AHA Scientific Statement

Patient Safety in the Cardiac Operating Room: Human Factors and Teamwork
A Scientific Statement From the American Heart Association

Joyce A. Wahr, MD, FAHA, Co-Chair; Richard L. Prager, MD, FAHA; J.H. Abernathy III, MD; Elizabeth A. Martinez, MD; Eduardo Salas, PhD; Patricia C. Seifert, MSN; Robert C. Groom, CCP; Bruce D. Spiess, MD, FAHA; Bruce E. Searles, MS, CCP; Thoralf M. Sundt III, MD; Juan A. Sanchez, MD; Scott A. Shappell, PhD; Michael H. Culig, MD; Elizabeth H. Lazzara, PhD; David C. Fitzgerald, CCP, FAHA; Vinod H. Thourani, MD; Pirooz Eghtesady, MD, PhD, FAHA; John S. Ikonomidis, MD, PhD, FAHA; Michael R. England, MD; Frank W. Sellke, MD, FAHA; Nancy A. Nussmeier, MD, FAHA, Co-Chair; on behalf of the American Heart Association Council on Cardiovascular Surgery and Anesthesia, Council on Cardiovascular and Stroke Nursing, and Council on Quality of Care and Outcomes Research

The cardiac surgical operating room (OR) is a complex environment in which highly trained subspecialists interact with each other using sophisticated equipment to care for patients with severe cardiac disease and significant comorbidities. Thousands of patient lives have been saved or significantly improved with the advent of modern cardiac surgery. Indeed, both mortality and morbidity for coronary artery bypass surgery have decreased during the past decade (Figure 1). Nonetheless, the highly skilled and dedicated personnel in cardiac ORs are human and will make errors. In 1991, Leape and colleagues estimated that among the 2 million patients hospitalized in New York in 1984, there were 27,179 adverse events that involved negligence; other evidence suggests that up to 16% of hospital inpatients are harmed. Gawande and associates found that the incidence of surgical adverse events was 12% among cardiac surgery patients versus 3% in other surgical patients; 54% of the adverse events were considered preventable. Of the roughly 350,000 to 500,000 patients who undergo cardiac surgery each year, 28,000 will have an adverse event, and one third of deaths associated with coronary artery bypass graft (CABG) operations may be preventable.

Refined techniques, advanced technologies, and enhanced coordination of care have led to significant improvements in cardiac surgery outcomes. However, more than 10 years after the Institute of Medicine report, there is little evidence that much progress has been achieved in reducing or preventing errors. The tools to measure potential risks and interventions to improve patient safety are still in the early stages of development and testing, and funding for patient safety studies remains inadequate. Published studies provide only limited evidence of improved outcomes. Furthermore, much of the existing research is, by necessity, qualitative and descriptive and thus does not lend itself to traditional quantitative statistical analysis. Therefore, many clinicians are not conversant with such research.

Preventable errors are often not related to failure of technical skill, training, or knowledge but represent cognitive, system, or teamwork failures (Figure 2). Nontechnical skills such as communication, cooperation, coordination, and leadership are critical components of teamwork, but limited interpersonal skills often underlie adverse events and errors. In a review of litigated surgical outcomes, communication

The American Heart Association makes every effort to avoid any actual or potential conflicts of interest that may arise as a result of an outside relationship or a personal, professional, or business interest of a member of the writing panel. Specifically, all members of the writing group are required to complete and submit a Disclosure Questionnaire showing all such relationships that might be perceived as real or potential conflicts of interest.

This statement was approved by the American Heart Association Science Advisory and Coordinating Committee on June 6, 2013. A copy of the document is available at http://my.americanheart.org/statements by selecting either the “By Topic” link or the “By Publication Date” link. To purchase additional reprints, call 843-216-2533 or e-mail kelle.ramsay@wolterskluwer.com.

Expert peer review of AHA Scientific Statements is conducted by the AHA Office of Science Operations. For more on AHA statements and guidelines development, visit http://my.americanheart.org/statements and select the “Policies and Development” link.

Permissions: Multiple copies, modification, alteration, enhancement, and/or distribution of this document are not permitted without the express permission of the American Heart Association. Instructions for obtaining permission are located at http://www.heart.org/HEARTORG/General/Copyright-Permission-Guidelines_UCM_300404_Article.jsp. A link to the “Copyright Permissions Request Form” appears on the right side of the page.

Circulation is available at http://circ.ahajournals.org

DOI: 10.1161/CIR.0b013e3182a38efa
failures accounted for 87% of the system failures that led to an indemnity payment. The communication failures occurred primarily between caregivers, rather than between caregiver and patient.

Breakdowns in teamwork that lead to surgical flow or operative disruptions are exceedingly common, having been noted at a rate of 17.4 per hour in one cardiac surgery study and at 11 per case in another. Importantly, such disruptions add up, leading to technical errors and adverse patient outcomes. The majority of flow disruptions are related to teamwork failures, and these disruptions have been shown to be strongly predictive of surgical errors.

Even minor events in cardiac surgical procedures, that is, those not expected to affect outcome, reduce the team’s ability

Figure 1. Change in mortality and stroke rates in patients undergoing isolated coronary artery bypass graft (CABG) surgery, 2000 to 2009. There was a 24.4% and 26.4% reduction in the unadjusted observed operative mortality (2.4% vs 1.9%) and stroke rates (1.6% vs 1.2%), respectively, during the course of the study period. Reprinted from ElBardissi et al with permission from Elsevier. Copyright © 2012, The American Association for Thoracic Surgery.

Figure 2. Accident model. Active and latent failures in healthcare organizations, hospital management, and individual human error can all contribute to adverse events during high-risk procedures. Reprinted from Carthey et al with permission from Elsevier. Copyright © 2001, The Society of Thoracic Surgeons.
to recover from major events and appear significantly associated with both death and near misses. In one study, for every 3 minor problems above the mean of 9.9 per case, intraoperative performance was measurably reduced and operative duration increased. The accumulation of minor disruptions and events apparently reduced the ability of the cardiac team to compensate for major errors, in short, “little things matter.”

Surgical team members vary in their awareness of their own and their colleagues’ teamwork skills. In multiple studies, self-assessment of communication and teamwork skills by surgeons and anesthesiologists is disturbingly discordant with the opinions of their associated nursing and perfusion staff. Surgeons rated the teamwork of other surgeons as high/very high 85% of the time, but nurses rated their collaboration with surgeons as high/very high only 48% of the time. Objective assessment of teamwork skill reveals differences between skill level of team members and can indicate opportunity for education and training.

The present scientific statement includes data regarding many teamwork skills but focuses on communication. Communication failures were the leading root cause of 65% of sentinel events reported by The Joint Commission between 2004 and 2012 and were a leading contributor to errors in medications, wrong-site procedures, and operative and postoperative events. In one cardiac surgery study, teamwork failures occurred frequently (5.4 per case with familiar teams and 15.4 per case with unfamiliar teams); communication issues were the primary cause of these teamwork failures (89%).

The American Heart Association commissioned this scientific statement to summarize the evidence regarding risks to patient safety and clarify interventions to reduce perioperative risks and human error in cardiac surgery. A comprehensive review of all potential risks to patient safety and tested interventions would be voluminous and could include wide-ranging topics such as surgical techniques (mammary arteries in CABG surgery), various cardiopulmonary bypass (CPB) strategies, or techniques to reduce infection or retained objects. We have chosen to focus primarily on those human, environmental, and cultural factors that affect teamwork, particularly how cardiac surgery teams communicate within the OR and with other unit teams. The statement is organized to describe current knowledge about communication within and between teams, the physical work environment and how it influences teamwork (space, equipment, and ergonomics), and the organizational culture (safety climate and quality improvement [QI]) of the cardiac OR.

Our process was to focus on studies in the cardiac surgical environment regarding teamwork, but we did draw on other literature as needed to present critical concepts that were specifically lacking in the cardiac surgical literature. Although many cardiac surgery studies identify communication as a significant source of error, discussion of the concepts that underlie effective or defective communication are found primarily in the cognitive psychology literature, and we have included these references in the “Communication and Teamwork” section. Similarly, although our focus is on cardiac surgery, we have included pertinent data from other surgical disciplines. We have attempted to identify the references specific to cardiac surgery, but the reader is encouraged to consult individual references for further information. Because of our focus, we excluded many dynamic areas of research that we hope will be summarized in other scientific statements or similar reviews. Finally, the present scientific statement aims to identify major knowledge gaps and potential areas for further research.

The present scientific statement was coauthored by a writing committee composed of members of the American Heart Association’s Council on Cardiovascular Surgery and Anesthesia, as well as collaborating members of the following nonprofit organizations: the Society of Cardiovascular Anesthesiologists and its FOCUS (Flawless Operative Cardiovascular Unified Systems) initiative (Society of Cardiovascular Anesthesiologists Foundation), the Society of Thoracic Surgeons, the Association of periOperative Registered Nurses, the Human Factors and Ergonomics Society, and the American Society of Extracorporeal Technology. We hope that these data and recommendations will motivate further research to address the challenges of reducing human error and improving patient safety in the cardiac OR. Such research should be widely applicable to all ORs, as well as to interventional cardiology and electrophysiology procedural settings. In particular, we hope that the present scientific statement will encourage similar reviews of patient safety in cardiology catheterization and electrophysiology laboratories, as well as in other interventional settings such as hybrid ORs designed for percutaneous management of valvular lesions, percutaneous assist devices, or stenting of aortic aneurysms.

Assessing Patient Safety

To understand how to improve patient safety, we must understand how researchers have assessed nontechnical skills and their impact. To begin with, we need a common vocabulary; terms for nontechnical skills must be defined to promote reliable comparison of studies and discussion. Second, the effect of specific nontechnical skills on the reduction of human error or on patient safety must be quantified. Third, interventions to improve individual and teamwork nontechnical skills must be designed and tested for efficacy. Fourth, the effect of improved nontechnical skill(s) on error reduction and, hopefully, ultimately on patient outcomes must be studied to demonstrate progress.

Technical skills can be measured objectively (eg, knots tied per minute), but nontechnical skills assessment requires observational and often seemingly subjective assessment by experts. Observational research, although new to many clinicians, has already identified the number, type, and severity of adverse events that occur in the OR. Many team and individual behaviors that are precursors of adverse events, as well as the behaviors associated with surgical excellence, have been identified. Observational research, however, has limitations: Valid results require trained observers, and not all trainees will become expert. In one study, only 32% of all recorded events were captured by both observers, although events that were captured by both were rated equivalently.

Teaching nontechnical skills is particularly challenging given the difficulty in assessing performance and providing feedback. Appropriate attention is paid to assessing the quality of technical skills, but nontechnical skills also require assessment for competency and to identify opportunities for
education. As noted, observational assessment of nontechnical skills requires trained and experienced observers; to date, use of trained observers has primarily been applied in research, not in training or certification of clinical competence. During surgical simulations, a strong correlation is found between the expert’s assessment and the resident surgeon’s self-assessment of technical skills, but the same is not true for nontechnical skills. Senior surgeons’ self-assessments of technical skills highly correlate with that of an observer, but both junior and senior physician surgical trainees (resident and fellows), as well as surgical faculty, all rated themselves higher on their nontechnical skill level than did the expert observers.

