Omega-3 Fatty Acid Blood Levels
Clinical Significance and Controversy

H. Robert Superko, MD, FAHA, FACC; Scott M. Superko; Khurram Nasir, MD; Arthur Agatston, MD, FACC; Brenda C. Garrett, RN

The relationship of fish and dietary omega-3 fatty acids and cardiovascular disease (CVD) has been investigated in numerous studies and comprehensive reviews and recommendations exist, but guidance on blood concentrations is missing.1–4 Some prospective fish oil treatment investigations report a significant reduction in CVD events but others do not.5–7 A recent meta-analysis did not find a statistically significant relationship between omega-3 consumption and CVD mortality, but it failed to take into account the implications of variability in individual blood levels of omega-3 fatty acids.8

Blood levels of omega-3 fatty acids can be influenced by dietary intake of omega-3 fatty acids and intake with oral supplements. The Multiple Risk Factor Intervention Trial reported in 1995 that serum omega-3 fatty acids blood levels were inversely correlated with coronary heart disease (CHD).9 An association of dietary sources of nonfried fish and blood levels of eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA) were reported in the Atherosclerosis Risk In Communities (ARIC) investigation and the Multi-Ethnic Study of Atherosclerosis (MESA) investigations.10,11

Blood levels of dietary omega-3 fatty acids can vary based on geography and diet habits. For example, Japanese living in Japan have higher blood omega-3 fatty acid levels than whites living in Pennsylvania and Japanese Americans living in Honolulu. The lower 5th percentile of blood omega-3 fatty acids in the Japanese living in Japan is higher than the mean levels in whites and Japanese Americans even though total fat is comparable.12

The purpose of this review is to explore insight derived from clinical investigations reporting blood or plasma levels of omega-3 fatty acids and the relationship to CHD risk that may shed light on the fish oil controversy. A National Library of Medicine PubMed search was conducted with the key words omega-3, coronary artery disease, and blood concentrations. One hundred eighty-five citations were identified and reviewed for relevance to coronary atherosclerosis and data on omega-3 supplementation type and dose, duration of treatment, laboratory methodology, cardiovascular associations, and blood, plasma, or serum measurements. Twenty-nine words omega-3, coronary artery disease, and blood concentrations were identified for inclusion, and 13 reports using doses of fish oil supplements between 1 and 6.7 g/d were identified (Table 1).

Variability of Individual Blood Level Response to Omega-3 Supplementation

Blood levels of fatty acids can be determined by different laboratory methods. The Red Blood Cell method heats a Red Blood Cell aliquot with boron trifluoride methanol, and the fatty acid methyl esters are extracted and analyzed by gas chromatography. The sum of EPA+DHA, as a percentage of total fatty acids, is reported. If the index is <4%, the clinical evidence using the Red Blood Cell method has been reviewed.40 Chromatography is a laboratory method based on the differential rate of separation of compounds and typically involves plasma lipid extraction and methylated fatty acids analyzed by using a gas chromatograph and a capillary column.41 Mass spectrometry separation is a third method in which plasma fatty acid concentration is determined by the mass spectrometric method.42

Individual differences in response to a fixed dose of fish oil can vary considerably. This variation makes prediction of an individual patient’s blood level response to a specific dose problematic. If the blood level response of a population is normally distributed, >68% of the individuals will have a value within 1 standard deviation (SD) of the mean with 16% >1 SD and 16% <1 SD. Figure 1 illustrates EPA blood level ranges (mean±SD) pre- and postdosing in studies for which information is reported. Figures 2 and 3 summarize the pre- and postdosing values for DHA and EPA/araachidonic acid (AA), respectively.

