Effects of External Electrical and Magnetic Fields on Pacemakers and Defibrillators
From Engineering Principles to Clinical Practice

Roy Beinart, MD; Saman Nazarian, MD, PhD

According to a recent worldwide survey, current rates of de novo pacemaker and implantable cardioverter-defibrillator (ICD) implantation are higher than those of previous years at >700,000 and >200,000 per year, respectively. Parallel to the growth in cardiovascular implantable electronic device (CIED) use, technological advances have led to new sources of electromagnetic radiation. Modern CIEDs utilize shielding, filters, and bipolar leads to mitigate electromagnetic interference (EMI). Nevertheless, EMI sporadically results in harmful consequences. Physicians attending to patients with CIEDs must be aware of typical EMI sources and strategies to prevent malfunction of CIEDs.

EMI: Engineering Principles

Terminology and Definitions

Electromagnetic field is the term used to describe combined electric and magnetic fields. Electric fields exist whenever electric charges are present (ie, whenever electricity or electric equipment is in use). A magnetic field is produced when electric current flows in a conductor with magnetic field lines perpendicular to the current flow. EMI can occur as a result of conducted or radiated electromagnetic energy. Medical equipment such as transcutaneous electronic nerve stimulators or poorly grounded electric equipment may result in directly conducted electromagnetic energy in the form of galvanic currents. Electromagnetic radiation is the term used to describe electromagnetic energy radiating away from its source. Electromagnetic radiation can be described as ionizing versus nonionizing radiation. Ionizing radiation consists of very short wavelengths, such as x-rays, which have enough power to move electrons off their nuclear orbits. In contrast, nonionizing radiation consists of longer wavelengths with less power and is incapable of moving electrons off their orbit around the nucleus.

Electromagnetic fields are characterized by wavelength, frequency, and field strength. Radiofrequency energy, defined by a frequency range between 0 Hz and 450 MHz, is emitted by sources including magnetic resonance imaging (MRI), electro-surgery, and radio/television broadcasting. Cellular telephones, microwave ovens, and radar transmitters typically emit microwave energy, defined by a frequency range between 450 MHz and 12 GHz. The electric field strength and magnetic field intensity components of electromagnetic fields are measured in volts per meter and amperes per meter, respectively. The magnitude of energy deposition in tissues is measured by the specific absorption rate measured as watts per kilogram. Electromagnetic field energy decreases as an inverse squared function of distance from the source. Thus, doubling the distance from the source results in a 4-fold reduction in exposure. For example, in the setting of MRI or static magnetic fields created by linear accelerators or betatrons, the intensity of static magnetic fields decreases as a function of distance from the source and creates a spatial gradient magnetic field. The intensity of the static magnetic field is typically reported in units of tesla, where 1 T is the equivalent of 10,000 G and 796 A/m. In general, it is accepted that local field strengths of >10 G are sufficient to induce EMI. In contrast to static and spatial gradient magnetic fields, gradient coils in MRI scanners produce time-varying gradient magnetic fields for spatial encoding of the MRI signal. Acoustic radiation involves pressure waves that are emitted from medical equipment such as lithotripsy equipment.

Summary of Potential Transient and Permanent Effects of Electromagnetic Fields

Disturbances in CIED circuitry or behavior attributable to electromagnetic radiation emitted from an external source are known as EMI. Electromagnetic radiation properties and CIED distance from the EMI source, as well as CIED design, materials, shielding, programming, sensitivity, and filtering properties, modulate the extent of EMI.

Spatial gradients in static magnetic fields result in translational and rotational forces on ferromagnetic objects. If the translational force exceeds counterforces from sutures, scarring, and tissue ingrowth, permanent and dangerous effects may occur from dislodgement and movement of CIEDs. A transient effect of spatial gradients in static magnetic fields is the magnetohydrodynamic effect, which occurs as a result of the conductive effect of blood that results in a voltage difference across the vessel in a direction perpendicular to the blood flow. This effect is dependent on the velocity of blood flow, magnetic field strength, vessel diameter, and angle of flow with respect to the magnetic field. Peaked T waves may be sensed as a result of the magnetohydrodynamic effect and may lead to transient
oversensing by CIEDs. A case of transient pacemaker inhibition has been attributed to the magnetohydrodynamic effect. Exposure of older CIEDs with reed switches to static magnetic fields may transiently cause asynchronous pacing and inhibit tachycardia therapies. Modern CIEDs have largely replaced the reed switch with integrated solid state detection, Hall sensors, telemetry coils, or giant magnetoresistor circuits.

