Diagnosis and Management of Sexually Transmitted Diseases Among Adolescents

Gale R. Burstein, MD, MPH,* Pamela J. Murray, MD, MPH†

Objectives After completing this article, readers should be able to:

1. List biologic and physiologic reasons for the disproportionate adolescent sexually transmitted disease susceptibility.
2. Describe clinical and laboratory findings on examination of a female who has mucopurulent cervicitis.
3. Describe the causative pathogens and etiologic evaluation for vaginitis.
4. List the criteria for diagnosis of pelvic inflammatory disease.
5. Describe the documentation and management of urethritis.

Introduction Sexually transmitted diseases (STDs) are a major health problem among adolescents. The highest reported rates of gonorrhea and chlamydia are found among adolescents and young adults.

Adolescent susceptibility to STDs reflects both their biologic and behavioral stages of development. The adolescent cervix is more susceptible to infection compared with the adult cervix because of the presence of cervical ectopy. The young female introitus is small and subject to more trauma and exchange of body fluids during intercourse. Adolescents who have not been sexually active for an extended period of time are less likely to have any partial protective immunity against chlamydia from prior infections. Young adolescents’ cognitive developmental stage may limit their ability to plan ahead for condom use. The adolescent personal fable, a belief of uniqueness and invulnerability, contributes to denial of STD risks.

Evaluation and management of an adolescent presenting with symptoms suggestive of an STD are acute care problems that can be addressed in the pediatric office. In this article, we describe the epidemiology, clinical presentation, and management of common STDs among adolescents.

Mucopurulent Cervicitis

Epidemiology Mucopurulent cervicitis (MPC) is characterized by mucopurulent discharge from an inflamed cervix. *Chlamydia trachomatis* and *Neisseria gonorrhoeae* can cause MPC, but in most cases neither organism can be isolated. Other possible infectious pathogens include herpes simplex virus and *Trichomonas vaginalis*.

Clinical Presentation and Examination The adolescent who has MPC may present with complaints of vaginal discharge, vaginal itching, irregular vaginal bleeding (especially after sexual intercourse), and dyspareunia. Pelvic inflammatory disease (PID) must be considered if there is lower abdominal pain. Purulent or mucopurulent discharge from the cervical os, easily induced endocervical bleeding (ie, friability), and edema and erythema of the cervical zone of ectopy are found on physical examination. The presence of yellow mucopus collected from the endocervix and evident on a white swab is indicative of MPC. Friability alone does not constitute...
MPC. Findings of lower abdominal tenderness, cervical motion tenderness, or adnexal tenderness suggest an upper genital tract infection.

Differential Diagnosis
Diagnoses to consider upon findings of an inflamed cervix on examination include vaginitis, endometritis, PID, an inflamed ectropion due to allergies, trauma, or a foreign body, such as a tampon.

Laboratory Evaluation
Nucleic acid amplification tests (NAATs) are the gold standard for diagnosing gonorrhea or chlamydial infection as causes of MPC. NAATs are the most sensitive and specific combination gonorrhea and chlamydia test. Diagnostic tests to evaluate for STD coinfection should be performed, including tests for causes of vaginitis and syphilis. An human immunodeficiency virus (HIV) antibody test should be offered.

Management
MPC is not a sensitive predictor of gonorrhea or chlamydia, and most gonorrhea- and chlamydia-infected females do not have MPC. Therefore, the Centers for Disease Control and Prevention (CDC) recommend basing treatment of patients in whom gonorrhea or chlamydial infection is suspected on sensitive C trachomatis and N gonorrhoeae laboratory test results, unless there is a high prevalence of gonorrhea or chlamydia in the patient population or the patient is unlikely to return for follow-up. Table 1 lists CDC-recommended MPC treatment regimens. Fluoroquinolones have not been recommended for use among persons younger than 18 years because they damage articular cartilage in juvenile animal models. However, no joint damage attributable to fluoroquinolone therapy has been observed among children treated with the drugs. Patients should avoid sex with all partners until 7 days after beginning therapy.