Short-Term Studies

A short-term 48-hour metabolic ward fish oil feeding study in healthy volunteers fed 4 g of fish oil reported that the baseline EPA was 0.54% of phospholipid fatty acids and, at 8 hours, had increased between 62% and 80%.31 The authors concluded that a large variability in fatty acid blood levels was observed. A slightly longer 28-day fish oil study

From Celera, Alameda, CA (H.R.S.); Cholesterol, Genetics, and Heart Disease Institute, Portola Valley, CA (H.R.S., B.C.G.); Mercer University School of Pharmaceutical Sciences, Atlanta, GA (H.R.S.); University of California, Davis (S.M.S.); Center for Prevention and Wellness Research, Baptist Health Medical Group, Miami Beach, FL (K.N., A.A.); Department of Medicine, Herbert Wertheim College of Medicine, Miami, FL (K.N., A.A.); Department of Epidemiology, Robert Stempel College of Public Health, Florida International University, Miami, FL (K.N.); and The Johns Hopkins Ciccarone Center for the Prevention of Heart Disease, Baltimore, MD (K.N.).

Correspondence to H. Robert Superko, 40 Bear Paw, Portola Valley, CA 94028. E-mail HighHDL@mac.com

(Circulation. 2013;128:2154-2161.)

© 2013 American Heart Association, Inc.

Circulation is available at http://circ.ahajournals.org DOI: 10.1161/CIRCULATIONAHA.113.002731