Objective observers are also necessary to accurately assess disruptions, errors, communication skills, and the impact of these factors on outcome. Unlike trained observers, OR personnel judged disruptions to affect their colleagues more than themselves; surgeons perceived fewer team disruptions than did other OR team members. Nontechnical skills may need to be explicitly taught, because senior surgeons may or may not demonstrate better teamwork skills than those more junior, particularly in simulated crisis scenarios.

Teamwork Measures
Many nontechnical skill measurement tools have been used (Table 1), but there is no single accepted instrument. Many are designed to measure nontechnical skills within a specific subteam (nurses, surgeons, anesthesiologists), Behavior rating systems must be valid (measure what they purport to measure), reliable (have good intraobserver and interobserver correlation), sensitive (detect differences in behaviors when they exist), and feasible (be easy to implement and be cost-effective).

Five measurement tools, each with its own strengths and weaknesses, have been designed for surgical team and subteam skills: the Observational Teamwork Assessment for Surgery (OTAS), the Oxford Non-technical Skills (NOTECHS), the Non-Technical Skills in Surgery (NOTTS), the Anesthesia Non-Technical Skills (ANTS), and the Scrub Practitioners’ Non-technical Skills (SPLINTS). Of these 5, NOTSS, ANTS, and SPLINT are designed to assess the individual nontechnical skills of surgeons, anesthesiologists, and scrub practitioners respectively, whereas OTAS and NOTECHS are specifically designed to assess team behaviors and skills. The OTAS includes a task checklist and a team behaviors assessment. It has good construct validity (ie, it actually measures what it appears to measure) and strong reliability between expert and novice observers, which indicates that training of observers is required.

The surgical NOTECHS was directly adapted from an aviation NOTECHS scale and measures skills in 4 domains (communication/teamwork, leadership/management, situational awareness/vigilance, and problem solving/decision making); some research teams have added communication/teamwork, leadership/management, situational awareness, problem solving/decision making, and shared leadership-monitoring. The NOTECHS has good reliability between expert and novice observers, has been used to show improvement in nontechnical skills after training, and has been used to show a significant inverse correlation between technical errors and nontechnical score. There is good correlation between the NOTECHS and OTAS scores when used in parallel; both the OTAS and the modified NOTECHS have been found to be construct valid.

Surgical flow disruptions are correlated with adverse events in several studies but are defined differently in each study. Two tools have been proposed, namely, the Surgical Flow Disruption Tool (SFDT) and the Disruptions in Surgery Index (DiSI). Both have strong interrater reliability but have not been tested by other researchers.

Outcome Measures
Poor teamwork and poor nontechnical skills have been shown to adversely affect patient outcomes. Morbidity and mortality are associated with system failures, failures of coordination and communication, reported levels of communication, and teamwork behaviors, unfamiliarity among cardiac surgical team members, and the number of minor events (disruptions) per case. Other studies have linked teamwork quality and behaviors to surrogates such as increased length of operation, number of technical errors in an operation, number of major errors, and stress levels of team members.

The ultimate desired outcome for any safety intervention is reduction in morbidity and mortality. Mortality in cardiac surgery is quite rare; thus, studies have to be very large to achieve adequate power to discern improvement in this measure. Neily and colleagues demonstrated a significant reduction in mortality with teamwork training but included 189,000 procedures at 108 Veterans Affairs hospitals to reveal a treatment effect.

Because the safety climate of an institution correlates with communication errors, several studies have used changes in attitude toward safety or changes in team “emotional climate” as a surrogate of outcome to measure impact; these studies show training in nontechnical skills to be effective.

Summary
1. The nontechnical skills of individuals and teams affect patient safety.
2. OTAS and NOTECHS have proven construct validity and reliability. Training of observers who use these tools in surgical team research and training is required.

Table 1. Teamwork Assessment Tools

<table>
<thead>
<tr>
<th>Tools to Assess Teamwork</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skills Within Team</td>
<td></td>
</tr>
<tr>
<td>OTAS29,33,38–44</td>
<td>Procedural task checklist centered on patient, equipment, and communications tasks ratings</td>
</tr>
<tr>
<td></td>
<td>• Communication</td>
</tr>
<tr>
<td></td>
<td>• Cooperation</td>
</tr>
<tr>
<td></td>
<td>• Coordination</td>
</tr>
<tr>
<td></td>
<td>• Shared leadership</td>
</tr>
<tr>
<td></td>
<td>• Shared monitoring</td>
</tr>
<tr>
<td>NOTECHS15,41–44</td>
<td>Adapted from the aviation NOTECHS scale used in Europe</td>
</tr>
<tr>
<td></td>
<td>• Cooperation/teamwork</td>
</tr>
<tr>
<td></td>
<td>• Leadership/management</td>
</tr>
<tr>
<td></td>
<td>• Situational awareness</td>
</tr>
<tr>
<td></td>
<td>• Problem solving/decision making</td>
</tr>
<tr>
<td></td>
<td>• ± Communication/interaction</td>
</tr>
</tbody>
</table>

NOTECHS indicates Oxford Non-Technical Skills; and OTAS, Observational Teamwork Assessment for Surgery.
Communications and Teamwork

Communication Within Teams

Communication

Communication is “the exchange of information between a sender and a receiver.”71 In the OR, multiple individuals communicate simultaneously. Unfortunately, communication skill has been measured as the worst of 5 aspects of teamwork behavior in the OR29; deficits in patient safety are frequently a product of breakdowns or delays in communication.72,73 Miscommunication can occur when the sender inaccurately encodes a message (eg, by using vague or incomplete language), when the receiver decodes the sent information incorrectly, or when the information is given at the wrong time or received by the wrong individual.72 Communication failures are common72–76 and were the most common cause of problems in a host of studies.16,21–23,58,76 Miscommunication has been implicated as the root cause of error and adverse outcomes in both general and cardiac surgery.13,18,20,22,59,77–80 It is worse when teams are unfamiliar with each other.21 Communication failures in the OR are equally related to timing, content (erroneous or missing data), purpose, and audience (directed to or received by the wrong person).72 Effective communication is open, adaptable, accurate, and concise, and it is more likely to occur in supportive and safe climates.71 Open communication fosters seamless coordinated activities81; adaptable communication shows that team members are aware of and adapt to others’ workloads, and concise communication promotes efficiency.82

The connection between effective communication and improved team performance/outcome has been shown in cockpit crews,83 navy teams,84 and surgical teams.81 A recent meta-analysis provided definitive evidence of the criticality of information sharing for effective team performance.85 Systematic literature reviews indicate that communication is a key feature of successful teams86 and is essential for high-quality patient care.87 Good communication enables and facilitates other fundamental team processes and states, such as coordination, cooperation, cognition, coaching, and conflict resolution.88

Cooperation

Cooperation is a critical element of teamwork as well and captures the feelings, attitudes, and beliefs that drive behavior. Attitudinal components began to be studied after several tragic aviation accidents were attributed to teamwork failures. Recognizing that the lack of teamwork skills (previously considered “nonessential”) created severe consequences, the aviation industry developed and implemented CRM (ie, cockpit or crew resource management) programs to improve teamwork.89

Some of the most studied attitudes include collective efficacy (a collective sense of competence),90,91 team orientation (a preference for and belief in teamwork),92,93 cohesion (a commitment to the team, its task, or both),94,95 and mutual trust (a shared belief that all will contribute to and protect the team).96,97 Although data from cardiac surgical teams are lacking, other studies of dynamic, complex environments have shown that adaptive performance is critical. Psychological safety, team empowerment (the feeling that team members have the authority to control their work and environment), and safety climate are critical.98–101 Empirical research has shown that when teams have high levels of collective efficacy, members exert more effort and take more strategic risks, which leads to better performance and higher satisfaction.102,103 The level of trust within a team affects how much members monitor each other, how committed team members are to the organization, and performance.104–111

Coordination

Coordination also enables the behavioral skills necessary for optimal coordination and team performance.112 Coordination requires effective communication and is essential for successful team performance. It is, essentially, “orchestrating the sequence and timing of interdependent actions.”113 Coordination can be established explicitly with synchronization and awareness or implicitly with covert sequencing and communication.71 Implicit coordination entails a shared understanding of the task, the environment, and individual roles and responsibilities within the team. It allows members to anticipate each other’s actions and needs without explicit communication, which enhances efficiency.114–116 A mutual team understanding allows team members to provide assistance, information, and feedback,71 which allows the team to modify structures and processes without detriment in performance.117 The ability to foresee is imperative for effective teamwork and performance, especially in high-stress situations.71 Without coordinated behaviors, team members cannot ensure that actions and tasks are performed in synchrony without wasted effort.112

For decades, research in the military and aviation has demonstrated that a team’s mutual understanding facilitates coordination and performance.114,115,120,121 Other studies show that teams with and without external pressures exhibit better performance when they have effective and efficient coordinating behaviors.122,123 Within medical teams, explicitly stating the team’s needs and goals or using team familiarity can build coordination skills and allow team members to develop clear expectations and understanding.71 Training in coordination and adaptation, providing information updates, and distributing responsibilities improves coordinating behaviors.115

Cognition

Cognition is a shared understanding that arises from team interactions,124 which improves with repeated interactions.125 Cognition refers to the team’s collective knowledge about the roles, responsibilities, and capabilities of each member.95 The ability to anticipate team members’ needs enhances coordination and communication.126 A common understanding among team members enhances shared awareness of the surroundings, critical for problem solving in dynamic situations.117 Teams lacking in shared understanding have reduced coordination, which leads to poor performance.125,127

Studies of team cognition in aviation and the military, as well as in laboratory studies with students, have shown that
experienced teams and teams familiar with one another have better team cognition (eg, shared mental model) and better outcomes than inexperienced teams.21,60,128--131 Shared knowledge affects team behaviors and performance (reviewed by Mathieu et al115). Shared cognition improves team communication,135--136 learning and self-regulation,128,137--140 and coordination.125--127

Within the medical domain, reflexivity training (ie, guided reflection of strategies used by the team),131,140 cross-training (ie, training on the tasks and duties of other members),126,141 and simulation-based team training142,143 have been discussed as effective interventions to improve team cognition. Improving the understanding shared among team members enhances coordination and performance.

\textbf{Conflict}

Communication is pivotal for conflict resolution. Conflict, defined as discrepancies or incompatibilities among team members,144 can center on tasks, relationships, or processes.145,146 Conflict has been found to occur during the treatment of 50\% to 75\% of hospitalized patients,147,148 and this may be even greater in the OR, where ostensibly equal physician teams share in the care of a single patient.