Follow-up
Patients should return for diagnostic laboratory test results. All partners from the past 60 days of females who have MPC should be notified, evaluated, and treated for the suspected or identified STD.

Vaginitis

Epidemiology
Vaginitis is inflammation of the squamous epithelial tissues lining the vagina. Three conditions cause most cases of adolescent vaginitis: vulvovaginal candidiasis, bacterial vaginosis (BV), and trichomoniasis. All three treatable conditions can be diagnosed by examination of vaginal secretions during an office visit.

Vaginal complaints in the postpubertal female are common, accounting for more than 10 million office visits annually. The presence of sexual activity influences the differential diagnosis, with trichomoniasis and BV more common in the sexually experienced adolescent. In the nonsexually active teenager, candidiasis remains the major cause of vaginal complaints and inflammation. Vaginitis also may be caused by local chemical or allergic irritants, such as douches and scented panty liners. Other less frequent causes include herpes simplex virus, bacterial infections caused by Streptococcus or Staphylococcus sp, trauma, and secondary bacterial infections from retained foreign bodies, most commonly tampons and condoms. Vaginitis may be observed rarely in cases of toxic shock syndrome in which the mucous membranes may be ulcerated.

Clinical Presentation and Examination
The adolescent who has vaginitis may present with complaints of vaginal discharge, which may be profuse or
foul-smelling; vaginal pruritus; or irritation (Table 2). A history of vaginal discharge from a sexually active adolescent should trigger an evaluation for cervicitis.

The physical examination plays an important role in the diagnostic evaluation (Table 2). A thick, adherent, “cottage cheese-like” discharge suggests candidiasis. The clinician also may find erythema, edema, and excoriation of the vagina in a female who has candidiasis. A thin, homogeneous, gray-white, foul-smelling discharge suggests BV. A purulent, profuse, irritating, frothy green-yellow discharge often accompanies trichomoniasis.

Diagnosis
Although the standard bedside vaginitis evaluation offers the advantages of fast results and low cost, microscopy can present a logistic challenge if Clinical Laboratory Improvement Amendments (CLIA) or state licensing limits point-of-care testing. New diagnostic tools can substitute for microscopy and improve diagnostic sensitivity, but they increase cost and time to test results.

The bedside evaluation includes description of the vaginal discharge, measurement of vaginal pH, performance of a “whiff” test, and microscopic examination (Table 2). Care should be taken to obtain a vaginal swab that is not contaminated with alkaline cervical secretions. The vaginal pH can be determined by rubbing the specimen over a pH paper strip and matching the resulting color to the color chart. A specimen diluted in a drop of 10% potassium hydroxide (KOH), referred to as the “whiff test,” has a “fishy” odor with BV and sometimes with trichomoniasis.

Microscopy is critical to the diagnostic process (Table 2). On the wet preparation, the clinician should look for: 1) an excess number of white blood cells (WBCs) (>1:1 WBC:epithelial cell ratio or >10 cells per high-power field), which is evidence of inflammation often found with trichomoniasis and candidiasis; 2) motile or static trichomonads, which is diagnostic of trichomoniasis; and 3) budding yeast and pseudohyphae, which are diagnostic of candidiasis. Warming the solution to body temperature may improve identification of trichomonads and pseudohyphae. Because normal vaginal bacteria may be confused with yeast forms, the clinician should look for pseudohyphae to help identify true yeast. Adding 10% KOH solution to the vaginal fluid lyses other cells and bacteria and often improves pseudohyphae visualization.

Alternative diagnostic strategies can aid or substitute for the conventional evaluation just described. For BV, the FemExam® pH and Amines Test Card™ and the PIP Activity Test Card™ (Quidel® Corp, San Diego, CA) can substitute for the pH paper, the “whiff” test, and micro-