2154
Table 1. Investigations Reporting Plasma, Serum, or Whole Blood Measurements of Omega-3 Fatty Acids

<table>
<thead>
<tr>
<th>Author (ref)</th>
<th>n</th>
<th>Subjects</th>
<th>Study Method</th>
<th>Sample Type</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anderson13</td>
<td>174</td>
<td>Random population</td>
<td>Follow-up study</td>
<td>Plasma</td>
<td>Omega-3 fatty acids predict CV mortality independent of pulse wave velocity.</td>
</tr>
<tr>
<td>Albert14</td>
<td>281</td>
<td>Healthy men 17-y follow-up</td>
<td>Observational</td>
<td>Blood</td>
<td>Reduction in sudden death related to EPA+DHA+DSA%</td>
</tr>
<tr>
<td>Baylin15</td>
<td>3338</td>
<td>MI vs control</td>
<td>Case control genetic study</td>
<td>Plasma</td>
<td>EPA and DHA higher in carriers of FADS2 T allele but not related to CHD status.</td>
</tr>
<tr>
<td>Chung11</td>
<td>900</td>
<td>Healthy subjects</td>
<td>Dosing study</td>
<td>Plasma</td>
<td>1 g/d omega-3 increases blood levels 2-3 fold in 1 wk</td>
</tr>
<tr>
<td>Donadio16</td>
<td>73</td>
<td>IgA nephropathy</td>
<td>Randomized, open label, 2 y, 2 doses 3.35 or 6.70 g/d</td>
<td>Plasma</td>
<td>3.35 g/d increased EPA from 0.8% to 3.6% and DHA from 3.7% to 6.7% d/g increased EPA from 0.9% to 4.9% and DHA from 3.5% to 7.4%</td>
</tr>
<tr>
<td>Donadio17</td>
<td>73</td>
<td>IgA nephropathy</td>
<td>Randomized open label, 2 y, 2 doses 3.35 or 6.70 g/d</td>
<td>Plasma</td>
<td>Omega-3 supplementation slowed the rate of renal loss</td>
</tr>
<tr>
<td>Hayakawa19</td>
<td>206</td>
<td>Stable angina pectoris</td>
<td>Observational</td>
<td>Plasma</td>
<td>Complex coronary lesions associated with lower plasma EPA/AA</td>
</tr>
<tr>
<td>Hogg20</td>
<td>96</td>
<td>IgA nephropathy</td>
<td>Randomized, double-blind 12-mo trial</td>
<td>Plasma</td>
<td>Superiority of omega-3 fatty acids over placebo in slowing progression of renal disease</td>
</tr>
<tr>
<td>Itakura4</td>
<td>16397</td>
<td>TC >250 mg/dL</td>
<td>JELIS. Low-dose statin, then randomized to omega-3 or not.</td>
<td>Plasma</td>
<td>Coronary event risk reduced when plasma EPA >150 μg/mL or EPA/AA >0.75</td>
</tr>
<tr>
<td>Khaw21</td>
<td>3841</td>
<td>EPIC-Norfolk</td>
<td>Nested case control</td>
<td>Plasma</td>
<td>Omega-3 plasma fatty acids inversely related to CHD but no longer significant after multivariate adjustment</td>
</tr>
<tr>
<td>Laidlaw22</td>
<td>31</td>
<td>Healthy women</td>
<td>Randomized trial</td>
<td>Serum</td>
<td>4 g EPA+DHA per day increased omega-3 fatty acids 5.6% to 14.4% fatty acids by weight and the EPA/AA from 0.12 to 0.88</td>
</tr>
<tr>
<td>Lockyer23</td>
<td>100</td>
<td>Free living</td>
<td>Genetic diet and supplement intervention study</td>
<td>Plasma</td>
<td>Increase in EPA but no difference based on ApoE genotype</td>
</tr>
<tr>
<td>Lindberg24</td>
<td>254</td>
<td>Acutely ill elderly</td>
<td>Follow-up study</td>
<td>Plasma</td>
<td>Mortality higher in patients with EPA in lowest quartile</td>
</tr>
<tr>
<td>Matsuzaki25</td>
<td>3664</td>
<td>MI, AP, or PCI with LDL-C >170 mg/dL</td>
<td>JELIS. Low-dose statin, then randomized to omega-3 or not.</td>
<td>Plasma</td>
<td>Cardiac death or MI was significantly lower in the group with the highest EPA/AA ratio vs the lowest ratio</td>
</tr>
<tr>
<td>Moyers26</td>
<td>992</td>
<td>VA hospital</td>
<td>Observational Heart & Soul Study</td>
<td>Whole blood</td>
<td>EPA+DHA associated with exercise capacity and HR recovery</td>
</tr>
<tr>
<td>Mozaffarian27</td>
<td>2692</td>
<td>Older healthy</td>
<td>Prospective cohort</td>
<td>Plasma</td>
<td>Omega-3 fatty acids associated with fewer CV events</td>
</tr>
<tr>
<td>Nigam28</td>
<td>734</td>
<td>Acute coronary syndrome</td>
<td>Observational</td>
<td>Plasma</td>
<td>Metabolic syndrome patients had lower EPA and DHA levels vs those without the metabolic syndrome</td>
</tr>
<tr>
<td>Poppitt29</td>
<td>95</td>
<td>Ischemic stroke patients</td>
<td>Randomized, double-blind trial omega-3 and CVD and mood</td>
<td>Serum</td>
<td>Following a 30% increase in omega-3 fatty acids for 12 wk, no effect was seen</td>
</tr>
<tr>
<td>Porttala29</td>
<td>956</td>
<td>CHD in older men, Heart & Soul Study</td>
<td>Observational</td>
<td>Blood</td>
<td>EPA+DHA <3.6% revealed greater mortality P<002</td>
</tr>
<tr>
<td>Raatz20</td>
<td>10</td>
<td>Healthy adults</td>
<td>Randomized, crossover 48-h absorption study</td>
<td>Plasma</td>
<td>Emulsified fish oil had enhanced absorption compared with capsular fish oil</td>
</tr>
<tr>
<td>Rupp27</td>
<td>11</td>
<td>Healthy</td>
<td>Dosing study</td>
<td>Whole blood</td>
<td>EPA 0.6% to 1.4% within 10 days, DHA 2.9% to >4.3%, after withdrawal returned to baseline in 10 days</td>
</tr>
<tr>
<td>Schaeffer23</td>
<td>727</td>
<td>German Health Survey</td>
<td>Genetic study</td>
<td>Serum</td>
<td>FADS polymorphisms associated with AA, EPA, and DPA</td>
</tr>
<tr>
<td>Shintani24</td>
<td>43</td>
<td>JELIS CAD patients with angiography</td>
<td>Abstract 2012 ACC Randomized to EPA or etezimibe</td>
<td>Blood</td>
<td>Reduction in soft plaque when EPA/AA increased from 0.40 to 1.34</td>
</tr>
<tr>
<td>Simon35</td>
<td>188</td>
<td>Multiple Risk Factor</td>
<td>Nested case control</td>
<td>Serum</td>
<td>DPA inversely associated with CHD risk</td>
</tr>
<tr>
<td>Vedin26</td>
<td>16</td>
<td>Alzheimer’s disease patients</td>
<td>Genetic study</td>
<td>Plasma</td>
<td>Omega-3 supplementation affects expression of genes influencing inflammation.</td>
</tr>
</tbody>
</table>