Conflict can have positive or negative implications.149,150 Task-based conflict improves group performance in the evaluation of nonroutine problems and in group decision making,144 but conflict also results in lower team member satisfaction, commitment,151 cohesion, and effectiveness.145 Unlike task-based conflict, relationship conflict has a profound negative effect on both performance and satisfaction and decreases members’ willingness to remain part of the group.151--153

In the OR, conflicts are often poorly managed through avoidance, yielding, or competition, when collaboration and compromise would yield a better outcome.154 Collaboration and compromise are particularly difficult when there is status asymmetry, whereby one member has greater power or seniority, such as physicians with nurses or an attending physician with residents.147,155 Among OR personnel, 73\% opined that disagreements in the OR are resolved appropriately, but 29\% stated they would have trouble speaking up if they perceived a problem with patient care, and 41\% felt unable to express disagreement.156 Behaviors that physicians perceive as decisive and necessary to achieve task goals may be viewed as harsh and demeaning by subordinates.157 Difficulty in seeing one’s own behavior as others see it is pervasive throughout OR and intensive care unit (ICU) teams.158,159 When watching videos of conflict scenarios, surgeons, anesthesiologists, and nurses rated the tension levels similarly but rated their own profession as having relatively less responsibility for creating or resolving the tension.160,161

There are well-known approaches to conflict resolution in the literature (eg, the 7-step model, principle-based conflict resolution, advocacy/inquiry).144,146,162,163 Teaching conflict management to OR teams is important and possible.157,163 Effective techniques for conflict resolution are an important component of most team-training methods.63,164

\textbf{Coaching}

Team coaching, defined as “direct interaction with a team intended to help members make coordinated and task-appropriate use of their collective resources in accomplishing the team’s work,”165 can be used to improve the performance of underperforming individuals and to enhance the skills of those who show promise as future high performers.166 Coaching behaviors include identifying problems and leading consultations among the group members.112

Positive effects of coaching include better team member relationships, member satisfaction, team empowerment, and emotional security and safety.112 A strong relationship exists between leadership and both personal and team empowerment (ie, the sense of personal or team control and motivation to complete a task), and team empowerment enhances team performance.117 Within health care, coaching has been shown to increase nursing innovations168 and reduce mortality.63

Leadership coaches can model desirable behaviors, provide constructive feedback to enhance team performance, and encourage open communication and speaking up.16 Although cardiac surgeons are often viewed as the primary leaders in cardiac surgical teams, other team members can provide leadership and beneficial coaching to teammates. This intrateam coaching involves team members using constructive feedback to identify areas of poor performance and enhance task completion.112 Intrateam coaching involves such behaviors as “providing advice, suggestions, guidance and instructions, calling attention to potential error, and confronting members who break norms.”112 These coaching behaviors are beneficial only when team members are receptive to suggestions and constructive criticisms.112,169

\textbf{Interventions to Reduce Errors}

Within the hospital and OR, interventions designed to improve teamwork are team training and structured tools and protocols; interventions often fit more than 1 of these categories.170 These interventions lead to increased patient and staff satisfaction and reduced mortality.171--175 Standardization of critical interactions by use of protocols (eg, handoffs) improves the content and structure of information and increases participation111,177--179,127 but is often met with ambivalence at best and hostility at worst.45,178 Physicians typically overrate their nontechnical skills; downplay the effects of stress, fatigue, and disruptions; and view the imposition of checklists or guidelines as limiting their ability to provide individualized patient care, or as an insult to their intelligence and skill.26,44,46,62,156,179,180 The impact of nontechnical skill training, checklists, briefings, simulation training, and structured communication protocols on aviation safety is undeniable; the evidence that these interventions can improve surgical care is increasing.181--185

In surgery, as in aviation, even the best of protocols and teamwork efforts will not totally eliminate errors or accidents (errors that reach the patient). As postulated by Perrow,186 accidents are the norm in high-risk industries and cannot be totally eliminated even by the best of teams; only the time interval between accidents can be increased or decreased. Vannucci and colleagues187,188 described a series of 4 retained guidewires after central line insertion, 2 of which occurred after an extensive training program to eliminate retained guidewires; the operators who failed to remove the guidewires had successfully completed the training program. Therefore, continued review of adverse events will be required to
identify not just teamwork issues but system issues that can improve safety. Review of all of those techniques (root cause analysis, sentinel event capture, competency review of clinicians, etc.) is beyond the scope of this statement but is critical to patient safety.

Team Training
The ample evidence that poor teamwork skills (communication, leadership, situational awareness) contribute to errors and adverse outcomes suggests that teamwork training to improve nontechnical skills should reduce errors. After the Institute of Medicine published “To Err Is Human,” the Institute studied the successful use of CRM to reduce error in aviation and recommended that team-training programs be implemented in critical care areas of medicine. Implementation of these recommendations has taken time; the CRM principles had to be adapted for use in medicine, team-training methods had to be developed, and the results of team training had to be evaluated. Nonetheless, recent reviews have found that CRM-type strategies consistently increase desirable teamwork attitudes and improve teamwork practices and outcomes (eg, complication rates). Team perceptions of and attitudes toward patient safety are correlated with the quality of patient safety.

An early report of the benefits of formal team training demonstrated a significant improvement in the quality of emergency department team behaviors and a reduction in clinical error rate from 31% to 4.4%. Halverson et al reported that a team-training curriculum, with 4 hours of classroom work and in situ coaching, increased the use of preoperative briefings and reduced communication errors by half. Dedicated training sessions significantly improved communication composite scores in the OR.

In a preintervention and postintervention observational study in vascular and general surgery, Oxford researchers implemented CRM-based teamwork training (9 hours of didactic and interactive teaching). Teamwork scores and teamwork climate scores improved, and technical and procedural error rates were reduced. A national prospective study of the Veteran’s Administration Medical Team Training program based on CRM principles showed an 18% reduction in annual mortality. There was a dose-response relationship between Medical Team Training and mortality: For every quarter (3 months) of the team-training program, a reduction of 0.5 deaths per 1000 operations was observed. Implementation of Medical Team Training program was also associated with a reduction in wrong-site surgery and improved compliance with best practices.

Another national team-training effort is TeamSTEPPS, an evidence-based, resource-rich, government-sponsored program. Although TeamSTEPPS has been implemented in hundreds of facilities, few empiric studies have examined its impact on patient outcome. One recent study verified that this program of team training significantly improved OR teamwork and communication scores, reduced surgical mortality and morbidity, increased OR efficiency, and improved patient satisfaction. However, many of the initial gains were lost within 12 months, which indicates that sustained improvement may be difficult to achieve.

Few data exist to define the components of effective team training. Training times range from a few hours to several days; program content is variable, and sustaining improvement may be difficult. In one posttraining observational study, surgical teams that had undergone training were compliant with only 60% of the safety practices included in the program. In another such study, communication and team skills improved immediately but extinguished after 3 months. However, the calculated threat-to-outcome score improved immediately and remained significantly improved 3 months later. From the data available, it appears that teams should be trained as teams, not as individuals; that use of simulated scenarios is effective; that both executive leadership and nurse managers are critical to effective implementation; and that repetition, continued coaching, or both are required to strengthen and maintain benefits.

Time-outs, Checklists, Briefings, and Debriefings
Timeouts, checklists, and briefings can reduce errors in communication. Checklists and timeouts typically are close-ended, with specific information called out and verified, whereas briefings are quick discussions guided by a structured but open-ended checklist. Checklists are the same every time, covering the steps common to all procedures, whereas briefings should be different every time and focused on the unique aspects of the procedure. Briefings establish a dialogue and provide an opportunity for all OR personnel to “confirm details, exchange information, ask questions, and identify problems or concerns.” Debriefings are intended to facilitate sharing of what was learned after a complex task has been completed and often include the questions, “What went right today?” and “What can we do to make sure tomorrow goes more smoothly?”

Timeouts were first proposed, and then mandated by The Joint Commission in 2003, to reduce wrong-site procedures. The Joint Commission universal protocol requires verification of the patient’s identity, marking of the operative site, and a “timeout” just before the operation or procedure.

Checklists are simple cognitive tools that can improve the performance of both simple tasks (eg, shopping) and complex tasks (eg, flying an aircraft) and can be effective as reminders of routine tasks that might otherwise be overlooked. The World Health Organization (WHO) developed and strongly advocates universal implementation of the “Surgical Safety Checklist,” a series of standardized timeouts at 3 times during an operation: (1) before induction of anesthesia, (2) before skin incision, and (3) before the patient leaves the OR. It includes a comprehensive check of patient identity, site of surgery, use of antibiotics and pulse oximetry, and drug allergies; its use has been shown to reduce mortality (Figure 3).

Checklists can be used to identify critical steps in a commonly performed procedure such as laparoscopic cholecystectomy, or to provide direction in rare, crisis situations. Ziewacz and colleagues identified 12 of the most frequently occurring OR crises and developed corresponding evidence-based metrics of essential care for each crisis scenario (failed intubation, pulseless electrical activity, air embolus, malignant hyperthermia, etc). The crisis checklist was studied initially by 2 surgical teams who managed 4 simulated crises with and without the checklist. Checklist use resulted in a
Briefings allow teams to develop a shared mental model of the work ahead and have been widely used by the military, commercial aviators, and longshoremen. A preoperative briefing allows team members to share their knowledge and their particular concerns about the task ahead. In aviation, the cockpit briefing is critical to verify technical details, but a key nontechnical role is establishing that a team member who sees anything of concern must speak up. The pilot verbally affirms that all information regarding safety is welcome, even if it means questioning the pilot. In surgery, as was typical in pre-CRM aviation, a strict hierarchical framework can exist that inhibits lower-status team members from questioning someone with higher authority. As noted above, many OR personnel report that they would have trouble speaking up or expressing disagreement.

Before team training or formal implementation, few if any briefings occur. Among the challenges in instituting briefings is the difference in opinion among caregivers as to what constitutes a briefing. Although 39% of surgeons in a United Kingdom practice survey stated they always perform briefings, only 4% of their nurses agreed. This was also the case when efforts were made to institute briefings in cardiac surgery at Mayo Clinic (unpublished observation, T.M.S.). In the Safe Surgery Checklist study of 3733 cases, few included preoperative briefings.

One checklist, the Surgical Patient Safety System (SURPASS) checklist, includes a briefing and debriefing. A closed-claims review indicated that one third of the factors that contributed to adverse events could have been intercepted and nearly 40% of deaths might have been prevented by use of the SURPASS checklist with its imbedded briefings. Implementation of SURPASS reduced complication rates from 27.3% to 16.7% and dropped in-hospital mortality from 1.5% to 0.8%. Implementation of the WHO Surgical Safety Checklist, which contains many domains inherent in briefings,
had nearly identical results, reducing mortality from 1.5% to 0.8% and complications from 11.0% to 7.0%. This study included >3500 cases done at 8 institutions in 5 continents and included rudimentary to sophisticated procedures. In a recent study of 25,513 patients, van Klei and colleagues showed that implementation of the WHO checklist, including a preoperative briefing, resulted in a reduction of in-hospital 30-day mortality from 3.15% to 2.85% (odds ratio, 0.85; 95% confidence interval, 0.73–0.98). The effect was driven by checklist compliance: The odds ratio for improved outcome with full checklist completion was 0.44 (95% confidence interval, 0.28–0.70), compared with 1.09 (95% confidence interval, 0.78–1.52) and 1.16 (95% confidence interval, 0.86–1.56) for partial compliance or noncompliance, respectively.