Time-varying gradient magnetic fields may be associated with transient and permanent effects on CIEDs. The main concern in this setting is the potential for current induction within conductive wires in the field that may result in transient inhibition of pacemaker output and direct stimulation of the conductor circuitry in CIEDs uses silicon and silicon dioxide as insulators between circuitry components. Exposure of CIEDs to static magnetic fields may transiently cause asynchronous pacing and inhibit tachycardia therapies. Modern CIEDs have largely replaced the reed switch with integrated solid state detection, Hall sensors, telemetry coils, or giant magnetoresistor circuits.

Radiofrequency fields can be associated with tissue heating and burns. Conductive implants and leads, particularly when placed in a loop configuration, can greatly increase the risk of burns as a result of inductive heating of the lead conductor and tissue burns. Conductive implants and leads, particularly when placed in a loop configuration, can greatly increase the risk of burns as a result of inductive heating of the lead conductor and tissue burns.

Ionizing radiation can have cumulative and permanent effects on CIEDs. The complementary metal oxide semiconductor circuitry in CIEDs uses silicon and silicon dioxide as insulators between circuitry components. In addition to the EMI characteristics, programming of CIEDs is a significant determinant of device response to EMI. During inhibited pacing modes (AAI, VVI, or DDI), EMI results in pacing inhibition and bradycardia or asystole. In contrast, while in tracking mode (DDD), preferential sensing of EMI in the atrial channel (which often occurs because of higher programmed sensitivity) could result in (1) increased rate

Electromagnetic Compatibility

The term electromagnetic compatibility (EMC) describes efforts to minimize the possibility of EMI. These efforts include shielding, which includes protecting the CIED generator or lead circuitry with electromagnetic field barriers composed of conductive or magnetic materials. CIED generators are typically shielded by hermetically sealed titanium or stainless steel cases. Nanomagnetic insulation has been utilized recently in lead design to improve shielding from radiofrequency and time-varying gradient magnetic fields. Additionally, body tissues add to the shielding of leads because leads placed in a conductive medium are poor antennas. The extent of CIED shielding varies depending on the manufacturer and can affect product weight, handling, and dimensions. In the case of the generator, the shielding must be adequate to reject electric fields >2 MHz. The use of bipolar sensing and low-pass filters reduces conducted and radiated interference. Additionally, feedthrough capacitor filters are utilized to prevent EMI from a wide range of frequencies including mobile phone frequencies.

The term feedthrough describes a conductor used to carry a signal through the pacemaker casing. The conductor is capable of holding a guaranteed minimum value of charge and is therefore called a feedthrough capacitor. The conductor is meant to participate in unipolar (to generator) sensing/pacing functions but may also act as an antenna that carries EMI. Feedthrough capacitor filters decouple and shield against conduction of radiofrequency carrier signals from mobile phones into the pacemaker circuitry. In addition, incorporation of bandpass filters allows rejection of frequencies outside the range of interest. However, electromagnetic radiation with frequencies between 0 and 60 Hz overlaps the cardiac signal range. Therefore, rejection of this frequency range by band-pass filters would affect proper pacemaker function.

To address EMI that bypasses filtering schemes, the noise reversion feature, typically programmed for asynchronous pacing, activates when signals are detected in the noise-sampling period of the atrial and ventricular refractory periods. Table 1 summarizes design features to enable EMC.