(Continued)
involved 31 healthy subjects who were supplemented with 4 g/d EPA+DHA and mean (±SD) plasma levels of EPA increased from 1.12±0.37% to 6.36±1.47%, and plasma levels of DHA increased from 3.41±0.71% to 6.37±0.62%. If the response is normally distributed, this implies that ≈68% of the subjects would increase the EPA to a range of 4.89% to 7.83% with 16% of the subjects <4.89% and 16% of the subjects >7.83%.

Another short-term 10-day study in 11 subjects fed a lower, and more common clinical dose of 1 g/d EPA, revealed that the blood EPA level increased from approximately 0.6±0.4% to 1.4±0.5% of total fatty acids. The total EPA+DHA blood levels increased from a mean of 3.6% to 5.4%, but ≈16% would have achieved an EPA+DHA blood level <4.8%. Rupp et al have suggested that an EPA+DHA level >3.5% is the range in which sudden coronary death reduction can be observed and a dramatic reduction when EPA+DHA > 5% is achieved. These studies indicated that individual variability in baseline blood levels could leave a substantial number of patients at elevated CHD risk because of failure to achieve a therapeutic blood level.

Intermediate to Long-Term Studies
Longer-term studies range from 2 months to 4 years. In response to a diet supplemented with 6 g/d DHA-enriched fish oil capsule for 8 weeks, DHA rose from ≈4% of total fatty acids to 8.3% with a SD of 4.4%. The effect of 1, 2, and 4 g/d n-3 polyunsaturated fatty acid (PUFA) ethyl esters was reported in 36 healthy individuals treated for 12 weeks. Plasma n-3 PUFA increased from a mean 5.06 mol% to 10.40±1.70 in the 1 g/d group, 5.77 mol% to 12.11±2.15 in the 2 g/d group, and 5.54 mol% to 16.15±2.08 in the 4 g/d group. The investigators noted individual variability in baseline DHA levels that varied between 1.0 and 6.3 mol%. This study was unique in that blood levels were assessed after 4 weeks of supplement wash out, at which time blood levels had returned close to baseline values.

Intermediate-term studies have been reported in populations with immunoglobulin A nephropathy, ischemic stroke, and Alzheimer’s disease. In patients with immunoglobulin A nephropathy, 2 years of treatment with either 3.35 g/d total omega-3 fatty acids increased EPA from 0.8±0.5% to 3.1±1.3% after treatment and increased DHA from 3.7±1.6% to 6.5±1.3%. Treatment with 6.70 g/d total omega-3 fatty acids increased EPA from 0.9±0.6% to 5.2±1.8% and DHA from 3.5±1.4% to 7.1±1.6%. Patients with Alzheimer’s disease treated with a lower dose of 2.3 g/d total omega-3 fatty acids increased DHA from ≈4.7±1.8% to 8.1±2.0% after treatment. Finally, in stroke patients treated with a more common clinical dose of 1.2 g/d total omega-3 fatty acids, EPA increased from 1.24±0.91% to 1.63±0.72%, DHA increased from 3.90±1.12% to 5.29±1.31%, and compliance was reported to be 90%. The wide range of blood levels in these studies reflects the substantial individual variability in response to a fixed dose.
EPA/AA Ratio as Therapeutic Goal

