Smoking cessation benefits health and lengthens life expectancy at any age. With that rationale, smoking cessation figures centrally in comprehensive tobacco control initiatives, including the recommendations of the US Preventive Services Task Force and the World Health Organization. The population of the United States has recognized the personal benefits of stopping smoking and, at present, the majority of those who have ever smoked cigarettes have stopped. Public health benefits have been realized. Smoking cessation is a powerful driver of the decline in cardiovascular mortality over the past 4 decades and also of the more recent declines in rates of smoking-caused cancers among men.

Nicotine-replacement therapy (NRT), launched as nicotine gum in 1984, was the first pharmacological therapy for cessation to be approved by the Food and Drug Administration. Subsequently, other forms of NRT were licensed including the patch, lozenges, inhaler, and nasal spray. NRT was switched to over-the-counter access in 1996. Following NRT, bupropion, an antidepressant, was shown to be an effective smoking cessation therapy and released as Zyban (GlaxoSmithKline) in 1997. The most recently licensed pharmacological agent for smoking cessation is varenicline, licensed as Chantix (Pfizer) in the United States in 2006. The mechanisms of action for these 3 medications differ: NRT by directly replacing the nicotine in tobacco products, bupropion by mitigating the symptoms of withdrawal, and varenicline by acting as a partial nicotine agonist. Each of these medications, used in conjunction with appropriate counseling and support, increases the likelihood of sustained cessation; in a 2013 meta-analysis, bupropion and NRT approximately doubled quit rates, whereas varenicline had a significantly higher success rate, almost 3-fold that of placebo. Each of these agents has also been linked to diverse adverse effects, including recent and controversial concerns for cardiovascular disease (CVD) risk.

In this issue of Circulation, Mills and colleagues report the findings of a network meta-analysis on risks for cardiovascular events associated with these 3 medications. Their analytic approach facilitates a full use of available data, making an assessment possible of the comparative risks for cardiovascular events between the 3 therapies. Their findings are clear; neither bupropion nor varenicline was associated with increased risk for all CVD events versus placebo, whereas there was significantly increased risk associated with NRT (relative risk, 1.81; 95% credible interval, 1.35–2.43). As would be anticipated, the network meta-analysis showed less risk for CVD events in association with bupropion and varenicline in comparison with NRT. An exploratory analysis showed that the excess risk associated with NRT reflected less serious events, and not major adverse cardiovascular events.

These findings concerned with relative risk for adverse events need interpretation with a consideration of the ways that smoking increases risk for CVD and also of the temporal pattern of changes in the risk for CVD after smoking cessation. Major mechanisms by which smoking contributes to risk for CVD include the following: (1) endothelial dysfunction, (2) a prothrombotic effect, (3) inflammation contributing to atherogenesis, (4) altered lipid metabolism, (5) increased demand for myocardial oxygen and blood, and (6) decreased supply of myocardial blood and oxygen. Of these mechanisms, several—endothelial cell dysfunction, the prothrombotic consequences, and oxygen demand—can reverse over months, whereas smoking’s contribution to atherosclerosis is relatively fixed. Reflecting these mechanisms, the temporal pattern of risk for CVD in former smokers, in comparison with continuing smokers, shows a relatively immediate decline of ~50% during the first year after successful cessation and a continuing decline over the next decade approximately. Although the evidence considered in the systematic review was limited, after excluding studies with only 12 months of follow-up, the increased risk for all CVD events associated with NRT was increased to 3.03 (95% credible interval, 2.04–4.67).

This temporal pattern of increased risk associated with NRT is not readily explained by an understanding of the mechanisms by which nicotine may contribute to increasing CVD risk. Some pharmacological consequences during the period of nicotine administration could increase risk for CVD; ie, as a sympathomimetic agent nicotine increases heart rate and cardiac contractility and acutely increases blood pressure and...
constricts coronary arteries. It may also contribute to endothelial dysfunction and metabolic abnormalities. Such effects would not be anticipated to extend beyond the period of NRT therapy. In the trials included in the systematic review, therapy was only of a few months duration in most trials, and only 2 trials involved nicotine administration of >52 weeks. Thus, the increase in risk substantially after NRT was discontinued cannot be readily explained based on an understanding of nicotine’s pharmacological effects. The finding of decreased risk for major adverse cardiovascular events associated with bupropion also cannot be readily interpreted as to biological plausibility.