CIED Response to EMI

In addition to the EMI characteristics, programming of CIEDs is a significant determinant of device response to EMI. During inhibited pacing modes (AAI, VVI, or DDI), EMI results in pacing inhibition and bradycardia or asystole. In contrast, while in tracking mode (DDD), preferential sensing of EMI in the atrial channel (which often occurs because of higher programmed sensitivity) could result in (1) increased rate

Shielding the generator and leads	+	+
Feed-through capacitor filters	+	
Low-pass filters	+	
Band-pass filters	+	
Noise reversion	+	
Use of Hall sensor (instead of reed switch)	+	
Increasing lead conductor resistance	+	

Table 1. Electromagnetic Compatibility Features and Corresponding Electromagnetic Interference Types

<table>
<thead>
<tr>
<th>Ionizing Radiation</th>
<th>Electric Fields</th>
<th>Static and Spatial Magnetic Field</th>
<th>Time-Varying Gradient Magnetic Field</th>
<th>Radiofrequency</th>
<th>Microwave</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shielding the generator and leads</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bipolar sensing</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed-through capacitor filters</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low-pass filters</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Band-pass filters</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noise reversion</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use of Hall sensor (instead of reed switch)</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increasing lead conductor resistance</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduction of ferromagnetic components</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
of ventricular pacing or (2) atrial arrhythmia detection and CIED “mode-switch” to inhibited pacing (AAI, VVI, or DDI). Detection of EMI may result in pacing at the sensor-triggered upper rate limit if rate response is activated. In ICD recipients, sensing of EMI in the tachyarrhythmia frequency range could result in inappropriate therapies. Activation of the magnet response by EMI may lead to asynchronous pacing in pacemakers and transient or permanent disabling of tachycardia therapies in certain ICD systems. Importantly, although rare, CIEDs may revert to a back-up programming mode known as “power-on-reset” when exposed to high-energy EMI. Power-on-reset events are generally resolved by reprogramming the CIEDs to patient specific settings. However, it is important to realize that during power-on-reset, pacing is typically set to an inhibited mode (VVI), and tachycardia therapies are enabled.

Everyday Sources of EMI

Routinely used equipment seldom causes EMI with CIEDs. Table 2 summarizes potential sources of EMI, documented effects, and recommended precautions. Several common sources are also discussed below.

Digital Music Players, Headphones, and Neodymium Magnets

Digital music players may result in isolated telemetry EMI without direct impact on CIED function. Portable head-phones contain strong magnets that may interfere with CIED function at close range. Similar neodymium magnets are used in the jewelry and clothing industry and can lead to magnetic field effects.

Security Systems and Equipment

Walk-through metal detector security systems use either continuous-wave (5–10 kHz) or pulsed-wave (200–400 Hz) modes. In contrast, handheld detectors operate in higher-frequency continuous-wave mode (80–130 KHz) with lower magnetic field strength and lower likelihood for EMI. The risk of EMI appears to be very low in the setting of walk-through and handheld metal detectors. Nevertheless, CIED recipients should alert security personnel regarding the implanted device as recommended by the Transportation Security Administration. Electronic article surveillance devices utilizing magnetic, acoustomagnetic, radiofrequency, or microwave transmissions are used to prevent theft in stores and libraries. Instances of EMI with tracking and pacing inhibition attributable to ventricular oversensing, asynchronous pacing, current induction with myocardial capture/extrasystoles, and inappropriate shocks have been reported with close exposure to magnetic, radiofrequency, and acoustomagnetic surveillance systems.

Cellular Phones

Instances of EMI with CIEDs resulting in oversensing, tracking, pacing inhibition, and asynchronous pacing were readily observed with early cellular phones placed directly on the device. Studies of modern cellular phones and CIEDs with routine use of dedicated phone filters have noted minimal or no EMI. In the setting of ICDs, only transient telemetry loss, without clinically significant EMI, has been reported. Current recommendations indicate holding cellular phones to the ear contralateral to the CIEDs, avoiding close contact between the CIEDs and the phone, and avoiding the use of cellular phones during programming of CIEDs.

Other Routine or Workplace Sources

Rare reports of malfunction of CIEDs attributable to EMI from other sources including slot machines, washing machines, power drills, and alternative medicine devices exist in the literature. In general, recipients should be advised to avoid close contact of electric equipment with a CIED generator. Potential industrial sources of EMI include welding equipment, electric motors, and degaussing coils. High electromagnetic radiation levels exist in aircraft cockpits, but, on the basis of in vitro studies, they appear unlikely to cause significant EMI with CIEDs. Similarly, high-voltage power lines are unlikely to result in EMI with routine exposure and bipolar sensing configuration. If a CIED recipient is in an area with industrial equipment, assessment of the threshold source distance for EMI and follow-up device interrogations should be arranged. Additionally, the employer should be notified regarding CIEDs and the importance of environmental testing. This type of assessment can be performed by a trained EMI testing consultant at the employer’s request. The CIED manufacturer can provide a list of consultants.