The blood EPA/AA ratio may be a clinically relevant measurement and also has substantial individual variability (Figure 3). An EPA/AA ratio >0.75 has been associated with a significantly lower number of major coronary events in a Japanese population.5 In the 28-day dosing investigation noted above, the mean EPA/AA ratio increased from ≈0.12 to 0.922. Approximately 68% of the subjects would obtain an EPA/AA between 0.78 and 1.02, whereas 16% would be <0.78. Even with 4 g/d omega-3 supplementation, ≈16% of subjects would not have achieved the putative EPA/AA goal.5 In patients with immunoglobulin A nephropathy, treated with 4 gm/d fish oil, the mean EPA/AA increased from ≈0.09±0.07 to 0.45±0.40 with a wide range of individual variability.17,18,20 In coronary artery disease (CAD) patients treated with 1.8 g/d EPA, the EPA/AA ratio increased from a mean of 0.40±0.20 to 1.34±0.34 (P<0.001).34 Finally, in the 4-year Japanese EPA Lipid Intervention Study (JELIS), consumption of 1.8 g/d EPA resulted in an EPA/AA ratio increase from ≈0.6 to 1.3 with a SD of 0.325. These reports indicate that a large segment of the population treated with 2 to 4 g/d fish oil would not achieve the reputedly beneficial goal of EPA/AA >0.75.

Genetic Polymorphisms

Genetic polymorphisms may help to explain part of the observed individual variability in blood levels. Three single-nucleotide polymorphisms in the FADS1 FADS2 gene cluster are related to PUFA proportions in plasma phospholipids.44 The d-5 and d-6 desaturases, encoded by FADS1 and FADS2 genes, are key enzymes in PUFA metabolism. The C allele of rs174546, in the FADS gene cluster, appears to be associated with high total and high-density lipoprotein cholesterol in subjects with a high dietary intake of n-6 PUFA but not in those with low intake.45 In subjects with and without CAD carrying FADS haplotypes, the number of FADS risk alleles appears to be related to CAD risk.46 Depending on genetic variants, requirements of dietary PUFA intake to achieve comparable biological effects may differ. The consumption of omega-3 fatty acids may also affect the expression of genes that influence inflammatory processes and play a role in CAD risk such as the anaphase-promoting complex subunit 5 (ANAPC5) and Ras homolog gene family member B (RHOB).

The impact of genetic polymorphisms in the cytochrome P450 system may also have clinical relevance for omega-3 fatty acids in the setting of dual-antiplatelet therapy. The OMEGA-PCI study investigated the effect of adding 1 g of omega-3 ethyl esters in patients treated with aspirin and clopidogrel.47 The investigators reported that the addition of the omega-3 ethyl ester significantly reduced maximal platelet aggregation by 13.3% (P=0.026). Upon further evaluation, at least 1 loss-of-function variant of CYP2C19*2 was found in 30% of the patients, and, in these patients, maximal platelet aggregation was reduced by 21.4% (P=0.006). There was no difference in platelet aggregation in patients with the 1*/1* variant.

Clinical Implications of Blood Omega-3 Plasma Values

There are at least 3 plasma or blood omega-3 values that appear to have clinical utility in predicting CVD risk or benefit. Values can be reported as an absolute amount in micrograms per milliliter, as a percentage of total fatty acids, or as a ratio such as EPA/AA. Uncertainty remains as to which value is the most clinically relevant for what type of patient, or disorder. This issue is complicated by the fact that various clinical trials have used different populations with different dietary habits, different proportions of omega-3 fatty acid supplements, different doses, and different time lengths of treatment.
Primary Prevention

