A 66-year-old white man presented to the emergency department with a 4-day history of progressive dyspnea, cough, and hemoptysis. The patient was known to have mitral valve prolapse confirmed by transthoracic echocardiogram, performed 9 months before his present admission. The transthoracic echocardiogram had shown a myxomatous mitral valve with prolapse of the P2 scallop and severe eccentric mitral regurgitation (MR) that was anteriorly directed. The mitral regurgitant fraction using the volumetric method was 69%. The left ventricular (LV) end diastolic dimension was 4.8 cm, and the LV end systolic dimension was 3.3 cm, both within normal limits. The LV systolic function was normal with ejection fraction (modified Simpson’s rule) of 58%. The right ventricular dimensions were normal (apical 4-chamber view: long axis, 7.2 cm; midshort axis, 2.2 cm; inflow short axis, 2.5 cm). The right ventricular systolic function was normal. The peak pulmonary artery systolic pressure was 46 mm Hg.

On examination, he was hypotensive (blood pressure, 96/61 mm Hg), tachycardic (heart rate, 122 beats per minute), and in respiratory distress (36 breaths per minute with oxygen saturation of 86% on room air and 98% on facemask). Cardiovascular examination was remarkable for grade 5 of inspiratory rales. There were two MR jets: a central valvular jet and an eccentric jet through the perforation at the base of anterior leaflet (Figure 2; see Movie I and II in the online-only Data Supplement). There were two MR jets: a central valvular jet and an eccentric jet through the perforation at the base of anterior leaflet (Figure 2; see Movie I and II in the online-only Data Supplement). A small mobile mass was seen on 2-dimensional transesophageal echocardiogram on the atrial side of the anterior leaflet, which was suggestive of a vegetation (see Movies VI and VII in the online-only Data Supplement). There were two MR jets: a central valvular jet and an eccentric jet through the perforation at the base of anterior leaflet (Movie VIII in the online-only Data Supplement). Two sets of blood cultures, 48 hours apart, grew coagulase negative Staphylococcus lugdunensis (S. lugdunensis). Skin biopsy done on admission confirmed leukocytoclastic vasculitis. Cardiothoracic surgery was consulted, and the patient was taken to the operating room. The echocardiographic findings were confirmed on direct visualization showing the flail P2 segment and an acute large perforation of the anterior leaflet (Figure 4B). A 33-mm Epic tissue bioprosthesis was placed in the mitral position. Microscopic examination of valve tissue revealed a vegetation (Figure 3; see Movie V in the online-only Data Supplement).

Transesophageal echocardiogram with 2 dimensions and real-time 3 dimensions was done next. It showed severe prolapse of the posterior leaflet with a partially flail P2 segment (see Movie V in the online-only Data Supplement). A perforation was seen at the base of the A2 segment of anterior mitral leaflet (Figure 4A; Movie V in the online-only Data Supplement). A small mobile mass was visualized on 2-dimensional transesophageal echocardiogram on the atrial side of the anterior edge of the perforation, which was suggestive of a vegetation (see Movies VI and VII in the online-only Data Supplement). There were two MR jets: a central valvular jet and an eccentric jet through the perforation at the base of anterior leaflet (Movie VIII in the online-only Data Supplement). Two sets of blood cultures, 48 hours apart, grew coagulase negative Staphylococcus lugdunensis (S. lugdunensis). Skin biopsy done on admission confirmed leukocytoclastic vasculitis. Cardiothoracic surgery was consulted, and the patient was taken to the operating room. The echocardiographic findings were confirmed on direct visualization showing the flail P2 segment and an acute large perforation of the anterior leaflet (Figure 4B). A 33-mm Epic tissue bioprosthesis was placed in the mitral position. Microscopic examination of valve tissue revealed a vegetation (Figure 3; see Movie V in the online-only Data Supplement).

Correspondence to Masood Ahmad, MD, Division of Cardiology, University of Texas Medical Branch, 301 University Blvd, JSA 5.106G, Galveston, TX 77555-0553. E-mail mahmad@utmb.edu

(Circulation. 2013;128:e204-e206.)

© 2013 American Heart Association, Inc.

Circulation is available at http://circ.ahajournals.org

DOI: 10.1161/CIRCULATIONAHA.113.002928
revealed severe acute inflammation with fibrinous exudates and bacterial colonies consistent with acute bacterial endocarditis (Figure 5). Tissue culture also grew *S. lugdunensis*. The patient had an uneventful postoperative course and was discharged on a 4-week regimen of intravenous vancomycin and oral rifampicin.