Medical Sources of EMI

The medical environment has abundant sources of EMI with the potential to cause malfunction in CIEDs. Cardioversion procedures may cause transient or permanent changes in CIED function including lead sensing and capture parameters. This may be secondary to shunting the energy through the lead to the electrode tip, causing electric injury and impedance changes at the electrode-myocardial interface. Power-on-reset and pacing mode changes have also been observed. Radiofrequency ablation generates signal frequencies between 500 and 1000 kHz in a unipolar configuration. Asynchronous pacing, pacing inhibition, loss of capture, power-on-reset, and, rarely, runaway pacing have been reported in the setting of radiofrequency ablation and older CIEDs. Because of the abundance of EMI sources in the medical environment and for brevity, most have been summarized in Table 2. However, MRI, radiotherapy, and electrosurgery are discussed in detail below.

Magnetic Resonance Imaging

There are 3 distinct sources of EMI in the setting of MRI: the static magnetic field, radiofrequency fields, and time-varying gradient magnetic fields. The static magnetic field can exert force and torque on CIEDs and may change the
Avoid close proximity (<30 cm) to generator

Availability of magnet or CIED programming equipment is advised +

Advise employer regarding implanted medical device and consider environmental testing by

Avoid close proximity to generator

MRI should be performed at experienced centers utilizing a strict protocol for patient monitoring +

Patients should be monitored continuously; synchronization of the hydraulic shocks to the R wave +

No intervention or magnet application is needed for subumbilical procedures; for procedures +

Consider deactivation of minute ventilation sensors +

Magnet application or programming to an asynchronous mode (VOO/DOO) is recommended in +

Avoid close proximity of ignition system, engine, and alternator to generator +

CIEDs should be interrogated within 24 h of each treatment when using a direct beam to the +

Avoid contact with improperly grounded equipment +

Avoid close proximity to generator +

Assessment of threshold safe distance for EMI and follow-up device interrogations should be +

Alert security personnel regarding implanted device +

Deactivate tachyarrhythmia therapies and activate asynchronous pacing for pacemaker- +

Avoid close proximity to generator

No anticipated effects in absence of electrosurgery +

Tachyarrhythmia therapies should be turned off before procedure +

Patients should not linger near surveillance devices to minimize the duration of EMI that might be +

Program bipolar sensing configuration; test for interactions intraoperatively and when modifying +

Table 2. Sources of EMI and Their Potential Effects

<table>
<thead>
<tr>
<th>Type of Field</th>
<th>Environment</th>
<th>Source</th>
<th>Damage to CIED Circuitry</th>
<th>Pacemaker Inhibition</th>
<th>Noise Tracking</th>
<th>Asynchronous Pacing</th>
<th>Noise Reversion</th>
<th>Communication Failure</th>
<th>Current Induction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electromagnetic</td>
<td>Daily life</td>
<td>Digital music players</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stereo speaker and headphones</td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(magnetic field strength ≥10 G)</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Neodymium-iron-boron magnets</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Incorporated into toys, jewelry, and clothes</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Metal detectors</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Electronic article surveillance devices</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cellular phones</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hand-held home phones</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tasers</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Household leakage current from improper grounding</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Automotive engine</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Work and industry</td>
<td></td>
<td>Arc welding equipment, electric motors, and degaussing coils</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aircraft cockpits</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RFID equipment</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High-voltage power coils</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Medical</td>
<td></td>
<td>MRI</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Electrosurgery</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LVAD</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Cardioversion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dental equipment</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Radiofrequency catheter ablation</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spinal cord and deep brain stimulators</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gastroscopy, endoscopy, and colonoscopy</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Capsule endoscopy</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transcutaneous electric nerve stimulation</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Telemetry monitors</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Electroconvulsive therapy</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Ionizing radiation</td>
<td></td>
<td>Radiotherapy</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Acoustic radiation</td>
<td></td>
<td>Lithotripsy</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
</tbody>
</table>

CIED indicates cardiovascular implantable electronic device; EMI, electromagnetic interference; ICD, implantable cardioverter-defibrillator; LVAD, left ventricular assist device; MRI, magnetic resonance imaging; and RFID, radiofrequency identification.
Table 2: Sources of EMI and Their Potential Effects