Determination of omega-3 blood levels appears to help identify high-risk groups in a primary prevention population (Table 2). In the Kuopio Ischaemic Heart Disease Risk Factor study, among the n-3 fatty acids, DHA was most strongly associated with a reduced risk of sudden cardiac death.4 In a Japanese population (n=15534), fish oil supplementation (1.8 g/d) did not significantly reduce events in primary prevention patients.46 However, in the subgroup that achieved plasma EPA concentration >135 µg/mL and an EPA/AA ratio > 0.75, a significant reduction in major coronary events was observed.5 The investigators suggested an EPA >150 µg/mL and EPA/AA ratio >0.75 as clinical goals for reduced cardiovascular risk in primary prevention. In the Physician Health Study higher blood levels of EPA+DHA+docosapentaenoic acid was associated with a significant reduction (P=0.007) in sudden death from cardiac causes after adjustment for confounders.14 The lowest quartile of EPA+DHA (<3.45%) indicated high risk, the second quartile (3.46%–4.16%) indicated a 45% reduction in risk, the third quartile (4.17%–4.98%) indicated a 72% reduction in risk, and the fourth quartile (>4.98%) indicated a 81% reduction in risk (EPA+DHA data by communication with the authors). The EPIC-Norfolk prospective study reported that, of the fish oil fatty acids, docosapentaenoic acid was significantly inversely associated with CHD (odds ratio, 0.72; P=0.0001).21 In an older primary prevention population study of 2692 individuals, and 30829 person-years, higher plasma levels of omega-3 fatty acids were associated with significantly fewer total and cardiovascular deaths, and individuals in the highest quintile lived an average of 2.2 years more after the age of 65 years.7 Of the fatty acids, DHA was most strongly associated with fatal CHD and arrhythmic CHD death, illustrating the complexity of fatty acid type and relationship to cardiovascular disease. This study is also of relevance because few other studies have revealed a beneficial effect on mortality in an older population that is related to dietary variables.

Secondary Prevention and Peripheral Vascular Disease

Once CAD is diagnosed, measures of future CVD risk have important prognostic implications. Lower levels of n-3 fatty acids in coronary artery phospholipids have been associated with autopsy-documented CAD.49 The Alpha Omega Trial reported that a margarine supplemented with 400 mg/d EPA+DHA had no effect on cardiovascular end points in patients with a myocardial infarction history but did not report blood levels.50 The UCSF Heart and Soul prospective study, conducted in CHD patients, revealed that EPA+DHA levels >3.6% of total fatty acids were significantly associated with reduced all-cause mortality over 5.9 years.30 Similarly, in Korean acute myocardial infarction patients, an EPA+DHA >4.74% was associated with reduced all-cause and CVD mortality, and a low EPA (<1.26%) was associated with high risk.51 In JELIS, CHD patients an EPA/AA ratios >1.06 was associated with the lowest cardiac death or myocardial infarction rates, and major coronary events were significantly reduced with EPA treatment (P=0.048).25,48 In the peripheral artery disease population, EPA supplementation reduced major coronary events 55% in comparison with 18% in the non–peripheral artery disease group, and the number needed to treat was 11 with the blood level of EPA increasing from a mean of 2.8 to 5.6 mol%.52 Table 3 summarizes fatty acid ranges reported to be associated with risk in secondary prevention populations.

Arteriographically Defined CAD

In postmenopausal CAD women, DHA levels above the median (2.50 mol%) revealed significantly (P=0.009) less

<table>
<thead>
<tr>
<th>Fatty Acid</th>
<th>Range</th>
<th>Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPA</td>
<td>>150 µg/mL</td>
<td>Lower risk (suggested goal)</td>
</tr>
<tr>
<td>DHA</td>
<td><1.0%</td>
<td>Highest IMT thickness in US whites</td>
</tr>
<tr>
<td></td>
<td><4.0%</td>
<td>Highest IMT thickness in Japanese</td>
</tr>
<tr>
<td></td>
<td>>2.66%</td>
<td>Reduced SCD risk</td>
</tr>
<tr>
<td></td>
<td>>2.85%</td>
<td>Reduced AF risk</td>
</tr>
<tr>
<td></td>
<td>>3.54%</td>
<td>Reduced AF risk</td>
</tr>
<tr>
<td>EPA+DHA</td>
<td><3.45%</td>
<td>High risk (lowest quartile)</td>
</tr>
<tr>
<td></td>
<td>>12.3%</td>
<td>Less coronary calcium in Japanese living in Japan</td>
</tr>
<tr>
<td></td>
<td>>6.49%</td>
<td>Less coronary calcium in Japanese Americans</td>
</tr>
<tr>
<td></td>
<td>>5.23%</td>
<td>Less coronary calcium in whites</td>
</tr>
<tr>
<td></td>
<td>4.35%</td>
<td>Achieving EPA+DHA level did not prevent post-CABG surgery AF</td>
</tr>
<tr>
<td>EPA/AA</td>
<td>>0.75</td>
<td>Lower risk of MCE (suggested goal)</td>
</tr>
</tbody>
</table>

