the Imperfect
The Imprecise Science of Assessing the Risk and Benefits of Anticoagulation in Atrial Fibrillation

Alex Y. Tan, MD; Kenneth A. Ellenbogen, MD

Atrial fibrillation (AF) is the most common arrhythmia in the United States, with ≈7 million Americans estimated to have AF by 2020.1,2 A major cause of morbidity and mortality in AF is stroke. Pharmacological therapy for the prevention of stroke has undergone a renaissance with the advent of newer oral anticoagulants that are safe and effective alternatives to warfarin. However, the decision to initiate anticoagulation remains a subjective assessment of risks versus benefits. Although guided by well-validated risk scores for stroke and bleeding,3,4 real-world decisions on anticoagulation continue to differ significantly from guideline recommendations, with many patients at high risk not receiving anticoagulation because of a perceived high risk of bleeding and many low-risk patients being anticoagulated as a result of a perceived low risk of bleeding, the so-called risk-treatment paradox.5 This phenomenon, thought to account for the continued underuse of oral anticoagulation therapy,6 has yet to be validated in a large outpatient-based practice. Therefore, the present study by Steinberg et al8 in this issue of Circulation is a timely effort to better understand and address some of the reasons underlying this risk mismatch in thromboembolic assessment and anticoagulation therapy in a community outpatient-based group of patients with stable AF.

The authors examined 10094 AF patients enrolled in the Outcomes Registry for Better Informed Treatment of Atrial Fibrillation (ORBIT-AF) between June 2010 and August 2011.9 This US prospective registry of incident and prevalent AF is formed by a multispecialty collaboration of healthcare providers, including primary care physicians, cardiologists, and electrophysiologists. It is the largest clinical registry of its kind in the United States, enrolling 10000 patients from 200 US outpatient practices. The patients are followed up for at least 2 years to characterize real-world treatment and outcomes of patients with AF. The empirical stroke and bleeding risks were assessed by the CHADS2 and Anticoagulation and Risk Factors in Atrial Fibrillation Study (ATRIA) scores, respectively,5,10 and were classified as low, intermediate, and high. They were then compared with physicians’ similarly categorized assessments of stroke and bleeding risks. Multivariable linear regression models were used to determine factors that account for physician-empirical risk mismatch.

This study is elegantly designed, and the results are thought provoking. The results are startling for the nearly complete lack of agreement between empirical and physician-assigned risks for both stroke and bleeding. Disagreement between physician-assigned and empirical risks was seen in up to 80% of cases and was particularly marked for patients at high risk for stroke and bleeding, for whom physicians tended to underestimate risk in both instances. For example, only 16% of patients were assessed to be at high risk for stroke compared with 72% who were classified as high risk by the CHADS2 score. In addition, only 7% of patients were rated as having a high risk of bleeding on anticoagulation therapy compared with 17% considered high risk by the ATRIA score.

In assessing stroke risk, physicians selectively emphasized specific risk factors such as prior stroke or transient ischemic attack and severe AF symptoms more than diabetes mellitus, hypertension, age, and congestive heart failure. Therefore, a patient is less likely to be assessed as being at high risk for stroke if he or she achieved a high CHADS2 score by a combination of factors than if they had a prior history of stroke. On the contrary, there was less emphasis on anemia and significant renal disease in the assessment of bleeding risk relative to the ATRIA score. Overall, stroke risk had a more significant impact on anticoagulation decisions than bleeding risk. Thus, the results confirm those of prior studies indicating that physicians would accept a higher risk of bleeding for a lower risk of stroke.7 When mismatch exists, physicians’ subjective evaluation of risk, not objective tools, was the main driver of decision making.

Several important questions come to mind. First, how predictive are empirical risk scores of true event rates? Second, do these differences influence outcomes for anticoagulation? Third, is the discordance a reflection of a lack of complete understanding of the mechanisms for thromboembolism?

In the past 10 years, several different risk stratification schemes have been devised to predict stroke and bleeding risk.5,10–12 Among them, the CHADS2 score has been most widely used for its simplicity and predictive capability.5,10 Several improvements to CHADS2 have been proposed that incorporate age, female sex, and renal function.13–15 Yet, the predictive capability of objective risk scores for stroke has been shown to be modest at best5,10 because our understanding of the mechanisms of thromboembolism remains incomplete.
in particular whether AF is merely an associated condition or is mechanistically linked to stroke. Prolonged AF previously was thought to predispose to atrial stasis and thrombus formation with subsequent embolism. Therefore, most embolic events were reported to occur if AF was >48 hours in duration, which was felt to be the minimum duration required for thrombus formation in the left atrial appendage before cardioversion.17 However, recent data have cast doubt on this simple construct of AF burden, duration, and stroke. In a study of 2580 patients with pacemakers or defibrillators who were >65 years of age, although >50% of embolic strokes were associated with subclinical AF, only 15% of all embolic strokes were associated with subclinical AF >6 minutes within 1 month of the stroke.18 On the other hand, in the Asymptomatic Atrial Fibrillation and Stroke Evaluation in Pacemaker Patients and the Atrial Fibrillation Reduction Atrial Pacing Trial (ASSERT) study of asymptomatic AF detected in patients with a dual-chamber pacemaker, the duration of episodes was more important than the frequency of episodes in determining a patient’s thromboembolic risk. Additionally, thrombosis in AF is located mostly, but not exclusively, in the left atrial appendage,19 throwing another wrench into the equation. Therefore, the mechanisms of thromboembolism are more complex than previously thought and may be multifactorial.20 The thromboembolism may be related to atrial stasis from an actual prolonged AF episode, with thrombus formation mostly in the left atrial appendage; or may be the result of chronic inflammatory21 or structural and endothelial changes22 throughout the heart. Thus, it underscores the importance of further research into the mechanisms of thromboembolism in AF.

Disclosures
None.

References
7. Gorlin R, Fauchier L, Nonin E, Charbonnier B, Babuty D, Lip GY. Prognosis and guideline-adherent antithrombotic treatment in patients...


Key Words: Editorials, arrhythmias, cardiac, atrial fibrillation
Comparing the Imperfect With the Imperfect: The Imprecise Science of Assessing the Risk and Benefits of Anticoagulation in Atrial Fibrillation
Alex Y. Tan and Kenneth A. Ellenbogen

Circulation. 2014;129:1997-1999; originally published online March 29, 2014;
doi: 10.1161/CIRCULATIONAHA.114.009979

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2014 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://circ.ahajournals.org/content/129/20/1997

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/