Recently, the use of briefings was mandated as part of a larger teamwork training intervention in the Veterans Health Administration; mortality decreased by 18% after team training was implemented. In 2 other studies, compliance with antibiotic and deep venous thrombosis prophylaxis improved after the implementation of briefings and debriefings. Briefings can reduce distractions and flow disruptions, which are a significant source of serious surgical error. Gillespie and colleagues, observing planned and unplanned surgeries, found an inverse correlation between the familiarity of a team and the number of miscommunications, as well as a positive correlation between number of interruptions in surgery and the number of miscommunications. Implementing a short, structured briefing halves the frequency of flow disruptions, lack of knowledge of the case, and miscommunications between staff even when instituted within a “familiar” team. Nurses made fewer trips to the sterile core for supplies, and spent less time there, whereas wastage was decreased. In another intervention study, preoperative briefings decreased unexpected delays in surgery by 31%.

In addition to improving patient outcome, briefings enhance teamwork climate, behaviors, and performance. In one survey, respondents who said that briefings are common reported a better safety climate than respondents who reported no briefings. Briefings are associated with perceptions of reduced risk and with enhanced collaboration. In one study, participants commented after the briefing, “Your opinions seem to matter. You feel more valued,” and, “Now people are willing to say when they are not happy. They are not worried about backlash anymore.” An Israeli study found that briefings reduced nonroutine events by 25% and that members “felt most valuable for their own work, the teamwork and patient safety.” In a United Kingdom study of briefings conducted over a 6-month period, staff members perceived that the team culture was improved, and potential problems were highlighted. O’Neill noted that leadership must create a culture wherein employees are treated with dignity and respect and that habitual excellence requires transparency and sharing of problems. Briefings and debriefings can provide the needed transparency and sharing.

Briefings do not prolong surgical procedures but shorten them by decreasing interruptions and distractions. In one study of >35,000 cases, the length of the briefing averaged 2.9 minutes (range, 1–5 minutes).

Despite the strong evidence supporting briefings, there are organizational and psychological factors that “constrain safety in the OR.” The tendency of physicians to misperceive their nontechnical skills as better than they are may lead to the view that no improvement is needed. Not all surgeons agree that briefings improve teamwork, although surgeons who have instituted briefings report greater efficiency and increased team morale. Surgeons randomly assigned to a checklist intervention group performed more positive safety-related team behaviors than control surgeons but also reported lower levels of comfort, team efficiency, and communication, which indicates that adapting to checklists or briefings may be uncomfortable initially. The role of facility and leadership and local champions is critical to effective implementation but insufficient by itself, because a wide range of responses (from acceptance to resistance) to briefings and debriefings can hinder their implementation and must be understood before effective implementation of these practices can occur.

Debriefings have been less well studied, although some outcome studies included debriefings, as did the large Veterans Health Administration study. The debriefing allows members of the medical team to assess what went well and what did not, to coalesce as a team, and to improve their performance in their next case. Debriefings provide teams the opportunity to formulate future plans, develop and implement system improvements, and address areas of communication weakness. Debriefing methods and implementation processes have been described previously.

In conclusion, a growing body of literature suggests that surgical briefings and debriefings can result in impressive reductions in morbidity and mortality. More research into impediments to implementation will be useful, but the evidence to date supports case-by-case structured briefing and debriefings in cardiac surgery.

Simulation

In aviation, simulation training is widespread and is used to train individual skills, assess the technical and nontechnical skills of individuals and teams, and study how errors occur and how they can be prevented. Medicine has been slow to adopt simulation training, but the technical and educational tools and techniques that underpin high-fidelity simulation training in medicine are undergoing rapid evolution and development. Simulators are emerging as a valuable tool for teaching procedural skills and measurement of skills. Such assessment is becoming part of the licensure process in some areas of medicine.

Simulators show promise for assessing and training personnel in nontechnical skills. Current patient simulators provide highly realistic physiological data with real clinical equipment, presenting accurate and believable clinical scenarios. This technology requires educators to design curricula and evaluation rubrics and to document the validity of the educational environment. Although much of the initial research focused on technical skill training and assessment, recent evidence supports simulation for team training and the development of nontechnical skills. Simulation also allows the scientific testing, without exposing a patient to risk, of the effect of human factors (e.g., fatigue, stress) on technical skill, communication patterns.
High-fidelity simulation may provide an optimal learning environment. This can be especially effective in crisis situation training, enabling individuals and teams to experience the cognitive challenge, stress, and physical demands of emergencies without potential for patient injury. Catastrophic incidents require the delivery of a complex, coordinated response by the team under time pressure, but they occur rarely and cannot be practiced in the “real world.” In the simulated OR, team communication and tactical responses to challenging clinical problems can be practiced, evaluated accurately, and measurably improved. In a now famous study of learning in mice, Yerkes and Dodson showed that learning was and measurably improved. In a recent study of education of whole cardiac surgery teams in crisis management using high-fidelity simulation, participants reported 2 areas of highest priority and improvement: encouraging outspokenness about critical information and improved interprofessional communication by clearly defining the intended recipient (using the name of the person to whom communication is directed) and by attention to “closing the loop” in verbal communications.

Structured Communication Protocols

Communication is improved by information exchange protocols that facilitate presentation and recall and closed-loop communication to acknowledge receipt of information and verify content. Closed-loop communication is particularly important in stressful contexts and when the intended recipient is not clear. This style of communication ensures that the team has shared goals, expectations, situation awareness, and plan execution.

Structured communication techniques, such as using words for letters (alpha, bravo, charlie) or saying the individual digits of numbers (“one one” instead of “eleven,” which sounds like “seven”) can reduce ambiguity, enhance clarity, and specify the intended recipient. Read-backs, Situation-Background-Assessment-Recommendation (SBAR), critical assertions, and advocacy/inquiry have been used effectively for decades by the armed forces and aviation to standardize information transfer, reduce information loss, and facilitate communication to superiors. Few data exist about effectiveness in medical settings. Nevertheless, structured communication protocols are commonly part of the core curriculum of team-training programs that are effective in reducing errors and mortality. Implementation of protocol-driven communication during CPB reduces surgeon/perfusion communication errors by nearly 40%. Simulation-based studies of comprehensive team-training programs designed to measure communication skills have proved these interventions’ content validity but rigorous studies of the effectiveness of communication training or structured communication protocols in cardiac surgery are lacking.

Communication Between Teams

The transfer of patients and patient information from one team to another, termed handoff or handover, is frequent in medicine. Handoff failures have been identified as a significant source of medical errors, both between and within teams. The Joint Commission defines a handoff as a contemporaneous, interactive process of passing patient-specific information from one caregiver to another to ensure the continuity and safety of patient care; standardized handoff communications was a patient safety goal for 2006 (goal 2E). Cardiac surgery patients are handed off many times: from cardiology (preprocedural testing, evaluation), to the surgeon and OR team, to the ICU team, to the ward team, and often back to the cardiology team for long-term follow-up and care.

Gawande and colleagues analyzed surgical errors in closed claims at 4 malpractice insurance companies and provided results in 2 publications. In the 258 surgical malpractice cases in which an error led to patient injury, 60 cases involved communication failures and resulted in injury to patients. Forty-three percent of the communication failures occurred during a handoff between providers, and 19% of these communication failures occurred across departments (ie, between teams). The majority (92%) of communication failures were verbal, involved a single transmitter and a single receiver, and were caused by omission of critical information (49%) or incorrect interpretation of information (44%).

Much of the original research of handoff failures focused on transfers of care within a team, such as residents covering patients. In one survey conducted at Massachusetts General Hospital, 59% of responding residents reported that 1 or more patients had been harmed in their last rotation because of poor handoffs, and 12% reported that the harm was major. Only a minority of the handoffs occurred in a quiet setting, and interruptions were frequent. A similar study found that 31% of residents reported a patient event that involved their patient for which the handoff had not prepared them. In one study of incidents involving transfer of patients from team to team, 29% involved no handoff procedure at all.

It is not surprising that the majority of patient transfers involve communication failures, given the complexity of patient information, nuances of physiology difficult to objectively translate for the next team, and frequent distractions. The literature supports the perception that the handoff process is highly variable, unstructured, and fraught with environmental noise, distraction, and competing task priorities (eg, resetting monitors during the verbal transfer of information). In an observational study of cardiac surgery handoff events, important content items were reported only 53% of the time; an average of 2.3 distractions occurred per minute of communication.

Patient information transfer failures occur across the continuum of surgical care; the majority occur during the preprocedural and postoperative handoff phases. Only 30% of surgical information was transmitted verbally, and often
not by surgeons but by anesthesiology personnel. In a study from Great Britain, transfers of care between OR and recovery room were nonstandardized and varied depending on the staff involved. Varying expectations of content and timing of the information transfer were held by anesthesiology and recovery personnel, and there was no standard point during the handoff when responsibility was transferred. In a study of a process that first rigorously defined, and then measured, critical information to be transmitted and tasks to be completed during an OR/recovery handoff, nearly a third of critical facts were not transmitted (median of 9.1 omissions among 29 defined items), and a third of tasks (median 2.9 task errors of the 8 defined tasks) were not completed. Critical members of the multidisciplinary team were often not present during the handoff process.

The quality of the handoff information degrades across the continuum of care: Only 56% of essential information was transmitted from OR to recovery, and only 44% from recovery to the ward. Seventy-five percent of observed patients had at least 1 clinical incident or adverse event attributable to such failures.

Few studies have analyzed why communication failures occur during handoffs, or what information is essential. No study has tested the validity of what they designate as “essential information.” Despite these limitations, virtually every intervention designed to improve handoff quality has shown positive effects. In a prospective study of congenital cardiac surgery handoffs from OR to ICU, implementation of a teamwork-driven process and protocol reduced errors from 6.24 per handoff to 1.52 and reduced critical verbal information omissions from 6.33 to 2.38 per handoff. Implementation of a protocol based on Formula 1 pit stops that specified the pre-handoff preparation, tasks to be completed before information transfer, and specific information to be transferred reduced technical errors, reduced the number of information omissions, and shortened the handoff from 10.8 to 9.4 minutes.