S. lugdunensis is a coagulase negative staphylococcus that colonizes the skin often below the waistline. Invasive infections have a virulent course comparable with *Staphylococcus aureus* with extensive tissue destruction and are often fatal without surgical intervention. It has been implicated in causing endocarditis of both native and prosthetic valves. *S. lugdunensis*-related endocarditis has been reported after procedures in inguinal area, and combined medical and surgical treatment is often recommended. Our patient had a history of mitral valve prolapse with significant MR and underwent transrectal prostate biopsy a few weeks before presentation. The patient was not on antibiotic prophylaxis previously and did not receive any antibiotics before the biopsy. This practice is consistent with current clinical guidelines that do not recommend antibiotic prophylaxis in patients with mitral valve prolapse, regardless of the presence of leaflet thickening or MR.

To our knowledge, this is the first reported case of histologically and microbiologically confirmed *S. lugdunensis* endocarditis in a patient with significant mitral valve prolapse that probably got seeded after transrectal prostate biopsy. Using transesophageal echocardiogram with real-time 3 dimensions, we were able to accurately visualize the partially flail P2 segment and perforation in the anterior leaflet along with the central and eccentric regurgitation jets. These findings were confirmed intraoperatively. Transesophageal echocardiogram with real-time 3 dimensions is an important tool to accurately visualize valvular structural abnormalities that can help surgeons plan procedures in advance. Additional investigations are needed to determine whether this approach will improve surgical planning and patient outcomes.

Disclosures

None.

References

Figure 2. A. Transthoracic echocardiogram (parasternal long axis view) showing myxomatous mitral valve with thickened leaflets. The posterior leaflet is flail, and there is a perforation of the anterior mitral valve leaflet measuring 0.8 cm in diameter (white arrowhead). **B.** Color Doppler showing severe eccentric mitral regurgitation through the perforation in the anterior leaflet (white arrowhead).
Figure 3. A, Transthoracic echocardiogram (parasternal long axis close-up view of the mitral valve). B, Transthoracic echocardiogram (subcostal view) showing a mass (arrowhead) on the atrial side of the anterior edge of the perforation (asterisk). The severely prolapsed P2 segment of posterior leaflet can also be seen (arrow). LA indicates left atrium; and LV, left ventricle.

Figure 4. A, Transesophageal echocardiogram with real-time 3-dimensional surgeon’s view of the mitral valve showing a partially flail P2 scallop and a perforation at the base of the A2 scallop of anterior mitral leaflet (white arrowhead). B, Intraoperative surgeon’s view showing the flail P2 scallop and a large perforation involving the A2 scallop of the anterior leaflet (right-angled surgical clamp going through it).

Figure 5. A, A portion of the chordae tendineae with fibrosis and myxoid degenerative changes. B, Bacterial colonies mixed with fibrin, colonizing the surface and invading the valve leaflet, which demonstrates myxoid degeneration. C, Higher-power view of a bulky vegetation composed of bacterial colonies and fibrin on the surface of valve leaflet with myxoid degeneration. D, Granulation tissue characterized by small vessels, early fibrous tissue proliferation, acute polymorphonuclear, and fibrinous exudate; early granulation tissue indicates a subacute process of ≈10 days to 3 weeks duration.
Echocardiographic, Histopathologic, and Surgical Findings in *Staphylococcus lugdunensis* Mitral Valve Endocarditis After Prostate Biopsy

Faisal A. Arain, Brandie D. Williams, Scott D. Lick, Nahal Boroumand and Masood Ahmad

Circulation. 2013;128:e204-e206
doi: 10.1161/CIRCULATIONAHA.113.002928

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2013 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/128/14/e204

Data Supplement (unedited) at:
http://circ.ahajournals.org/content/suppl/2014/05/27/128.14.e204.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Circulation* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Circulation* is online at:
http://circ.ahajournals.org/subscriptions/
Movie Legend

Movie 1. 2D TTE parasternal long axis view showing myxomatous degeneration of mitral valve with flail posterior leaflet and a perforation in the anterior leaflet. Best viewed with Windows Media Player.

Movie 2. 2D TTE parasternal long axis view showing mitral regurgitation with acceleration proximal to the anterior mitral valve perforation. Best viewed with Windows Media Player.

Movie 3. 2D TTE subcostal view, showing a mobile mass on the atrial side of the mitral valve suggestive of a vegetation. Best viewed with Windows Media Player.

Movie 4. 2D TTE subcostal view with color Doppler showing severe mitral regurgitation. Best viewed with Windows Media Player.

Movie 5. 3D TEE, surgeons view of the mitral valve showing anterior mitral valve perforation and a flail P2 scallop. Best viewed with Windows Media Player.

Movie 6. 2D TEE biplane views (4 and 2 chamber views), showing myxomatous mitral valve with mobile masses on the atrial side, possible vegetations. Best viewed with Windows Media Player.
Movie 7. 2D TEE biplane views (4 and 2 chamber views) with color Doppler showing severe mitral regurgitation. Best viewed with Windows Media Player.

Movie 8. 3D TEE color flow of the mitral valve, showing two regurgitant jets, a central jet through the valve and an eccentric jet through the perforation of the anterior leaflet. Best viewed with Windows Media Player.