Table 2. Clinical and Laboratory Features of Vaginitis

<table>
<thead>
<tr>
<th>Infection</th>
<th>Symptoms</th>
<th>Vaginal Discharge</th>
<th>Microscopic Findings</th>
<th>Whiff Test</th>
<th>Microscopic Findings</th>
<th>Enhanced Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacterial Vaginosis</td>
<td>Foulsmelling discharge, after intercourse</td>
<td>Thrgho homogeneous, gray-white</td>
<td>>20% clue cells</td>
<td>Positive</td>
<td>Varibly</td>
<td>Gram stain</td>
</tr>
<tr>
<td>Trichomoniasis</td>
<td>Frothy, foul-smelling discharge, pruritis, dysuria</td>
<td>Purulent, profuse, irritating, frothy, green-yellow</td>
<td>>4.5</td>
<td>1 WBCs</td>
<td>Positive</td>
<td>Diamond media culture</td>
</tr>
<tr>
<td>Vulvovaginal Candidiasis</td>
<td>Pruritis, burning, discharge</td>
<td>Thick, adherent, white</td>
<td>4 to 4.5</td>
<td>Budding yeast, pseudohyphae</td>
<td>Negative</td>
<td>Afirn VP III™</td>
</tr>
</tbody>
</table>

* Becton Dickinson, Sparks, MD.
† BioMed Diagnostics, San Jose, CA.
scopic examination on a vaginal specimen by detecting an elevated vaginal pH, trimethyl amines generated by BV-associated anaerobic bacteria, and an enzyme displayed by *Gardnerella vaginalis*. Although rarely performed as part of an office-based vaginitis evaluation, a Gram stain of vaginal fluid can provide a quantitative assessment (Nugent score) of BV-associated organisms.

For trichomiasis, the InPouch TV Culture® (BioMed Diagnostics, San Jose, CA) is an office-based self-contained culture kit. The clinician inoculates a culture medium-filled pouch with a vaginal fluid specimen from females or a first-void urine specimen from males and examines the contents for trichomonads by microscopy. The clinician can incubate and repeatedly examine the transparent culture pouch under the microscope for up to 5 subsequent days. The InPouch TV Culture® can be a valuable adjunct because the standard culture technique with Diamond medium usually is not performed by most clinical laboratories.

For offices that do not have microscopy available, a professional laboratory that offers the Affirm VP III Microbial Identification Test® (Becton Dickinson, Sparks, MD) provides a diagnostic option. The Affirm VP III®, a DNA probe performed on vaginal fluid specimens, offers the advantage of diagnosing BV, candidiasis, and trichomoniasis. Correlation with clinical symptoms and elevated vaginal pH is recommended.

Management

Treatment depends on the etiologic diagnosis of vaginitis based on information obtained from the history, physical examination, and laboratory tests (Table 3). Sexual partners of persons who have trichomoniasis need to be notified and treated. However, treatment is not indicated for sex partners of females diagnosed as having candidiasis or BV because partner treatment does not alter the risk of recurrence. Metronidazole-treated patients should avoid alcohol for 24 hours because of its disulfiramlike effect. Metronidazole can be used during pregnancy. Females who have recurrent vulvovaginal candidiasis may require longer treatment and continued prophylaxis.

Pelvic Inflammatory Disease (PID)

Epidemiology

PID is a serious consequence of STDs and an important cause of infertility, ectopic pregnancy, and chronic pelvic pain. It is a clinical syndrome caused by the spread of microorganisms from the lower genital tract (vagina or endocervix) to the upper genital tract (endometrium, fallopian tubes, and adjacent structures). PID is a polymicrobial infection. Sexually transmitted organisms, particularly *C trachomatis* and *N gonorrhoeae*, often are implicated. The alteration in vaginal flora that occurs with BV often can be found in the upper genital tracts of women in whom PID is diagnosed, implicating BV as an important cofactor in the development of PID (Table 4). No pathogen is identified in many PID cases. Adolescents have the highest rates of PID.

Clinical Presentation and Examination

PID is diagnosed on the basis of history and clinical findings. Specific genitourinary symptoms may include lower abdominal pain or cramping that is worse with movement and sexual intercourse, vaginal discharge, irregular vaginal bleeding, or dysuria. Although infrequent, systemic signs may be present and include anorexia, nausea, vomiting, fever, or generalized malaise.