Another study found that implementation of a simple fill-in-the-blank, 1-page tool improved total handoff scores, as well as surgical intraoperative information subscores, but did not prolong handoff duration. Craig and colleagues echoed these results in their pediatric cardiac study of a different handoff tool; implementation resulted in a significant improvement in attentiveness, organization, and information flow and a reduction in interruptions. Finally, implementation of a standardized handoff protocol for cardiac patients between OR and ICU increased the presence of all critical personnel at the handoff from 0% to 68% of the time, decreased omitted information from 26% to 19%, and increased satisfaction scores from 61% to 81% among the ICU nurses. However, the fact that the percentage of missed information remained at 19% after implementation indicates the scope of the problem.

The use of electronic technology in handoff protocols has been proposed, but few data exist. The framework of an automated protocol termed MAGIC (Multimedia Abstract Generation of Intensive Care) integrates cognitive and quantitative methods to create an electronic prompted briefing that provides a consistent set of handoff information. The Association of periOperative Registered Nurses has developed resources with sample handoff documents and educational materials for clinicians.

A less prescriptive protocol specifies only the type and order of basic topics to be covered, often using the mnemonic SBAR (situation-background-assessment-recommendation). The use of SBAR during handoffs has been suggested to facilitate more accurate communication of patient, anesthetic, and surgical information and has been used by cardiac nurse practitioners to facilitate a patient’s progress through the cardiac surgery continuum of care. A curriculum that used videos and role playing to teach SBAR reduced the rate of order-entry errors.

Communication between physically separated teams (referring cardiologist and cardiac surgeon) can be even more difficult. The use of a dedicated Internet connection between catheterization centers and a surgical center for electronic transmission of angiography data shortened the time between catheterization and surgical decision from 36 hours to 1 hour. The time interval between diagnosis and emergent or urgent surgery decreased from 56 to 18 hours. No outcome or economic data were collected, but electronic transmission of essential patient data may well reduce errors and speed the delivery of care.

Several interventions have been tested across the continuum of care, which can involve multiple handoffs. One approach is to reduce handoff errors by minimizing the number of handoffs, primarily by using a universal bed. With this approach, a given patient can receive ICU, step-down, or ward level of care in a single physical location, with a single team of nurses and surgeons. Compared with national norms (Society of Thoracic Surgeons database, http://www.STS.org), universal bed patients had decreased ventilation time, ICU stay, and hospital stay and no sternal wound infections (0/610), with average cost savings between $6200 and $9500 per patient.

Summary Statements

1. Communication skills have been measured as the worst aspect of teamwork behavior in the OR.
2. Multiple general and cardiac surgical studies have shown that communication failures are the most common root cause of errors and adverse outcomes.
3. The critical elements of teamwork can be summarized by 6 “C’s”: communication, cooperation, coordination, cognition (collective knowledge and shared understanding), conflict resolution, and coaching (team training).
4. Interventions to reduce human error include teamwork-training efforts. Studies such as the Veteran’s Administration Medical Team Training (MTT) and the TeamSTEPPS program (government-sponsored by the Agency for Healthcare Research and Quality and the Department of Defense), have demonstrated significant improvements in OR teamwork and communication scores, as well as reductions in surgical mortality and morbidity; however, sustained improvement requires repetition and/or continued coaching.
5. Other interventions to reduce errors include checklists, such as the Surgical Safety Checklist (developed by WHO), and preoperative briefings and postoperative debriefings. Studies have demonstrated that the process
of adoption of checklists improves outcomes, including reduction in central line infections, ventilator-associated pneumonia, and mortality.

6. Other studies have demonstrated that briefings reduce distractions and flow disruptions, enhance team performance, and may reduce complications, although widespread implementation of these practices has been hindered by psychological and cultural impediments.

7. Simulation is a promising tool for assessing and training surgical personnel in nontechnical skills, including communication, cooperation, coordination, cognition, conflict resolution, and coaching, as well as the relationship between technical and nontechnical skills.

8. Transfer from one team to another occurs many times for patients undergoing cardiac surgery, and communication failures are common during these handoffs. Although few studies have analyzed why communication failures occur, or what information is truly essential, all studies of interventions designed to improve handoff quality have demonstrated improvements in omitted or misinterpreted information.

Physical Environment

Human Factors Issues

“Environment” is defined as “the circumstances, objects, or conditions by which one is surrounded.” In the OR, the environment comprises the physical space, the equipment, and the people (staff and patients). Ergonomics, defined as “an applied science concerned with designing and arranging things people use so that the people and things interact most efficiently and safely,” has been suboptimal with respect to patient safety in the OR. Improvements in OR design and space have lagged behind changes in surgical practices, and the past 10 years have seen an enormous influx of new technologies, creating an overcrowded environment. Many consider poor room and equipment ergonomics to be a major factor in the flow disruptions that contribute to technical errors; poor room and equipment ergonomics may be related to surgical-site infections.

Space and Design

Both the size and layout of the OR can influence safety. In small ORs, equipment clutters the space and results in flow disruptions, whereas excessively large OR suites require staff to traverse longer distances. Brogms and colleagues reported that same-level slips, trips, and falls are the second-leading cause of workplace injury and cite 3 tripping hazards: cords and cables, low-profile equipment and supplies, and protective and absorbent mats. Cesarano and Piergeorge described the “spaghetti syndrome,” a phenomenon in which cluttered equipment and entangled lines obstruct clinicians from safely reaching the patient, endangering both patients and staff. Bringing power and equipment to the patient creates a significant challenge.

Personnel and Traffic

The presence and flux of personnel in an OR are unavoidable but can be detrimental to OR safety, both because of the creation of distractions and the increased potential for infection. Approximately 20% of OR traffic is related to staff requests for information, 25% is related to staff breaks, and 20% is attributable to the delivery or retrieval of equipment. Healy et al correlated OR traffic with interference levels, such as shift changes that distract the operating surgeon, and concluded that these distractions are poor OR practices that can be improved.

Increased traffic implies a higher frequency of door openings, which has been shown to decrease the effectiveness of the ventilation system in clearing potential contaminants. More door openings also may increase bacterial counts by permitting the mixing of OR air with corridor air. In orthopedic and general surgery cases, the average number of door swings per hour ranges from 37 to 135 and approaches 1 every other minute. In cardiac surgery, the mean rate of door openings is 19.2 per hour, and 22.8 per hour if prosthetic devices are involved. This equates to an average period of 6.4 minutes per hour in which the door is open. Microbiological counts in unoccupied ORs increase significantly when a door is left open to the hallway.

Additional personnel in the OR may contribute to infection risk. Having 5 additional OR personnel above the required minimum increased the microbiological counts >15-fold. Another study of orthopedic trauma surgery found a strong positive correlation between the number of colony-forming units and the number of people in the operating room. This relationship between the number of people in the OR and the incidence of surgical infection may be attributable to the number of people per se or to the greater amount of traffic into and around the room.

Equipment

Although equipment and machines improve our lives and improve patient care, they can cause harm by injuring patients directly, by increasing errors related to poor design, and through poorly designed alarm systems that contribute to noise. Equipment-related problems account for ≈11% of flow disruptions in cardiac surgery. In a review of hazards in cardiac surgery, Martinez and colleagues noted numerous issues with equipment (eg, esophageal injury caused by transesophageal echocardiography probe insertion), CPB (eg, aortic dissection with onset of bypass), and surgical equipment (eg, air emboli caused by a blower-mister device). Machines and technology were identified to cause patient harm in 4 ways: (1) Misuse (poor training or negligence), (2) the inherent risks of using the device, (3) poor maintenance and upkeep, and (4) poor machine design. Poor training or lack of certification in the use of the device, improper risk balancing by clinicians, and failure to follow best practices in equipment maintenance can increase the risk. In addition, a common theme among published reports of equipment-related adverse events is a failure to explore the contributing systematic errors.

Much of modern equipment is designed with the focus on mechanical efficiency and biocompatibility, with little emphasis on how design can impact human error. Wiegmann and colleagues studied CPB machines using a failure mode effect analysis and found that information displays suffered from problems with placement, legibility, and format. Components were poorly integrated into the machine, and the space-design and placement of the components was not ideal. Alarms were found to be too quiet or too loud or to have inappropriate tonality.
In fact, one of the most troublesome contributors to OR distractions is alarms generated by machinery.310-312 Alarms are designed to make the operator aware of conditions outside of predetermined norms and can identify dangerous conditions. A typical cardiothoracic OR, however, has ≈ 18 different alarms with a mix of visual and audio alerts.313 Schmid et al314 reported that 359 alarms occurred per cardiac surgery procedure, at 1.2 per minute. Unfortunately, up to 90\% of all alarms are false-positives,315 which desensitizes OR personnel to true alarms. One study analyzed 731 warnings during cardiac surgery by linking them to the response of the anesthesiologist: only 7\% were useful, whereas 13\% followed a planned intervention and could have been predicted and eliminated.313

Noise

As noted above, the OR traffic, conversations, alarms, and, in some cases, music can lead to a deafening noise level in the OR316 that exceeds both Occupational Safety and Health Administration and National Institute for Occupational Safety and Health standards.317 This noise level can be dangerous to the hearing of both patients and physicians and can affect patient outcomes.318,319 In one study, abdominal surgery patients who subsequently developed a surgical-site infection had operative environments with significantly higher sound levels.319 Conversations about non-surgery-related topics were associated with significantly higher sound levels.319

An observational study conducted by Moorthy et al290 concluded that OR noise reaching 80 dB was associated with a significant increase in medical errors during in situ laparoscopic procedures. Clinical impairment may be compounded by inexperience; a randomized controlled trial found that music had a detrimental effect on the surgical performance of novice laparoscopic surgeons.320 Some research, however, suggests that the appropriate use of music in the OR can reduce stress and improve the performance of some OR staff.290 Nevertheless, 25\% of surveyed anesthesiologists stated that OR music impaired their ability to effectively communicate with other staff.321 Music that is pleaseing and helpful to one practitioner might be distracting to other OR personnel.322 Compounding this issue is that each subteam in the OR has a different cognitive workload at different times during a case (Figure 4),263 potentially leading to casual conversation just when another team member needs absolute quiet.