<table>
<thead>
<tr>
<th>Type of Field</th>
<th>Environment</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Work and industry</td>
<td>MRI</td>
</tr>
<tr>
<td></td>
<td>Work and industry</td>
<td>Ionizing radiation Radiotherapy</td>
</tr>
<tr>
<td></td>
<td>Work and industry</td>
<td>Electromagnetic Daily life Digital music players</td>
</tr>
</tbody>
</table>

Effects of EMI on Cardiac Devices

<table>
<thead>
<tr>
<th>Arrhythmia Detection/ICD Shocks</th>
<th>Inhibition of Tachyarrhythmia Detection</th>
<th>Sensing and Pacing Threshold Changes</th>
<th>Power-on-Reset</th>
<th>Rate Adaptive Sensor Activation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Warranted Precautions

- Avoid close proximity (<30 cm) to generator
- Avoid close proximity to generator
- Alert security personnel regarding implanted device
- Patients should not linger near surveillance devices to minimize the duration of EMI that might be detected by CIEDs
- Avoid close proximity to generator
- Avoid close proximity to generator
- Avoid contact with improperly grounded equipment
- Avoid close proximity of ignition system, engine, and alternator to generator
- Advise employer regarding implanted medical device and consider environmental testing by a trained EMI consultant (list of consultants can be provided by CIED manufacturer); maintain minimal distance of 2 ft (61 cm) from welding arc and cables or large motors; do not exceed tested currents with welding equipment, wear insulated gloves while operating electric equipment, and verify that electric equipment is properly grounded
- MRI should be performed at experienced centers utilizing a strict protocol for patient monitoring and CIED programming (refer to Table 3)
- No intervention or magnet application is needed for subumbilical procedures; for procedures above the umbilicus, programming or magnet application should be performed to activate asynchronous pacing for pacemaker-dependent patients as well as deactivation of tachyarrhythmia therapies for ICD recipients; position the ground electrode to direct the current path away from the CIEDs
- CIEDs should be programmed to a bipolar sensing configuration and should be excluded from the current path by use of anteroposterior patches/paddles position, placed >6 inches away from the generatorLTE; immediate access to a CIED programmer is recommended
- Deactivate tachyarrhythmia therapies and activate asynchronous pacing for pacemaker-dependent patients
- Program bipolar sensing configuration; test for interactions intraoperatively and when modifying programming
- Tachyarrhythmia therapies should be turned off before procedure
- Magnet application or programming to an asynchronous mode (VOO/DOO) is recommended in pacemaker-dependent patients; ICD therapies should be disabled during treatment
- Consider deactivation of minute ventilation sensors
- Availability of magnet or CIED programming equipment is advised
- CIEDs should be interrogated within 24 h of each treatment when using a direct beam to the chest or high-energy photon radiation for pacemaker-dependent patientsLTE; programming the CIEDs to a higher pacing rate than baseline allows rapid recognition of power-on-reset or device malfunction when onsite interrogation is unavailable
- Patients should be monitored continuously; synchronization of the hydraulic shocks to the R wave should be performed; dual-chamber pacemakers should be reprogrammed to VVI mode; ICD tachyarrhythmia therapies should be deactivated during treatment; CIEDs should be interrogated after procedure
reed switch state in older devices, causing unpredictable pacing behaviors. The radiofrequency and gradient magnetic fields may induce electric currents in leads within the field if the current loop is completed through the body. Current induction may lead to myocardial capture and induction of fatal ventricular arrhythmias. Additionally, the generator and leads can act as an antenna that amplifies local radiofrequency energy deposition, resulting in heating at the device-tissue interface. Finally, EMI may result in inhibition of pacing, asynchronous pacing (Figure 1), power-on-reset events, inappropriate tracking, inappropriate ICD therapies, and runaway pacing with induction of potentially life-threatening ventricular arrhythmias.