Could the findings be an artifact of the analytical method? A network meta-analysis leads to inferences that are based on both direct comparisons of 1 agent with another agent and on indirect comparisons. The evidence reviewed by Mills and colleagues includes only 6 direct comparisons among the 3 agents, and a comparison of the direct and indirect evidence, eg, the coherence, is not provided by the authors. Given the sparse outcome data, further probing with sensitivity analysis might be informative as to the studies that are driving the key findings for NRT.

The findings also need to be interpreted in a population framework that extends beyond the relative risks for individual smokers, the target of the systematic review and meta-analysis by Mills et al. Smoking cessation has benefits for population health that extend beyond CVD; the increased risk for CVD associated with NRT needs to be placed within the declines in risk for CVD and other diseases that follow successful cessation. For example, Apelberg et al modeled the potential benefits of increased NRT use in the United States with and without the assumption of increased risks associated with therapy for CVD, lung and other smoking-related cancers, and all-cause mortality. Even with the assumption of a maintained excess risk associated with NRT, the population-level benefits far exceeded the estimated increase associated with NRT. The findings of the Lung Health Study, a randomized trial involving people with asymptomatic airway obstruction who used nicotine gum, are also relevant to the findings of Mills et al. On follow-up at up to 14.5 years, all-cause mortality was significantly lower in the intervention arm and CVD mortality was comparable in the intervention and control groups. The 2010 report of the Surgeon General concluded that: “The use of nicotine or other medications to facilitate smoking cessation in people with known cardiovascular disease produces far less risk than the risk of continued smoking.”

Again, from the population perspective, with multiple pharmacotherapies available to enhance quitting, the mix of therapies used should be optimized to achieve the highest overall rate of successful cessation for the population. Clinical experience indicates that therapy should be tailored for individuals. Additionally, as understanding of the genetic basis for nicotine addiction advances, the therapeutic approach to cessation may be further individualized and NRT, bupropion, varenicline, or another agent may be determined to be the best pharmacotherapy for particular smokers.

The findings of the review by Mills et al do support their overall conclusion that “Smoking cessation therapies do not appear to raise the risk of serious CVD events,” and, of course, “Physicians often weigh the benefits and risks of available treatments, including cessation pharmacotherapies.” The findings of Mills et al highlight the difficulty of characterizing the adverse effects of pharmacotherapies, even relatively common events such as CVD. The pooling of 63 trials provided only an imprecise and uncertain picture of the potential adverse consequences of pharmacotherapy for smoking cessation. Trial data are problematic for identifying adverse events because of the limitations of sample size and population selection. The evidence is not of sufficient strength to warrant reconsideration of guidelines, particularly when the underlying mechanisms are considered. Given the number of smokers who will quit with pharmacotherapy, we need better information on any risks that they may face from the drugs used to increase the success of cessation. Additionally, if nicotine delivery products other than combustible tobacco products, eg, electronic cigarettes, come into widespread usage, the long-term consequences of nicotine alone will assume increasing significance.

Sources of Funding
This work was supported by the National Cancer Institute and FDA Center for Tobacco Products (CTP), award P50CA180905. The content is solely the responsibility of the author and does not necessarily represent the official views of the National Institutes of Health or the Food and Drug Administration.

Disclosures
None.

References


KEY WORDS: Editorials ■ pharmacology ■ smoking ■ smoking cessation
Smoking Cessation: Benefits Versus Risks of Using Pharmacotherapy to Quit
Jonathan M. Samet

Circulation. 2014;129:8-10; originally published online December 9, 2013;
doi: 10.1161/CIRCULATIONAHA.113.006928
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2013 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://circ.ahajournals.org/content/129/1/8

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published
in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial
Office. Once the online version of the published article for which permission is being requested is located,
click Request Permissions in the middle column of the Web page under Services. Further information about
this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org/subscriptions/