The Optimal OR

There is a paucity of scientific literature regarding optimal OR design and layout, with many editorial suggestions but few studies showing better outcomes. Two studies have linked improvements in the physical environment to (1) reduction in staff stress and fatigue, which increases effectiveness in delivering care; (2) improvement in patient safety; (3) improvement in outcomes; and (4) improvement in overall healthcare quality.323,324 Optimal size may reduce adverse patient events and mitigate OR staff injuries,297 which has led to recommendations that rooms for cardiovascular procedures be ≥ 600 sq ft.325 The guiding principles for optimal OR design, as summarized by Killen,322 are as follows: (1) Standardize the location of the head of the table and the handedness of the room; (2) provide adequate space for staff to move around and for equipment; (3) maintain focus on the patient; (4) ensure that all staff have a line of sight to the patient at all times; and (5) use technology to help workflow. Novel ideas such as rounded room corners, walls shaped to transition to doors, and floor patterns that provide additional visual guides have been proposed.297

Optimal room flow requires avoiding unnecessary congestion, with equipment positioned to maintain open corridors and to keep the floor clear and free of hazards, such as avoiding cords across walking paths.297 Ceiling-mounted booms can reduce the number of cords and cables across high-traffic areas.291,326 The setup of equipment should be consistent, with dedicated space for the sterile field, OR table, Mayo stands, anesthesia equipment, and perfusion setup.326 Sterile core and patient-entry doors should be positioned away from swinging equipment booms and stationary machines. OR doors should be situated to protect the sterile surgical field from work zone traffic.325

Restricting the number of people in the OR and regulating OR traffic may reduce the movement of airborne contaminants shed by people and objects.305,306 The most recent Association of periOperative Registered Nurses “Standards and Recommended Practices” present best practices for traffic patterns.302

There is a lack of published literature regarding the optimal physical location of materials and supplies for a cardiac OR, but guidelines specify a minimum of 50 sq ft of storage space per OR.252 Common sense would suggest that storing supplies inside the OR suite would improve workflow and mitigate door openings, but virtually no data on this practice exist. Regardless, preoperative briefings reduce trips to the core.222

Regarding noise in the operating room, no studies have yet demonstrated improved outcome with noise reduction efforts. Some have suggested that a sterile cockpit approach should be adopted.327 However, as Wadhera and colleagues263 have illustrated, each team has a different cognitive workload at different times during a case (Figure 4). These investigators propose having structured conversations at key parts in the operation (eg, heparin administration, cannulation, initiation of CPB, separation from CPB), but this intervention has not been tested for its impact on reducing errors.

Integration of the sheer volume of auditory and visual information available during any case is challenging. Monitors and charting systems should be positioned to allow clinicians to face the sterile field and remain attentive to the surgical procedure.226 In 2006, Egan228 described the Massachusetts General Hospital’s “operating room of the future.” By integrating information from various monitors, computers, and equipment through wall panels with unobstructed views, personnel were kept abreast of the surgical procedure. The simplification of information transfer reduced the amount of equipment surrounding the patient and possibly improved communication.228 Finally, real-time imaging of the surgical procedure can be shared with team members off-site, which would facilitate handoffs.329,330

Integration of electronic medical records with anesthetic and surgical interventions can curtail alarm fatigue and alarm-related distractions. Kruger and Tremer313 proposed 3 key areas for future research: (1) Design of these systems to bridge
the gap between academic prototypes and integration into clinical practice; (2) integration of various types of medical domain knowledge into comprehensive physiologic and disease models and (3) advanced algorithms to use this domain knowledge for high-sensitivity and specificity alerts.

Finally, high-fidelity simulation laboratories can be used to investigate where the human-machine interface can be improved, providing insight into how industry can make the next generation of machines safer. Simulation laboratories can also permit testing of optimal room design and layout without putting patients at risk.

Summary Statements

1. Poor OR ergonomics (size and layout) contribute to human error and safety hazards, including procedure-flow disruptions, technical errors, and surgical-site infection, as well as workplace injuries for surgical personnel.

2. OPTIMAL OR design ensures standardization of the location of the head of the patient bed and surgical table, adequate space for equipment and staff movement, maintenance of focus on the patient, and use of technology to help workflow.

3. Reduction of traffic in the OR may reduce patient risk (procedure-flow disruption and surgical-site infection).

4. Noise levels in the OR, caused by equipment alarms, conversations, and music, present hazards for patients (surgical performance, surgical-site infections) and surgical personnel (hearing loss).

Safety Culture

Organizational Culture

Deficits in safety culture have been implicated in adverse outcomes after cardiac surgery. A climate of teamwork and collaboration, along with safety-minded work processes and communication styles that focus on error prevention, is ideal, allowing those in high-risk clinical environments such as cardiac surgery to identify and prevent patient harm.

Many cardiac surgery safety studies have been retrospective studies, with the goal to identify trends. Few have been prospective studies, and fewer have tested interventions designed to improve safety. Nevertheless, they indicate where improvements can be made. For example, underdeveloped quality assurance programs contributed to unexpectedly high mortality rates in pediatric cardiac hospitals in Bristol, United Kingdom, and Winnipeg, Canada. Providers at the Bristol Infirmary had raised concerns about poor outcomes that went unheeded, attributable in large part to the absence of a central quality assurance department to identify and address problems. In Winnipeg, the low volume of cases exacerbated a troubled quality assurance program that was inadequate to detect and respond to sentinel events. Both cases illustrate the dual danger of a culture reluctant to acknowledge issues, even when raised internally, and poorly responsive quality assurance systems.

In this section, we review organizational culture in health care, identify behaviors that undermine safety, and explore organizational contributors to safety attitudes, including the sparse literature specific to cardiac surgery.

Organizational Culture in the Healthcare Environment

An institution’s organizational culture, that is, its aggregate beliefs, assumptions, and value systems, greatly influences the attitude manifested by its personnel toward keeping patients safe. Seemingly similar institutions can have quite different cultures and subcultures. Most hospital personnel are unaware of how they contribute to and shape the safety culture in their own environment. The current hierarchical structure of health care has evolved over many years, but organizational cultures that emphasize deference and power differences between healthcare workers may be unsafe, given the increasing complexity and technological sophistication, particularly in cardiac surgery. Increasing data on the impact of culture on patient safety highlight the need for a reevaluation of the current educational and training paradigm toward more collaborative and interdisciplinary approaches.

Safety Culture Versus Safety Climate

An organization’s safety culture refers to those collective behaviors and values that influence its ability to identify and mitigate hazards and systemic conditions that contribute to...
error. Safety culture has been stated to be “the product of individual and group values, attitudes, perceptions, competencies and patterns of behavior that determine the commitment to, and the style and proficiency of, an organization’s health and safety management.”363 Although senior leadership is critical in establishing a safety-oriented culture, it is the frontline providers who must be fully engaged in creating a climate of QI and safety.

In contrast, organizational climate refers to the commitment with which individuals or groups carry out an organization’s vision and to what degree they adhere to established policies and procedures. Zohar344 refers to safety climate as “… shared perceptions with regard to safety policies, procedures, and practices.” Climate is often defined as “the way we do business around here.” Safety culture tends to be more ethereal, whereas safety climate is more conducive to measurement, particularly within a functional unit.

Although safety culture and climate are typically a function of the larger organization, small functional units such as the OR often have a unique culture and climate that are distinct from, albeit influenced by, the larger organization. In the OR environment, assessments of safety culture and climate using a variety of instruments such as questionnaires and surveys have raised a number of interesting and potentially actionable observations.69,156,197,345,346 One study in a non–cardiac surgery setting identified marked differences between surgeons and nurses in the degree of familiarity with other team members, a factor known to impact patient safety.21,28,60 In another study, nurses expressed more negative responses than physicians concerning their work unit’s support of and attention to safety.348 It is important to recognize that such findings may not be generalizable and that culture measurement tools have inherent limitations and applicability.

Although a strong safety culture is thought to save lives, the relationship between culture and clinical performance is complex and nuanced. Acting on findings from attitude surveys, combined with team-skills training sessions, has improved indices of emotional climate, teamwork, and threats to patient outcomes.59 Some authors have argued, however, that safety culture and actual performance are conceptually and practically different.341 Moreover, although measurable improvements in safety attitudes can be elicited after interventions, it is unclear whether these effects are sustainable or translate into better patient outcomes.

In the area of cardiac surgery, only a few observational studies have assessed the impact of organizational characteristics on potential outcomes.8 Fleming and colleagues80 used a questionnaire to assess leadership, organizational structure, and safety climate, in addition to confidence assertion, information sharing, stress and fatigue, teamwork, work values, and error and procedural compliance. Respondents reported that established procedures and protocols frequently were not followed, and only 43% of the respondents reported feeling comfortable speaking up. Similar results have been reported in pediatric cardiac surgery.156 The unique milieu of the cardiac OR includes heavy reliance on technology, with the added dimension of CPB and perfusionists. This highly complex environment is ideal for the study and design of interventions to improve team culture.347

Behaviors That Undermine a Culture of Safety

Rigid Hierarchical Culture

Organizations with a predominantly hierarchical culture are generally oriented toward and place a high premium on stability.348 These organizations are characterized by uniformity, rigid coordination, internal efficiency, and a close adherence to rules and regulations.349 These characteristics are not inherently bad; in surgery, as in the military, a close adherence to rules and regulation and clear lines of authority are critical to effective performance. However, when these characteristics lead to significant power distance, status asymmetry, and disruptive behavior, safety will be compromised, with team members reluctant to challenge authority or to speak up when errors are recognized.156,158,345 A centralized approach to management often results in frontline providers feeling less empowered to speak up or take action when confronted with safety issues.349,350 Hospitals and surgical teams with a rigid hierarchical culture have been shown to have inferior scores on performance measures351–356 and safety climate measures.349 Targeted interventions, as highlighted by Singer and colleagues,349 include team training that emphasizes the collective shunning of unprofessional behavior and a commitment to continuous QI.

Professionalism and Disruptive Behaviors

High-quality and safe patient care depends on teamwork, communication, and a collaborative work environment. Professionalism is maintained through the interplay of individual behavior and organizational structure.357 The culture of health care has historically tolerated disruptive and intimidating behaviors in exchange for a high level of skills and expertise.358 As the delivery of health services shifts from individual practitioners to team-based and multidisciplinary approaches, organizations that do not embrace interprofessional training and communication and that fail to eliminate maladaptive behaviors will be incapable of achieving highly reliable levels of safety and sustained outcomes.359–363

Surgical errors must be understood in the context of the culture of the surgical team.364 In a study of surgical teams, Mazzocco et al12 found that teams that exhibited fewer teamwork behaviors, particularly information sharing during the intraoperative phase and debriefing during the handoff phase, were at higher risk for patient death and complications. Another study found that teamwork factors alone accounted for ≈45% of the variance in the technical errors committed by cardiac surgeons.20 Finally, Nurok et al59 found an association between a perturbed emotional climate and poorer thoracic surgical team performance.

The literature continues to link disruptive behaviors to errors and even to mortality. In a study of the effects of workplace intimidation on medication practices, 7% of respondents reported being involved in a medication error in which intimidation played a role.365 In cardiac surgery, data are scarce, but Rosenstein and O’Daniel166 indicated that there was a “high predilection for disruptive behaviors to occur in high-stress areas with a greater potential for patient harm.” In a survey of 4530 hospital physicians and nurses, 77% reported witnessing disruptive behavior among physicians and 65% reported witnessing disruptive behavior among nurses at their hospitals.367
Respondents reported that general surgery was the specialty in which disruptive events occurred most often (28%), with cardiovascular surgery at 13%. This behavior cuts across all disciplines. In a perioperative study, 75% of respondents reported having witnessed disruptive behaviors in attending surgeons, 64% in anesthesiologists, 59% in nurses, 43% in surgical residents, and 35% in anesthesiology residents. Additionally, 46% of respondents claimed they were aware of potential adverse events that could have occurred from disruptive behavior, and 19% reported that they had specifically witnessed an adverse event caused by disruptive behavior. More than 80% of the perioperative personnel reported loss of concentration, reduced communication/collaboration, and impaired relationships with other team members as a result of disruptive behavior. Finally, investigators have reported that frontline staff believes that these behaviors affect patient safety and outcomes.