Findings on abdominal examination may include lower abdominal tenderness, peritoneal signs (eg, rebound tenderness and guarding in severe cases), or right
upper quadrant pain with associated perihepatitis (FitzHugh–Curtis syndrome). Findings on pelvic examination may include abnormal cervical or vaginal discharge, uterine tenderness, adnexal tenderness, or cervical motion tenderness. Fever also may be present if the patient is severely ill.

Diagnosis

According to the CDC, lower abdominal tenderness, adnexal tenderness, or cervical motion tenderness is required to establish the diagnosis of PID (Table 5). Most affected females have mucopurulent cervical discharge or evidence of WBCs on a microscopic evaluation of a vaginal fluid saline preparation. If cervical discharge appears normal and no WBCs are found on the wet preparation, the diagnosis of PID is unlikely, and alternative causes of pain should be sought.

Laboratory Evaluation

Laboratory evaluations are used to support the clinical diagnosis and assist with management. Laboratory studies can help rule out pathology in the pelvis and abdomen that may be considered in the differential diagnosis (Table 6).

A test for genital gonorrhea and chlamydia should be performed, although negative test results are common because the specimen is not from the site of inflammation—the upper genital tract. Gonorrhea and chlamydia NAATs minimize the risk of a false-negative test result. Tests for other STDs should be performed because the patient is at high risk of having a coinfection. A pregnancy test should be performed because PID during pregnancy is an indication for hospital admission, and ectopic pregnancy can mimic PID.

Other optional tests that may help support the diagnosis include tests for elevated acute-phase reactants, such as WBCs, erythrocyte sedimentation rate, or C-reactive protein. Ultrasonography may be helpful if either the diagnosis is in question, ectopic pregnancy is a strong consideration, or tuboovarian abscess (TOA) is considered. Laparoscopy is not recommended routinely, although it may be required for evaluation of treatment failures, to exclude surgical emergencies, or if a TOA ruptures or does not respond to medical management within 48 to 72 hours.

Table 4. Organisms Implicated in the Pathogenesis of Pelvic Inflammatory Disease

<table>
<thead>
<tr>
<th>Sexually transmitted pathogens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlamydia trachomatis</td>
</tr>
<tr>
<td>Neisseria gonorrhoeae</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bacterial vaginosis-associated pathogens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mycoplasma hominis</td>
</tr>
<tr>
<td>Ureaplasma urealyticum</td>
</tr>
<tr>
<td>Escherichia coli</td>
</tr>
<tr>
<td>Gardnerella vaginalis</td>
</tr>
<tr>
<td>Streptococcus sp, including enterococci, and Haemophilus influenza</td>
</tr>
<tr>
<td>Anaerobes (anaerobic streptococci and staphylococci, Bacteroides sp, Actinomyces sp)</td>
</tr>
</tbody>
</table>

Table 5. Pelvic Inflammatory Disease (PID) Diagnostic Criteria

<table>
<thead>
<tr>
<th>Minimal requirements:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uterine or adnexal tenderness (unilateral or bilateral) OR</td>
</tr>
<tr>
<td>Cervical motion tenderness</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Additional criteria to increase specificity:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presence of white blood cells (WBCs) on saline microscopy of vaginal secretions</td>
</tr>
<tr>
<td>Oral temperature >101°F (38.3°C)</td>
</tr>
<tr>
<td>Elevated erythrocyte sedimentation rate or C-reactive protein</td>
</tr>
<tr>
<td>Gram-negative intracellular diplococci evident in Gram stain of endocervix</td>
</tr>
<tr>
<td>Laboratory evidence of N gonorrhoeae or C trachomatis at cervix</td>
</tr>
<tr>
<td>Abnormal cervical or vaginal mucopurulent discharge</td>
</tr>
</tbody>
</table>

