A 3-year-old boy had a history of cor triatriatum, which was diagnosed incidentally when he was 1 year old during workups for failure to thrive and funnel chest. Initial echocardiographic evaluation revealed no evidence of obstruction through the orifice (mean pressure gradient, 3 mm Hg). However, progressive flow obstruction was noted at follow-up. At 3 years of age, 2-dimensional echocardiography at the apical 4-chamber view demonstrated a membrane-like structure traversing the left atrium (LA) (Figure 1A; see Movie I in the online-only Data Supplement). Doppler echocardiography revealed a mean pressure gradient of 8.9 mm Hg across the orifice of this membrane (Figure 1B). However, depiction of the relationships between this membrane and the surrounding structures was not clear. Therefore, transesophageal 3-dimensional echocardiography (3DE) was performed (iE33; Philips, Andover, MA) with an X-7 matrix array transducer. The 3DE images cropped from the posterior and superior aspects of the LA toward the atrioventricular groove clearly showed that this membrane extended from the fossa ovalis area of the atrial septum to the LA free wall (Figure 2A; see Movie II in the online-only Data Supplement). Therefore, the LA was divided into 2 chambers (Figure 2B; see Movie III in the online-only Data Supplement). The communication between these 2 chambers was through a single, relatively small, horseshoe-shaped orifice, which was located near the atrial septum (Figure 2A; see Movie II in the online-only Data Supplement). Pulmonary veins connected to the posterior superior chamber and the anterior inferior chamber drains into the left ventricle via the mitral valve. The 2 chambers are connected through 21 orifices in the septum. Clinical symptoms are related to the degree of restriction of blood flow, which depends on the size and number of fenestrations on the membrane. Surgical resection of the membrane is the treatment of choice for patients with significant flow obstruction. Theoretically, transesophageal echocardiography would provide better visualization of the cor triatriatum and its orifice. However, the invasiveness and long procedure time are major drawbacks of transesophageal echocardiography, especially for children. In this case, we demonstrated that transthoracic 3DE could provide accurate diagnosis of cor triatriatum by detailed appreciation of its relation with the atrial septum and the pulmonary veins, as well as the location and size of the orifice. These posterior cardiac structures could be visualized clearly by 3DE in children, whose echocardiographic image quality was usually superior to that in adults. Furthermore, experience from this pediatric case highlights the potential value of transthoracic 3DE in providing better appreciation of the anatomy and nearby structures around the cor triatriatum compared with the conventional echocardiography.

Disclosures

None.

References

Figure 1. A, Transthoracic 2-dimensional echocardiography from the apical 4-chamber view shows a membrane-like structure within the left atrium, dividing it into posterior–superior (PS) and anterior–inferior (AI) chambers. B, Color Doppler echocardiography reveals significant flow acceleration across the membrane (estimated mean pressure gradient, 8.9 mmHg).

Figure 2. A, Transthoracic 3-dimensional echocardiography (3DE) image viewed from the posterior and superior aspect of the left atrium (LA) toward the atrioventricular groove shows that a membrane (arrowheads) extended from the fossa ovalis area of the atrial septum to the LA free wall. Pulmonary veins are connected to the posterior–superior chamber. There is a single, horseshoe-shaped orifice (arrow) on the membrane near the atrial septum. B, 3DE image viewed from lateral aspect of the LA clearly shows that the LA is divided into posterior–superior and anterior–inferior chambers by this membrane. C, A small secundum-type atrial septal defect (asterisk) is found within the anterior–inferior chamber. D, Color 3DE image shows that the communicating orifice on the membrane is ~0.43 cm² in area (arrow). Ao indicates aorta; AI, anterior–inferior chamber; LV, left ventricle; PS, posterior superior chamber; and PV, pulmonary vein.

Figure 3. A, Multidetector computed tomography demonstrates a membrane (arrowheads) dividing the LA into 2 chambers. B, Pulmonary veins drain into the posterior–superior chamber. AI indicates anterior–inferior chamber; PS, posterior superior chamber; and PV, pulmonary vein.
Clear Morphological Depiction of Cor Triatriatum in a Child by Transthoracic 3-Dimensional Echocardiography
Wan-Ling Chih, Jou-Kou Wang, Yih-Sharng Chen, Shyh-Jye Chen, Mei-Hwan Wu and Chun-An Chen

Circulation. 2013;128:e395-e396
doi: 10.1161/CIRCULATIONAHA.113.004075
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2013 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/128/20/e395

Data Supplement (unedited) at:
http://circ.ahajournals.org/content/suppl/2014/05/27/128.20.e395.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org/subscriptions/
Movie Legend

Movie 1. Transthoracic 2-dimensional image from apical 4-chamber view shows a membrane extending from fossa ovalis area of the atrial septum to LA lateral wall, dividing the LA into 2 chambers. A small atrial septal defect is found between the anterior inferior chamber and the right atrium. Best viewed with Windows Media Player.

Movie 2. Transthoracic 3DE image viewed from the posterior and superior aspect of the LA toward the atrioventricular groove demonstrates a single horseshoe-shaped orifice on the membrane. Best viewed with Windows Media Player.

Movie 3. Transthoracic swivel 3DE image clearly depicts the spatial relationship between this membrane and the surrounding structures, as well as the location of communicating orifice. Best viewed with Windows Media Player.

Movie 4. Transthoracic multiplane color 3DE image demonstrates the flow across this membrane, marking the exact location and size of the orifice. Best viewed with Windows Media Player.