In 2009, The Joint Commission implemented leadership standards that required the “creation and maintenance of a culture of safety and quality throughout the hospital,” including having a disruptive behavior policy in place and a formal process to manage unacceptable behaviors. These disruptive behaviors are specifically defined: “Intimidating and disruptive behaviors include overt actions such as verbal outbursts and physical threats, as well as passive activities such as refusing to perform assigned tasks or quietly exhibiting uncooperative attitudes during routine activities…. Such behaviors include reluctance or refusal to answer questions or return phone calls or pages; condescending language or voice intonation; and impatience with questions. Overt and passive behaviors undermine team effectiveness and can compromise the safety of patients.” Recently, The Joint Commission has revised the definitions to “behaviors that undermine a culture of safety.”

There is considerable overlap between disruptive behaviors and workplace bullying. In one view, bullying is seen as the most extreme example of disruptive behavior. The Workplace Institute defines bullying as “repeated, health-harming mistreatment that takes 1 or more of the following forms: a) verbal abuse; b) offensive conduct/behaviors (including non-verbal) which are threatening, humiliating, or intimidating; and c) work interference—sabotage—which prevents work from getting done.”

As a high-stress, high-intensity, complex environment, the perioperative setting is particularly susceptible to the insidious introduction of disruptive or bullying behavior. The environment is tense, procedures do (and must) move quickly, and precision is expected. In particular, the bullying of nurses and other personnel in the OR may be caused in part by the inherent stress of performing surgery, high patient acuity, shortage of perioperative professionals, overtime, on-call demands, and the fact that any one surgical subspecialty can be quite isolated. Disruptive behaviors are perpetuated by a physician-dominated hierarchical culture and a perceived “code of silence.” The inability to speak up for fear of retribution creates an environment in which small errors may accumulate to contribute to a major event. Bullying behavior erodes teamwork and the development of a safety culture.

The reluctance by healthcare organizations to address disruptive behaviors may stem from multiple factors. Rosenstein recommends a 10-step process (Table 2) to help organizations succeed in promoting a culture of patient safety. Recognition of an existing problem is the first step, with leadership committed to assessing the professional environment through validated tools to identify the prevalence of disruptive behavior. Collaborative leadership efforts can raise the level of awareness and accountability by providing education and training. Agreed-upon policies and procedures must include safe, non-punitive mechanisms for reporting disruptive behaviors. Thus, organizations and their individual employees can better commit to patient safety and quality.

For more than a decade, the Vanderbilt Medical Center has focused on promoting professionalism through identifying, measuring, and addressing unprofessional behaviors. These efforts include 6 core principles: (1) Dedicated leadership, (2) a model or framework for guiding intervention, (3) institutional policies, (4) surveillance tools, (5) training, and (6) accountability. Positive results included reduced malpractice claims, improved patient safety and quality, better team communications, reduced reinforcement of negative behaviors, and behavior change among physicians. No studies specifically speak to the impact of such programs in cardiac surgery.

The “Hero Culture” as a Vulnerability

Further complicating the hierarchical structure that allows unchallenged disruptive behavior, the “hero culture” of the exhausted surgical team is revered in the media, where the self-sacrificing surgeon and team members go beyond the point of exhaustion to serve patient needs. This image belies the impact of fatigue on performance. Although the studies were performed in noncardiac units, 2 separate reports documented the effect of prolonged working hours and associated sleep deprivation on attention failures and the incidence of serious medical errors committed by interns working in ICUs. Subsequently, other investigators showed that sleep

<table>
<thead>
<tr>
<th>Table 2. The 10-Step Process to Promoting a Culture of Safety</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Organizational culture</td>
</tr>
<tr>
<td>a. Leadership commitment, assessment, structure</td>
</tr>
<tr>
<td>2. Clinical champions</td>
</tr>
<tr>
<td>3. Recognition and awareness</td>
</tr>
<tr>
<td>a. Education</td>
</tr>
<tr>
<td>4. Structured education/training</td>
</tr>
<tr>
<td>a. Diversity, sensitivity, stress management</td>
</tr>
<tr>
<td>b. Conflict management, assertiveness</td>
</tr>
<tr>
<td>5. Collaboration/communication tools</td>
</tr>
<tr>
<td>6. Relationship building</td>
</tr>
<tr>
<td>7. Policies and procedures</td>
</tr>
<tr>
<td>8. Reporting mechanisms</td>
</tr>
<tr>
<td>9. Intervention</td>
</tr>
<tr>
<td>a. Pre: assess safety culture before implementation of intervention</td>
</tr>
<tr>
<td>b. Current: assess safety culture during implementation of intervention</td>
</tr>
<tr>
<td>c. Post: assess safety culture after implementation of intervention</td>
</tr>
<tr>
<td>10. Reinforcement of patient safety initiatives</td>
</tr>
</tbody>
</table>
deprivation increases the risk of accidental self-inflicted injuries \cite{30,38} and the risk of medical residents (trainees) having car accidents during their daily commute.\cite{382} Growing concern that fatigue and extended working hours can contribute to poor performance and outcomes has led to regulatory efforts in resident training in an attempt to improve patient safety.\cite{383}

Of the 3 studies that specifically focused on the role of fatigue and sleep deprivation in cardiac surgery, none demonstrated an association between sleep deprivation and major complications or mortality.\cite{384-386} However, the studies did not measure intermediate outcomes such as incidence of errors or of error capture and recovery, and the results may speak more to team resiliency in recovering from errors than to lack of an effect. A survey of perfusionists found that 15\% were performing CPB after being awake for up to 36 hours, and 50\% described experiencing microsleep during bypass.\cite{387} Two of 3 reported committing fatigue-related minor errors, and 6.7\% admitted to serious perfusion-related accidents ascribed to fatigue.\cite{387}

Cultivating a Culture of Safety

A great deal of the literature regarding changing an organization’s culture is reported at the hospital level, not the cardiac OR level.\cite{386,349,388} Interventions to improve quality and safety in the OR are still in their infancy; convincing data demonstrating that these interventions result in sustained improvements in the safety climate of these high-hazard environments are still lacking. As described previously, interventions to improve communication in the cardiac ORs, such as checklists, briefings, and teamwork training, are typically associated with improvements in safety attitudes of OR personnel, as well as patient safety.\cite{8} Attempts to impact an entire organization’s safety attitudes underscore the vexing nature and intractability of the culture problem.

Functional units have been shown to be amenable to structural, if not strategic, interventions. The Comprehensive Unit-Based Safety Program (CUSP) is a safety culture program that has been tested, albeit in ICUs, not the OR.\cite{390} CUSP was the safety culture improvement intervention in the Keystone project, an improvement collaborative to reduce catheter-based infection in 100 ICUs.\cite{208} CUSP is a 5-step iterative process that includes educating staff on the science of safety, identifying defects, involving senior executives to work with staff to prioritize safety hazards and provide resources, learning from 1 defect per month, and implementing teamwork and improvement tools with intermittent quantitative assessments of culture. CUSP is integrated into the organization’s strategic plan but defers to frontline workers, giving them autonomy to identify and rectify safety hazards. Use of the CUSP approach together with specific checklists resulted in a virtual elimination of catheter infections,\cite{208} a significant decrease in ventilator-associated pneumonia,\cite{208} and significant improvements in teamwork climates.\cite{390}

Benefits of Organizational Focus on Quality

The experiences at Bristol and Winnipeg that led to the deaths of several pediatric cardiac surgery patients highlight the need for robust QI and quality assurance programs.\cite{335-339} In both cases, the institutions were inadequately equipped to either identify or address problems, and warnings went unheeded. The investigating authorities recommended radical changes, such as institutional prioritization of quality control systems, incorporation of feedback from all stakeholders (including patients and families), and establishment of a culture that encourages all clinicians to speak up and be heard. The authors noted that such an effort should be led by a centralized quality department to detect issues and monitor progress after interventions.\cite{335,339}

Single-Center Improvements

As a result of the tight coupling that exists along the continuum of care, most QI initiatives in cardiac surgery are not focused exclusively on the OR. Comprehensive approaches used in the management of cardiac surgery patients include Total Quality Management,\cite{391,392} Institute for Healthcare Improvement Breakthrough Collaboratives,\cite{393} ProvenCare,\cite{394} Operational Excellence,\cite{395} and others.\cite{396,397} The success of these efforts depends on the extent to which each model fulfills the elements of team trust, data integrity, clinical leadership, institutional commitment, and infrastructure for QI.\cite{398}

Doran and colleagues\cite{399,398} observed the use of the rapid-cycle improvement model (ie, Institute for Healthcare Improvement Breakthrough Series) in a community adult cardiac surgery program. They found significant improvements in hospital length of stay, time on the ventilator, patient satisfaction, and cost. Stanford and colleagues\cite{391} published results of a Total Quality Management System, including surgeon-led implementation of perioperative checklists, nursing supervision to track progress, mortality and morbidity conferences focused on “fix the problem, not the blame,” and mandated multidisciplinary consultation. These interventions significantly reduced the operative mortality of CABG patients.\cite{392}

A single-center QI program (ProvenCare; Geisinger Health System, Danville, PA)\cite{394} asked cardiac surgeons to develop a 40-element care bundle for elective CABG patients. Care elements were evidence based and hard-wired into the care process to ensure consistent implementation. The care process was continually altered to improve implementation. Blood product use, ICU readmissions, and hospital readmissions decreased. Although the ProvenCare model has received considerable interest in controlling costs for health plans, its effectiveness and consistency also provide a model for continuous quality management with profound implications for safety culture.\cite{394}

A process-oriented multidisciplinary approach (POMA) at a cardiac surgery program in Leeds, England, brought all care providers together preoperatively to evaluate and prepare the patient for CABG surgery.\cite{396} In a comparison of patients who underwent CABG before (n=262) and after (n=248) POMA was implemented, improvements in average length of stay, median procedural cost, and the incidences of atrial fibrillation and respiratory infections were noted.\cite{396}

Uhlig et al\cite{397} described the implementation of formal multidisciplinary daily rounds on heart surgery patients that involved patients, family members, pharmacy personnel, nurses, social workers, physician assistants, and cardiac surgeons. This program markedly improved patient satisfaction and decreased mortality among CABG patients.

Finally, Culig et al\cite{395} described an “operational excellence” method derived from the Toyota Production System used in a
new community cardiac surgery program. Shifting of the culture from a strict, hierarchical, “defects are punished” mentality to a collaborative “problems are blessings” mentality was accomplished through disciplined 10-minute daily meetings, which included a formal problem-solving process. The display of relevant, real-time data on public boards was used to track ongoing progress. Over 2 years, the risk-adjusted CABG complication rate was 60% less than that observed for the regional population.