Table 6. Differential Diagnosis for Pelvic Inflammatory Disease

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ectopic pregnancy</td>
</tr>
<tr>
<td>Ovarian cyst (with or without torsion)</td>
</tr>
<tr>
<td>Acute appendicitis</td>
</tr>
<tr>
<td>Endometriosis</td>
</tr>
<tr>
<td>Pyelonephritis</td>
</tr>
<tr>
<td>Septic or incomplete abortion</td>
</tr>
<tr>
<td>Pelvic thrombophlebitis</td>
</tr>
<tr>
<td>Functional pain</td>
</tr>
</tbody>
</table>
Antibiotic treatment for PID generally is empiric and must be broad-spectrum. All regimens should be effective against *N. gonorrhoeae* and *C. trachomatis*, even when endocervical test results are negative. Providing coverage against anaerobes and other gram-negative organisms is also important. A clinical diagnosis of PID presumes a bacterial infection of the pelvic deep soft tissue. Treatment should be initiated as soon as a presumptive diagnosis is made. Initiation of antibiotic treatment should not be delayed until laboratory results are available because this can affect long-term outcomes adversely. Table 7 lists the CDC-recommended antibiotic treatment regimens for PID. The addition of metronidazole or clindamycin to the oral doxycycline regimen improves anaerobic coverage at the risk of decreasing compliance.

PID often is treated in the outpatient setting. Indications for hospitalization include suspicion of a surgical emergency such as appendicitis or ovarian torsion, severe illness, pregnancy, TOA, and inability to tolerate or failure to respond to outpatient therapy.

Follow-up

Close follow-up of an adolescent in whom PID is diagnosed is essential. A repeat visit within 48 to 72 hours is necessary to ascertain adequate clinical improvement versus need for hospitalization. Sexual partners of patients who have PID should be evaluated and treated to reduce the risk of reinfection.

Urethritis

Epidemiology

Urethritis is an STD syndrome characterized by inflammation of the urethra. It is diagnosed more commonly in older adolescent and young adult males, but it may be an STD complication or primary infection site in adolescent females. Asymptomatic infection is common.

N. gonorrhoeae and *C. trachomatis* are the clinically important bacterial pathogens of adolescent urethritis that warrant diagnostic evaluation (Table 8). Specific diagnostic tests for less common pathogens usually are not performed. Nongonococcal urethritis (NGU) refers to urethritis caused by pathogens other than *N. gonorrhoeae*; *C. trachomatis* is the pathogen identified most frequently. However, the proportion of NGU cases caused by chlamydia has been declining over the past decade. Most NGU diagnostic evaluations do not identify a pathogen, especially in geographic areas that have active chlamydia control programs.

Table 7. The Centers for Disease Control and Prevention Recommended Treatment Regimens for Pelvic Inflammatory Disease

<table>
<thead>
<tr>
<th>Inpatient Regimens (one of the following):</th>
</tr>
</thead>
<tbody>
<tr>
<td>● Cefotetan 2 g IV every 12 h OR Cefoxitin 2 g IV every 6 h PLUS Doxycycline 100 mg IV or PO every 12 h</td>
</tr>
<tr>
<td>● Clindamycin 900 mg IV every 8 h PLUS Gentamicin loading dose IV or IM (2 mg/kg body weight), followed by a maintenance dose (1.5 mg/kg) every 8 h</td>
</tr>
<tr>
<td>● Parenteral therapy may be discontinued 24 h after clinical improvement</td>
</tr>
<tr>
<td>—Doxycycline 100 mg PO twice a day OR Clindamycin 450 mg PO four times a day continued for 14 days of total therapy</td>
</tr>
<tr>
<td>—For tuboovarian abscess, addition of Metronidazole 500 mg PO twice a day, Doxycycline, or use of Clindamycin 450 mg PO four times a day provides better coverage against anaerobes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outpatient Regimens (one of the following):</th>
</tr>
</thead>
<tbody>
<tr>
<td>● Ofloxacin 400 mg PO twice a day or Levofloxacin 500 mg PO every day for 14 days WITH or WITHOUT Metronidazole 500 mg PO twice a day for 14 days</td>
</tr>
<tr>
<td>● Ceftriaxone 250 mg IM single dose OR Cefoxitin 2 g IM with Procaine 1 g PO in a single dose once OR Other parenteral third-generation cephalosporin (Ceftriaxone or Cefotaxime) PLUS Doxycycline 100 mg PO twice a day for 14 days WITH or WITHOUT Metronidazole 500 mg PO twice a day for 14 days</td>
</tr>
</tbody>
</table>