AA indicates arachidonic acid; AF, atrial fibrillation; CABG, coronary artery bypass grafting; DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; IMT, intima-media thickness; MCE, major coronary event; and SCD, sudden cardiac death.

<table>
<thead>
<tr>
<th>Fatty Acid</th>
<th>Range</th>
<th>Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPA</td>
<td><1.26%</td>
<td>High risk</td>
</tr>
<tr>
<td>Hayakawa19</td>
<td>>111 µg/mL</td>
<td>Least complex coronary lesions</td>
</tr>
<tr>
<td>Ishikawa25</td>
<td>5.6%</td>
<td>Mean EPA% in treatment group and associated with reduced MCE.</td>
</tr>
<tr>
<td>EPA+DHA</td>
<td>>3.6%</td>
<td>Reduced all-cause mortality</td>
</tr>
<tr>
<td>Lee21</td>
<td>>4.74%</td>
<td>Reduced all cause and CVD mortality</td>
</tr>
<tr>
<td>EPA/AA</td>
<td>>0.88</td>
<td>Least complex coronary lesions</td>
</tr>
<tr>
<td>Matsuzaki25</td>
<td>>1.06</td>
<td>Lowest cardiac death or MI</td>
</tr>
</tbody>
</table>

AA indicates arachidonic acid; CVD, cardiovascular disease; DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; MCE, major coronary event; and MI, myocardial infarction.
Atrial Fibrillation

Studies have assessed the association of omega-3 fatty acids with incident atrial fibrillation (AF) by estimating dietary intake without determining the actual blood levels, and mixed results have been reported.55-57

The Kuopio Ischemic Heart Disease Study assessed blood levels of omega-3 fatty acids in 2174 men for 17.7 years and reported that the highest blood levels of DHA+EPA+DPA were associated with a 50% lower risk of AF (P=0.02), and DHA was responsible for this effect.38 This observation was confirmed in the Cardiovascular Health Study in 3326 US men and women aged over 65 years who were initially free of AF or heart failure and followed for 14 years and were not taking fish oil supplements.39 In these older healthy individuals, a DHA level in the 4th quartile was associated with a significant 23% reduction in AF risk. These 2 studies suggest that it is the specific type of omega-3 fatty acid (DHA) that is associated with reduced AF risk.

Omega-3 fatty acids may be relevant for post–heart surgery AF. Early studies suggested that omega-3 supplementation may have reduced postoperative AF.58,59 Recent investigations have reported no significant effect of 1 to 6 g/d fish oil several days before surgery, continuing postsurgery for 7 to 10 days, and achieving a mean EPA+DHA of 4.35%.43,60,61 This suggests that supplementation around the time of heart surgery does not significantly reduce postoperative AF.

Coronary Calcification

The Rotterdam Study reported that fish consumption was correlated with coronary calcium scores.62 In the Honolulu Heart Study, Japanese living in Japan had 2-fold higher blood levels of omega-3 fatty acids than both whites living in Pennsylvania and Japanese Americans living in Honolulu.63 The prevalence of coronary artery calcium in Japanese living in Japan was 9.3%, in whites it was 26.1%, and in Japanese Americans it was 31.4%. The highest median EPA+DHA% was associated with the lowest coronary artery calcium prevalence. Although significant differences in coronary artery calcium prevalence between Japanese in Japan and whites was present, these differences became nonsignificant after adjusting for serum omega-3 fatty acid levels.