Because of the benefits of MRI, our group and others have developed protocols to safely perform imaging in CIED recipients. At our institution, we have performed MRI at 1.5 T on >1000 patients with CIEDs using a protocol that incorporates device selection and programming and patient monitoring. We exclude patients with (1) recently implanted leads (<6 weeks); (2) abandoned leads; (3) nontransvenous epicardial leads; and (4) dependence on the pacing function of an ICD. Additionally, we require the presence of a provider experienced in advanced cardiac life support and programming of CIEDs. Before MRI, baseline interrogation is performed, and system parameters are recorded. If the patient has a hemodynamically stable underlying rhythm, an inhibited pacing mode is utilized (AAI, VVI, or DDI). If the patient is dependent on pacing, the pacemaker is set to an asynchronous mode. All other pacing functions and tachyarrhythmia therapies are disabled. On completion of the MRI examination, the device is reinterrogated. Battery status and lead parameters are rechecked, and programming is restored to baseline settings. The protocol is summarized.

Table 3. Safety Protocol for MRI in the Setting of CIEDs

<table>
<thead>
<tr>
<th>Before procedure</th>
<th>Consider alternate imaging modalities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Discuss benefits and risks of MRI in the setting of CIEDs, including risks of EMI, device failure, and arrhythmia, and obtain informed consent</td>
</tr>
<tr>
<td></td>
<td>Exclude patient with the following characteristics</td>
</tr>
<tr>
<td></td>
<td>CIEDs implanted before 2000</td>
</tr>
<tr>
<td></td>
<td>Recently implanted leads (<6 wk)</td>
</tr>
<tr>
<td></td>
<td>Abandoned leads</td>
</tr>
<tr>
<td></td>
<td>Nontransvenous epicardial leads</td>
</tr>
<tr>
<td></td>
<td>Dependence on pacing function of ICD</td>
</tr>
<tr>
<td></td>
<td>Perform baseline interrogation and programming</td>
</tr>
<tr>
<td></td>
<td>For hemodynamically stable underlying rhythm: inhibited pacing mode (AAI/VVI/DDI)</td>
</tr>
<tr>
<td></td>
<td>For pacemaker-dependent patients: asynchronous mode (V00/D00)</td>
</tr>
<tr>
<td></td>
<td>All other pacing functions (magnet, rate, PVC, noise, ventricular sense, and conducted atrial fibrillation response) and tachyarrhythmia therapies should be disabled</td>
</tr>
<tr>
<td>During procedure</td>
<td>A provider experienced in CIED programming and advanced cardiac life support should be present to monitor symptoms, blood pressure, ECG, and pulse oximetry</td>
</tr>
<tr>
<td></td>
<td>Resuscitation equipment should be immediately available</td>
</tr>
<tr>
<td>After procedure</td>
<td>Reinterrogate CIEDs with recording of battery status and lead parameters and reprogramming of the system to baseline settings</td>
</tr>
<tr>
<td></td>
<td>Schedule follow-up interrogation in 3–6 mo</td>
</tr>
</tbody>
</table>

CIED indicates cardiovascular implantable electronic device; EMI, electromagnetic interference; ICD, implantable cardioverter-defibrillator; MRI, magnetic resonance imaging; and PVC, premature ventricular contraction.
in Table 3. We have published our experience of utilizing this protocol for performing 555 MRI examinations on pacemaker and ICD recipients. Immediately after MRI, clinically insignificant decreases in right ventricular sensing and lead impedances were noted. Long-term differences included increased right ventricular capture threshold, decreased right ventricular sensing and impedance, and decreased battery voltage. These changes did not warrant CIED system revision or reprogramming. In our study, subclinical changes in sensing and battery voltage were associated with thoracic imaging. Given the extent of image susceptibility artifacts that affect the anterior and apical left ventricle,89 the potentially elevated risks versus benefits of thoracic MRI must be weighed carefully in patients with left-sided ICD systems. Artifact reduction methodologies are currently under development and will improve the performance of MRI in patients with left-sided ICD systems. Additionally, we observed acute power-on-reset events in 3 patients.40 Power-on-reset is important to recognize because inhibition of pacing or delivery of tachycardia therapies may occur if EMI is sensed before the CIEDs are reprogrammed. The use of MRI at 3 T for neurological, musculoskeletal, abdominal, and cardiovascular applications is increasing owing to increased signal-to-noise ratio, spatial resolution, and imaging speed. However, there is only limited experience with MRI safety of CIEDs at 3 T.90,91