Table 8. Causes of Urethritis in Adolescents

<table>
<thead>
<tr>
<th>Principal Bacterial Pathogens</th>
</tr>
</thead>
<tbody>
<tr>
<td>● No pathogen identified</td>
</tr>
<tr>
<td>● Chlamydia trachomatis</td>
</tr>
<tr>
<td>● Neisseria gonorrhoeae</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other Pathogens</th>
</tr>
</thead>
<tbody>
<tr>
<td>● Ureaplasma urealyticum</td>
</tr>
<tr>
<td>● Mycoplasma genitalium</td>
</tr>
<tr>
<td>● Mycoplasma hominis</td>
</tr>
<tr>
<td>● Herpes simplex virus</td>
</tr>
<tr>
<td>● Trichomonas vaginalis</td>
</tr>
</tbody>
</table>

Management

Antibiotic treatment for PID generally is empiric and must be broad-spectrum. All regimens should be effective against *N. gonorrhoeae* and *C. trachomatis*, even when endocervical test results are negative. Providing coverage against anaerobes and other gram-negative organisms is also important. A clinical diagnosis of PID presumes a bacterial infection of the pelvic deep soft tissue. Treatment should be initiated as soon as a presumptive diagnosis is made. Initiation of antibiotic treatment should not be delayed until laboratory results are available because this can affect long-term outcomes adversely. Table 7 lists the CDC-recommended antibiotic treatment regimens for PID. The addition of metronidazole or clindamycin to the oral doxycycline regimen improves anaerobic coverage at the risk of decreasing compliance.
Complications of urethritis among males (eg, epididymitis and Reiter syndrome) are less severe and occur far less frequently compared with sequelae of mucopurulent cervicitis among females. Evidence for a causal association between urethritis from an STD pathogen and male infertility is lacking.

Clinical Presentation and Examination
Males who have symptoms usually report urethral discharge, urethral itching, dysuria, and urinary burning and frequency. However, screening of sexually active adolescent males with urine-based NAATs identifies many asymptomatic infections. On examination, mucoid or purulent urethral discharge is the classic finding. Applying gentle pressure along the urethra from the base to the meatus three to four times and examination after a long interval without voiding (at least 2 h) increases the likelihood of finding urethral discharge.

Diagnosis
Objective clinical or laboratory evidence of urethral inflammation must be demonstrated to diagnose urethritis (Table 9). Patient complaint without objective examination or laboratory findings does not fulfill diagnostic requirements. However, highly sensitive NAATs identify STD pathogens in asymptomatic males who do not meet the diagnostic criteria for urethritis. Clinicians, therefore, should consider the possibility of a urethral infection with STD pathogens in asymptomatic sexually active males.

The CDC recommends testing of all males who meet the diagnostic criteria for urethritis for gonorrhea and chlamydia. NAATs for gonorrhea and chlamydia can be performed on a single urine or urethral specimen. Because of a high STD coinfection risk, tests for syphilis and HIV also should be performed.

Management
Treatment should be provided as soon as possible after diagnosing urethritis. However, empiric gonorrhea and chlamydia treatment of symptomatic patients in whom urethritis has not been documented by physical examination or laboratory testing is recommended only for males at risk for infection who are unlikely to return for a follow-up evaluation.

If possible, males who meet diagnostic criteria for urethritis (Table 9) should be tested for gonorrhea with a Gram stain in the office to differentiate between gonococcal urethritis and NGU. If gonorrhea is not ruled out at the office visit, patients should be treated for both gonorrhea and chlamydia. Patients who have NGU should be treated with either a single 1-g dose of azithromycin or doxycycline 100 mg twice daily for 7 days. Patients who have a positive gonorrhea or chlamydia test should be treated according to CDC recommendations (http://www.cdc.gov/nchstp/dstd/dstdp.html). All sexual partners of infected patients must be notified and treated. Patients and partners should abstain from sexual intercourse until 7 days after therapy initiation.