Carotid Intima-Media Thickness

Estimates of dietary intake of omega-3 fatty acids and nonfried fish have been reported to be inversely related to subclinical atherosclerosis as assessed by carotid intima-media thickness (CIMT) (odds ratio, 0.69; P<0.01).63 Plasma measurements of omega-3 fatty acids in a cross-sectional study of 487 Swedish men 61 years of age reported that plasma levels of EPA, but not DHA, were inversely associated with carotid and femoral intima-media thickness.64

Ethnicity and environment may impact the relevance of omega-3 fatty acid measurements and CIMT. In a study comparing randomly selected Japanese men living in Japan and white American men living in the United States, CIMT correlated with DHA (P=0.032) but not EPA.65 The Japanese men had 2-fold higher levels of DHA and EPA in comparison with white Americans, but only DHA levels revealed an inverse association with CIMT in both Japanese and white men. In Spanish dyslipidemic patients, the observation of a significant inverse relationship between DHA and CIMT was confirmed.66

Conclusions

This review evaluated the evidence studying the relationship between blood levels of omega-3 fatty acids and CVD risk. Individual blood level response to omega-3 oral doses demonstrated significant variability. Study results demonstrated beneficial effects of omega-3 supplementation on CVD risk that appears to be concentrated in subjects who achieved the highest blood levels. This suggests that conclusions regarding the benefit of omega-3 fatty acids, based on studies that did not assess blood levels, may be confusing and misleading because of the inclusion of subjects who did not achieve a therapeutic blood level. For example, in the JELIS investigation, the risk of major coronary events was significantly decreased in the group with high (>150 μg/mL) on-treatment plasma EPA levels, but 39% of subjects did not achieve that level despite 1800 mg/d EPA supplementation.5

The clinical significance of this information is that (1) there are physiological and genetic reasons for individual variability in blood levels achieved following a fixed dose of fish oil, (2) evidence exists supportive of the concept that the higher the blood level, the greater the effect on atherosclerosis and, owing to individual variability, the blood levels of omega-3 fatty acids may be better markers of CVD risk/benefit than simple assignment to a fixed dose of omega-3 supplementation, and (3) inclusion of subjects achieving less than therapeutic blood levels may have diluted the beneficial effect of omega-3 supplementation on clinical end points. In primary prevention patients, the JELIS study suggests an EPA blood level >133 μg/mL or an EPA/AA ratio >0.75 is most protective (Table 2). In the United States, the Physician Health Study suggests an omega-3 index (EPA+DHA) > 4.17% reflects a 72% reduction in CVD risk.54 The clinical implications in secondary prevention include the UCSF Heart and Soul study that reported an omega-3 index >3.6% is associated with reduced all-cause mortality; in Korean acute myocardial infarction patients an omega-3 index > 4.74% was associated with reduced all cause and CVD mortality; and in Japanese patients, an EPA/AA ratio >1.06 is associated with the lowest
cardiac death or myocardial infarction rates (Table 3). Determination of blood omega-3 levels may help guide the appropriate use of dietary fish or omega-3 supplements in a personalized heart disease prevention strategy.

Disclosures
Dr Superko is Chief Medical Officer of Celera, a gene discovery company and part of Quest Diagnostics that provides an omega-3 fatty acid blood test. The other authors report no conflicts.

References

Downloaded from http://circ.ahajournals.org/ by guest on June 13, 2017
Omega-3 Fatty Acid Blood Levels: Clinical Significance and Controversy
H. Robert Superko, Scott M. Superko, Khurram Nasir, Arthur Agatston and Brenda C. Garrett

Circulation. 2013;128:2154-2161
doi: 10.1161/CIRCULATIONAHA.113.002731
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2013 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/128/19/2154

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/