Malfunctioning Mitral Valve-in-Valve Bioprosthesis Assessment by 3-Dimensional Transesophageal Echocardiography

Carmen Olmos, MD; Pedro Marcos-Alberca, MD, PhD; Fabián Islas, MD; Dafne Viliani, MD; Carlos Almería, MD, PhD; Enrique Rodríguez, MD, PhD; Carlos Macaya, MD, PhD; Leopoldo Pérez de Isla, MD, PhD

An 85-year-old woman presented to the emergency department with symptoms of acute heart failure. The patient had an extensive cardiac history, including a bioprosthetic mitral valve replacement (Mosaic II, number 2) in 1994 and a transcatheter transapical Edwards SAPIEN THV 23 mitral valve implant within the mitral bioprosthesis (valve-in-valve implantation) in 2010 because of bioprosthetic valve failure.

Physical examination revealed heart failure signs, and blood analysis showed hemolytic anemia with 8 g/dL hemoglobin, low serum haptoglobin, and high levels of lactate dehydrogenase. With clinical suspicion of prosthetic valve hemolysis, a transesophageal echocardiogram was performed.

Two-dimensional echocardiography revealed absence of 1 of the 3 leaflets of the Edwards SAPIEN valve (Figures 1A and 2A, arrows, and Movie I in the online-only Data Supplement), and color Doppler imaging showed severe mitral transvalvular regurgitation, with 2 transvalvular regurgitant jets, 1 of them central and the other 1 eccentric (Figure 1B and Movie II in the online-only Data Supplement).

Three-dimensional echocardiography (view from left atrium) demonstrated the absence of the anterolateral leaflet (Figure 1C, diastole, Figure 1D, systole, arrows, Figure 2, 3-dimensional reconstruction) and also showed restrictive movement of the anteromedial leaflet (see Movie III in the online-only Data Supplement), which was also seen in the 2-dimensional 2-chamber view (Movie IV in the online-only Data Supplement).

It is worth noting that no signs of endocarditis were found and that the patient did not present any embolic event.

Recently, transcatheter valvular techniques have emerged as an alternative in high-risk patients.1 Few patients have been submitted to mitral transcatheter valve-in-valve implantation.2 To the best of our knowledge, this is the first report of a bad outcome as a result of prosthesis dysfunction.

Transcatheter bioprostheses were first designed to be used in aortic position. The higher peak systolic stress in mitral position could explain the complication described here.

Disclosures
None.

References
Figure 1. Transesophageal echocardiogram of the malfunctioning mitral valve-in-valve bioprosthesis. A, Two-dimensional 2-chamber view showing the absence (arrow) of 1 of the leaflets. B, Two-dimensional color Doppler view of the bioprosthesis, showing a big central regurgitant jet and 1 eccentric jet. C, Three-dimensional mitral prosthesis view from the left atrium in diastole. D, Three-dimensional mitral prosthesis view from the left atrium in systole. The arrow indicates the absence of the anterolateral leaflet. CS indicates coronary sinus; IAS, interatrial septum; LA indicates left atrium; LAA, left atrial appendage; LAPW, left atrial posterior wall; and LV, left ventricle.

Figure 2. Three-dimensional full-volume acquisition. Image from 3-dimensional multiplanar reconstruction, showing the 3 dimensions of the mitral valve-in-valve bioprosthesis. A, Coronal axis view. B, Sagittal axis view. C, Axial axis view. D, Three-dimensional mitral prosthesis view from the left atrium. LA indicates left atrium; and LV, left ventricle.
Malfunctioning Mitral Valve-in-Valve Bioprosthesis Assessment by 3-Dimensional Transesophageal Echocardiography
Carmen Olmos, Pedro Marcos-Alberca, Fabián Islas, Dafne Viliani, Carlos Almería, Enrique Rodríguez, Carlos Macaya and Leopoldo Pérez de Isla

*Circulation*. 2013;128:e139-e140
doi: 10.1161/CIRCULATIONAHA.112.000814

*Circulation* is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2013 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/128/10/e139

Data Supplement (unedited) at:
http://circ.ahajournals.org/content/suppl/2014/05/27/128.10.e139.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Circulation* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Circulation* is online at:
http://circ.ahajournals.org//subscriptions/