Patients should be instructed to return for evaluation if symptoms persist or recur after completion of therapy. Patients who have persistent or recurrent urethritis should be retreated with the initial regimen if noncompliance or re-exposure is unlikely, a test for Trichomonas vaginalis should be performed and patients treated for recurrent/persistent urethritis (Table 10).

Arthritis Associated With STDs
Disseminated gonococcal infection (DGI), the most common systemic complication of acute gonorrhea, occurs in 0.5% to 3% of patients who have untreated gonorrhea. More commonly diagnosed in females, DGI usually presents with arthritis, most often involving the wrist, metacarpophalangeal, ankle, or knee joints; tenosynovitis; and dermatitis presenting as papules, petechiae, pustules with a hemorrhagic component, and necrotic lesions. Although cultures from blood, joint fluid, and skin lesions are only positive in 20% to 30% of DGI cases, genital or pharyngeal cultures often reveal an asymptomatic gonococcal infection. Recommendations for parenteral therapy can be found in the CDC Guidelines for the Treatment of STDs.

Reiter syndrome, a reactive arthritis associated with Chlamydia trachomatis infection, as well as certain enteric infec-

Table 9. Diagnostic Criteria for Urethral Inflammation

Inflammation must be documented by at least one of the following:

- Observation of mucoid or purulent urethral discharge
- First-void urine positive leukocyte esterase test or microscopic examination demonstrating 210 white blood cells per high-power field
- At least 5 white blood cells per high-power field or gram-negative intracellular diplococci on Gram stain

tions, is more common among males and patients who have human leukocyte antigen-B27 haplotypes. The pathogenesis is understood poorly, but most likely is immunologically mediated. Reiter syndrome manifestations of urogenital (urethritis, cervicitis), joint (tendonitis, synovitis, arthritis), ocular (conjunctivitis, uveitis), and mucocutaneous inflammation (balanitis, keratoderma blennorrhagica, painless ulcers) may not present simultaneously. Urethritis usually precedes other manifestations by 1 to 4 weeks. Blood and synovial cultures are usually negative. Most episodes resolve within 2 to 6 months, with a 15% risk of recurrence.

Resources

Clinician Information
The Center for Young Women’s Health, Children’s Hospital, Boston, MA
http://www.youngwomenshealth.org

Patient Information
ETR Associates for patient information brochures
831/438-4060
http://www.etr.org

American Social Health Association (ASHA) for patient information brochures, STD and AIDS Hotline telephone number, and online STD and HIV information
800/783-9877
http://www.ashastd.org

Adolescent-appropriate STD information Web Sites
http://www.iwannaknow.org
http://www.itsyoursexlife.com
http://www.teenwire.com
http://www.kidshealth.org

The authors and publishers take no responsibility for the content of the Web sites mentioned in this article. These sites are recommended on the basis of their content at the time of manuscript preparation. The list of Web sites is not inclusive

Suggested Reading

Table 10. Centers for Disease Control and Prevention Recommended Treatment for Recurrent/Persistent Urethritis

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metronidazole 2 g orally in a single dose PLUS</td>
<td>Erythromycin base 500 mg orally 4 times a day for 7 days OR Erythromycin ethylsuccinate 800 mg orally 4 times a day for 7 days</td>
</tr>
</tbody>
</table>

PIR Quiz
Quiz also available online at www.pedsinreview.org.

6. A 16-year-old girl comes to your office with the complaint of acute vaginal discharge. She states that her new sexual partner has just been diagnosed with chlamydial infection, and she does not use condoms. Examination of the cervix reveals mucopurulent discharge at the os. Which of the following statements is true?

A. All of her partners for the last 6 months should be contacted and treated.
B. Culture of the vaginal discharge is sufficient to diagnose chlamydial infection.
C. Friability of the cervix is pathognomonic for chlamydial infection.
D. She does not require testing for syphilis because her complaint is acute.
E. She should receive azithromycin and cefixime, even if her tests for chlamydia and gonorrhea are negative.