It is important to note that MRI in the setting of standard CIEDs is performed off-label and generally considered to be a contraindication. The Center for Medicare and Medicaid Services will cover MRI for beneficiaries with implanted CIEDs (1) through Coverage with Evidence Development/Coverage with Study Participation in approved clinical studies of MRI or (2) in the setting of “MRI-conditional” pacemakers (discussed below) used according to the Food and Drug Administration–approved labeling for use in the MRI environment.92 The American Heart Association, American College of Radiology, and European Society of Cardiology recommendations emphasize the necessity (1) to perform MRI at experienced centers utilizing a strict protocol for patient monitoring and device programming and (2) to individualize the decision-making process on the basis of the risk-benefit ratio of MRI and the utility of modalities alternative to MRI.93–95

In recent years, device manufacturers have made substantial efforts to develop MRI-conditional CIEDs. This terminology implies the lack of known hazards when MRI is performed with the use of predefined device programming, patient monitoring, and imaging protocols. MRI-conditional CIEDs contain fewer ferromagnetic materials and incorporate lead design changes to mitigate heating. A Hall sensor is used instead of the reed switch to reduce unpredictable behavior within the MRI scanner. Other modifications include the availability of an easily programmable MRI mode, which requires a mandatory system integrity check before enabling increased pacing output and selection of asynchronous or inhibited modes (AAI, VVI, or DDI). The US Food and Drug Administration approved the Revo MRI SureScan Pacing System (Medtronic, Inc, Minneapolis, MN) in early 2011. To assess implantation safety, 100 patients with pacing indications were randomized to receive the MRI-conditional versus a conventional system. No excess complications were observed; however, there was a trend toward lower successful cephalic vein access.41 Next, MRI safety was assessed with the use of a randomized prospective multicenter study. Up to 12 weeks after implantation, 211 patients with the MRI-conditional system underwent MRI (1.5 T, specific absorption rate ≤2 W/kg, and gradient slew rate <200 T/m per second). The isocenter position was limited to regions above the superior surface of C1 and below the inferior surface of T12 vertebra. No MRI-related events or overt complications such as failure to capture, lead dislodgement, or pericardial effusion were noted, and recorded measurements were similar between the study groups.42 Importantly, the system requires the use of manufacturer-specific leads, and the approved MRI field strength is limited to 1.5 T. Other manufacturers have also developed MRI-conditional CIEDs, which have been approved in Europe. These include pacemaker systems including the Evia and Estella (Biotronik, Berlin, Germany), the Accent MRI (St Jude Medical, St Paul, MN), and the Lumax 740 ICD system (Biotronik, Berlin, Germany).

Figure 2. The atrial (top) and ventricular (middle) bipolar channels in a biventricular implantable cardioverter-defibrillator reveal high-frequency noise attributable to electrosurgery during cholecystectomy and result in inappropriate delivery of antitachycardia pacing.
Radiotherapy and Ionizing Radiation

Instances of EMI have been reported in the setting of computed tomography, inducing single beat inhibition, but are otherwise infrequent with routine diagnostic radiation.ª In contrast, therapeutic radiation is associated with various sources of EMI including couch drive motors, shutters, x-ray tube rotors, cooling pumps, x-ray transformers, power supplies, magnets, klystrons, waveguide assemblies, and beam forming circuits, as well as ionizing radiation sources, including continuous beam γ-ray, beta particle radioisotopes, pulsed x-ray and electron beams from linear accelerators and betatrons, and cyclotron-produced proton or neutron beams.97–99 Exposure to therapeutic radiation has been associated with pacing inhibition, inappropriate tracking, noise reversal, inappropriate shocks, CIED failure, and runaway pacing with induction of potentially life-threatening ventricular arrhythmias. The cumulative effect of ionizing radiation on the oxide layers of complementary metal oxide semiconductor circuits utilized in CIEDs varies depending on the type (photon- versus proton-based therapy), dose measured as energy absorbed per mass with units of joule per kilogram or gray, direction of radiation, and device type and location.ªª A dose range as wide as 0.5 to 120 Gy could be associated with ICD failure. CIED manufacturer recommendations regarding maximal tolerable radiation dose vary from no safe dose (Boston Scientific), to 1 to 5 Gy (Medtronic), to 20 to 30 Gy (St Jude Medical). In addition, shielding should be maximized at the machine head during radiotherapy with the use of multileaf collimators or even by placing a lead apron over CIEDs to minimize the amount of radiation scatter. The Heart Rhythm Society and American Society of Anesthesiologists recommend interrogation within 24 hours of each treatment when a direct beam to the chest or high-energy photon radiation is used for pacemaker-dependent patients. Remote follow-up can be used in many CIEDs for this purpose. Programming CIEDs to a higher pacing rate than baseline allows rapid recognition of power-on-reset or device malfunction when on-site interrogation is unavailable. It is also recommended that radiation therapy specialists perform energy field calculations and discuss the case with an electrophysiologist before the procedure.