7. Which of the following statements regarding vaginitis is true?

A. Candidal vulvovaginitis is seen almost exclusively in sexually active females.
B. Neisseria gonorrhoeae is a common cause of vaginitis.
C. Sexual partners of females who have bacterial vaginosis should be treated with metronidazole.
D. The recommended treatment for trichomoniasis is a single 2-g dose of metronidazole.
E. Trichomoniasis is more common among teenagers who are not sexually active.

8. You are seeing an adolescent patient who complains of foul-smelling vaginal discharge for 3 days. She has had trichomoniasis in the past, and you suspect reinfection. Which of the following would you expect to see in your evaluation?

A. Frothy, greenish-yellow discharge.
B. More than 20% clue cells on microscopy.
C. Thick, white vaginal discharge.
D. Vaginal discharge with pH <4.5.
E. Vesicles on an erythematous base over the vulva.

9. A 16-year-old girl presents to the emergency department with a complaint of lower abdominal pain. She is in obvious discomfort and is unable to walk because of the pain. She admits to sexual activity but has never had a sexually transmitted disease. In addition to appendicitis, ectopic pregnancy, and torsion of an ovarian cyst, you strongly suspect pelvic inflammatory disease (PID). In pursuing the diagnosis, you remember that:

A. A negative pelvic ultrasonography result rules out the diagnosis of PID.
B. A pregnancy test can be omitted if she is taking oral contraceptives.
C. Fever and an elevated erythrocyte sedimentation rate are necessary to diagnose PID.
D. She is less likely to have PID than are women in an older age group.
E. The presence of cervical motion tenderness is highly suggestive of PID.

10. You are seeing an 18-year-old male who has dysuria and urethral itching. Your examination, which takes place 3 hours after his last void, shows purulent discharge from the urethra. Which of the following statements regarding this patient is true?

A. He is at increased risk for infertility.
B. He requires no treatment if his Gram stain in the office is negative.
C. He should abstain from sexual activity until 7 days after therapy is initiated.
D. His laboratory tests will likely be positive for chlamydia or gonorrhea because he is symptomatic.
E. Microscopic examination showing at least five white blood cells per high-power field is required to diagnose urethritis.
Diagnosis and Management of Sexually Transmitted Diseases Among Adolescents
Gale R. Burstein and Pamela J. Murray
Pediatrics in Review 2003;24;119
DOI: 10.1542/pir.24-4-119

Updated Information & Services

References
This article cites 1 articles, 0 of which you can access for free at:
http://pedsinreview.aappublications.org/content/24/4/119#BIBL

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
Adolescent Health/Medicine
http://classic.pedsinreview.aappublications.org/cgi/collection/adolescent_health:medicine_sub

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://classic.pedsinreview.aappublications.org/site/misc/Permissions.xhtml

Reprints
Information about ordering reprints can be found online:
http://classic.pedsinreview.aappublications.org/site/misc/reprints.xhtml
The The Primary Pediatrician’s Role When a Death Occurs in a Family in One’s Practice
Morris A. Wessel

HIV Infection in Infants, Children, and Adolescents
Sandra K. Burchett, Philip A. Pizzo

Childhood Malabsorption
Michelle M. Pietzak, Dan W. Thomas

Index of Suspicion
Jeffrey Foti, Bradley S. Hood, Beng R. Fuh, Echezona E. Ezeanolue

Law and the Child

Erratum: Sharp-eyed readers have noted that both C and D answers to PIR Quiz question 10 on page 127 in the April 2003 issue of Pediatrics in Review are correct.

Just follow these simple steps to activate your PREP® SA Online account:
1. Log on to PediaLink.org™ and move the pointer to the blue CME icon.
2. Click on the “Online” CME link.
3. Click the “Activate” button in the PREP® Self-Assessment Online section of the page.
4. Enter your PREP® ID number and complete the required information.
Diagnosis and Management of Sexually Transmitted Diseases Among Adolescents
Gale R. Burstein and Pamela J. Murray
Pediatrics in Review 2003;24;119
DOI: 10.1542/pir.24-4-119

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://pedsinreview.aappublications.org/content/24/4/119

An erratum has been published regarding this article. Please see the attached page for:
http://pedsinreview.aappublications.org/content/24/6/213.2.full.pdf