Electrosurgery

Electrosurgery current in the frequency range of 100 to 5000 kHz is typically delivered in a unipolar configuration between the cautering instrument and ground electrode. The infrequently utilized bipolar cautery system delivers the current between 2 electrodes at the tip of the instrument, thus reducing the likelihood for EMI with CIEDs. There are many reports of EMI with CIEDs from unipolar cautery (Figure 2). Most instances of EMI occur when electrosurgery is performed within 8 cm of the device. Electrosurgery below the umbilicus with a grounding pad on the thigh is unlikely to result in EMI with thoracic CIEDs. A protocol for management of patients undergoing electrosurgery has been summarized in Table 4. The Heart Rhythm Society/American Society of Anesthesiologists Expert Consensus Statement recommends either no intervention or magnet application for subumbilical procedures. In contrast, for procedures above the umbilicus, the document indicates (1) programming or magnet application to activate asynchronous pacing for pacemaker-dependent patients and (2) deactivation of tachyarrhythmia therapies for ICD recipients and programming of the ICD to an asynchronous mode for pacemaker-dependent patients.
Importantly, failure to resume initial programming or to reactivate tachyarrhythmia functions after surgery must be avoided through careful planning.

Summary

The overall risk of clinically significant adverse events related to EMI in recipients of CIEDs is very low. Therefore, no special precautions are needed when household appliances are used. Environmental and industrial sources of EMI are relatively safe when the exposure time is limited and distance from the CIEDs is maximized. The risk of EMI-induced events is highest within the hospital environment. Physician awareness of the possible interactions and methods to minimize them is warranted.

Sources of Funding

Dr Nazarian is principal investigator for research funding to Johns Hopkins University from Biosense-Webster Incorporated and National Heart, Lung, and Blood Institute of the National Institutes of Health grants K23HL089333 and R01HL116280. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Disclosures

Dr Nazarian is on the MRI advisory panel (unpaid) for Medtronic and is a scientific advisor to Biosense-Webster Incorporated. Dr Beinart reports no conflicts.

References

2. Shellock FG, Kanai E, Gilk TB. Regarding the value reported for the term “spatial gradient magnetic field” and how this information is applied to labeling of medical implants and devices. AJR Am J Roentgenol. 2011;196:142–145.
5. Gimbel JR. Unexpected pacing inhibition upon exposure to the 3T static magnetic field prior to imaging acquisition: what is the mechanism? Heart Rhythm. 2011;8:944–945.

43. Crossley GH, Poole JE, Rozner MA, Asirvatham SJ, Cheng A, Chung MG, Ferguson TD, Gallager RH, Gold MR, Hoyt RH, Irfan S, Kusumoto FM, Moor LP, Thompson A. The Heart Rhythm Society (HRS)/American Society of Anesthesiologists (ASA) Expert Consensus Statement on the perioperative management of patients with implantable defibrillators, pacemakers and arrhythmia monitors: facilities and patient management; this document was developed as a joint project with the American Society of Anesthesiologists (ASA), and in collaboration with the American Association of Cardiovascular and Thoracic Surgeons (STS). Heart Rhythm. 2011;8:1114–1154.

Effects of External Electrical and Magnetic Fields on Pacemakers and Defibrillators:
From Engineering Principles to Clinical Practice
Roy Beinart and Saman Nazarian

Circulation. 2013;128:2799-2809
doi: 10.1161/CIRCULATIONAHA.113.005697
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2013 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/128/25/2799

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation_ is online at:
http://circ.ahajournals.org//subscriptions/