A culture of safety and trust is a cornerstone of effective quality and safety improvements. Rather than a punitive culture of “blame and shame,” a “just culture” mentality provides conditions and behaviors necessary to develop trust. Clinical leaders with training in the science of improvement can strengthen workplace trust with consistent behavior in identifying and working to resolve work defects. Such leadership behavior demonstrates an institutional commitment to QI and provides a QI infrastructure.

Multicenter Collaborative Improvements

Over the years, multicenter collaborative efforts in cardiac surgery have improved quality and safety in cardiac surgery in large part by sharing of site-specific and surgeon-specific data and best practices. This model in cardiac surgery originated in 1987 with the formation of the Northern New England Cardiovascular Disease Study Group. Five hospitals and their cardiovascular teams started collecting and sharing patient demographic, process, and outcome data and developed risk-adjustment methodology for creation of predictive models. Site visits between hospitals and frequent face-to-face meetings focused on standardization, ongoing improvement, and shared learning. Use of this model has led to improvements in overall mortality, mortality in women, and reexploration for bleeding.

On the basis of this success, other multicenter collaborative efforts have developed. In 1996, a group of cardiac surgeons initiated the Virginia Cardiac Surgery Quality Initiative, which encompasses 17 hospitals and 10 cardiology and thoracic surgery groups. Focused projects resulted in statewide reductions in the incidence of perioperative atrial fibrillation, improved glycemic control, and decreased blood transfusion. The Michigan Society of Thoracic and Cardiovascular Surgeons formed a quality initiative with the goal of decreasing variation around best practices. Now funded by a health plan, their focus on interventions and data sharing has increased use of the left internal mammary artery in CABG surgery, and decreased the incidence of prolonged controlled ventilation. Other collaborative efforts in adult CABG patients include the Alabama Coronary Artery Bypass Grafting Project, Washington Clinical Outcomes Program, California Local/Regional Cardiac Surgery Database, and Minnesota Local/Regional Cardiac Surgery Database.

Some studies have questioned the general effectiveness of QI collaboration. Lack of funding, data fatigue, and the competitive pressures among surgeons may limit collaborations to a finite lifespan. Future research to examine the usefulness of external data sharing and interorganizational learning may identify those properties and characteristics that maximize performance among all participants. The extensive availability of information technologies and quality control tools with refinements designed for the healthcare environment will aid groups in deploying interventions that will result in continuous outcomes improvement.

Future Research

Multidisciplinary prospective studies regarding predisposition to error may be the next phase in the evolution of understanding of human error in the cardiac surgical setting. This human factors research includes study of the larger organization, the workspace, the necessary clinical and technical processes, human interaction with equipment, and particularly human interaction with one another (communication and teamwork). Investigators with clinical expertise (surgeons, nurses, anesthesiologists, and perfusionists) and nonclinical expertise (human factors engineers and systems analysts) must collaborate to perform this research. To gain a better understanding of safety and performance in the cardiac OR, Catchpole and Weigmann recommend future emphasis on study design, a systems approach to improvement, and measurement of impact on outcomes. This methodology generates observations and analyses regarding what really happens, rather than what “should” happen, and goes beyond incident reporting of near-misses and adverse events.

Summary Statements

1. Most studies of patient safety in cardiac surgery are reactive (retrospective studies that seek to identify trends) rather than prospective studies to test interventions to reduce human error or improve safety.
2. The Joint Commission has implemented standards requiring “creation and maintenance of a culture of safety and quality throughout the hospital,” including having a disruptive behavior policy in place and a formal process to manage unacceptable behaviors.
3. Poor teamwork behaviors and a tense emotional climate are linked to surgical team errors and patient outcomes.
4. Local and regional QI initiatives in cardiac surgical settings specifically have resulted in improvements in blood product use, time on the ventilator, hospital length of stay, ICU readmissions, hospital readmissions, mortality, patient satisfaction, and cost.
5. Multicenter collaborative QI efforts in cardiac surgery specifically to share demographic, process, and outcomes data, as well as site visits between hospitals, have resulted in regional standardization of best practices and improvements in overall mortality, mortality in women, use of blood transfusions, prolonged ventilator support, glycemic control, and increased use of internal mammary arteries.

Conclusions

Cardiac surgery is a high-risk endeavor that requires an intense focus on patient safety, but sustainability requires a culture of safety. The research in this area is nascent but informative. Hospitals and research groups are testing interventions designed to improve teamwork and communication and other interventions intended to reduce disruptive behaviors and fatigue. Placing patient safety first will ultimately lead to greater patient satisfaction and better clinical outcomes.
Recommendations for Future Action and Research: A “Call to Action” for Patient Safety

WHO has made the reduction of surgical errors one of its primary goals. WHO published guidelines in 2008 that identified multiple recommended practices to ensure the safety of surgical patients.421 However, errors persist. Traditional approaches to reducing human error, typically driven by hospital or professional society quality assurance committees, have established precedents that make significant improvements in patient safety difficult. A few interventions are supported by currently available, albeit limited evidence, as noted in each topic area above. Priority for implementation of these interventions would almost certainly improve patient safety. Furthermore, a concerted effort to expand the scientific study of human error as a unique area of clinical research could provide opportunities to improve patient safety in the cardiac OR, as well as other surgical and interventional settings (eg, the cardiac catheterization suite). Specific areas of study would certainly include (1) research to better understand communication failures and breakdowns in teamwork; (2) the best way to implement and reinforce interventions to improve communication and teamwork (eg, teambriefings and debriefings, and simulation); (3) interventions to promote professionalism and safety culture; and (4) OR ergonomics, including ideal space and layout to minimize flow disruptions and personnel traffic. Ideally, both provider outcomes such as behavior change and communication skills and patient outcomes such as morbidity (eg, infections) and costs would be measured.

Opportunities to Facilitate Translation of Current Knowledge Regarding Communication and Teamwork Into Clinical Practice

Table 3 displays the American College of Cardiology Foundation and American Heart Association scheme for the classification of recommendations and level of evidence. The writing group’s conclusions and recommendations using this classification scheme are listed below.
Communication failures are common and have been implicated as a cause of error and adverse outcomes in both general and cardiac surgery.† Research in aviation and the military has demonstrated that team training can facilitate improved coordination and enhanced performance. Substantial data do exist in surgical settings regarding the impact of training in nontechnical communication skills; for example, checklists, briefings and debriefings, other structured communication tools and protocols, team training, and simulation training.‡ However, except for the standardized time-out process, which is required by The Joint Commission, widespread adoption of standardized critical interaction by use of protocols has not occurred in cardiac or other ORs. Furthermore, in a few longer-term studies of team training, it appears that improvements are not easily sustained.164,197,198

Recommendations

1. Checklists and/or briefings should be implemented in every cardiac surgery case, and postoperative debriefings should be encouraged by leadership in cardiac ORs (Class I; Level of Evidence B).

2. Team training to improve communication, leadership, and situational awareness should be implemented in cardiac ORs and should involve all members of the cardiac operative team (Class I; Level of Evidence B).

3. Formal handoff protocols should be implemented during transfer of the care of cardiac surgical patients to new medical personnel (Class I; Level of Evidence B).

4. It is reasonable to conduct event scenario training for significant and rare nonroutine events (ie, emergency oxygenator change out) on a regular basis that involves the complete cardiac surgery team (Class IIa; Level of Evidence C).

5. It is reasonable to conduct future studies of teamwork and communication that (a) investigate optimal communication models (eg, briefings and structured communication protocols in the cardiac surgical OR); (b) investigate team-training models to determine the “best product” for use in the cardiac OR; (c) investigate impediments to implementation of formal training in teamwork and communication skills; (d) include long-term studies of the sustained impact of such training on provider outcomes (eg, attitudes regarding safety, compliance with best practices, and communication skills); (e) investigate efficacy of formal training in teamwork and communication skills in improving patient outcomes (eg, satisfaction, blood product use, infections, ICU readmissions, mortality, and costs); and (f) include establishment of an anonymous national multidisciplinary event-reporting system to obtain data about events and near-misses (Class IIa; Level of Evidence C).

Physical Environment Research Opportunities

Poor OR ergonomics are present in many, if not most, cardiac ORs. Hazards for both patients and staff exist, including infection in patients related to personnel traffic and airflow,305,307 risk of injury to staff caused by tripping over cords and equipment,297,298 and hazardous noise levels for everyone in the room because of alarms, music, and multiple simultaneous conversations.§ Optimal OR design to maintain efficient flow and restriction of the number of personnel may reduce hazards. Integration of information from various monitors and reduction of noise and alarm fatigue, by design of high-sensitivity and -specificity alerts, may improve patient safety.313,328

Recommendations

1. It is reasonable to investigate the optimal design and testing of information systems in the OR to reduce alarm-related distractions and improve clinicians’ ability to integrate knowledge from multiple sources (Class IIa; Level of Evidence C).

2. It may be reasonable to test optimal room design and layout, both in real-time and in simulation laboratories, as an innovative area of future research, which may avoid expensive design errors (Class IIb; Level of Evidence C).

Safety Culture: Implementation of Policies Regarding Professionalism and Quality

In 2009, The Joint Commission implemented standards requiring the creation and maintenance of a culture of safety, including having a disruptive behavior policy in place and a formal process to manage unacceptable behaviors.371,372 Subspecialty units, including the cardiac operating team, may develop a unique culture with both positive and negative aspects.

Recommendations

1. Local institutional policies that define disruptive behavior in medical professionals in all hospital settings should be implemented immediately, with transparent and formal procedures for addressing unacceptable behaviors and interventions to eliminate such behaviors (Class I; Level of Evidence C).

2. We recommend that every institution commit to a culture of safety by establishing a robust quality assurance and QI program to (a) continuously identify system, unit, and individual safety hazards; (b) provide leadership and resources to eliminate identified hazards; and (c) encourage and value the input of all members of the cardiac surgery team in a nonpunitive atmosphere (Class I; Level of Evidence C).

Safety Culture: Research Opportunities

Only a few studies have assessed the impact of organizational culture on provider or patient outcomes.394,395,397 Currently available data provide limited evidence that patient outcomes (eg, satisfaction, blood product use, infections, ICU readmissions, mortality, and costs) may be improved with patient safety and QI initiatives. It is unknown whether improvements in safety-oriented provider attitudes and organizational culture are sustainable.

†References 13, 16, 18, 20–23, 58, 59, 72, 76–80.
§References 296, 304, 310, 311, 314, 316, 317, 321.
Recommendations

1. Scientific testing of interventions in the complex technology-oriented setting of the cardiac OR is reasonable, including interventions that (a) test existing tools and develop new tools designed to improve safety culture and climate; (b) provide ongoing assessment after intervention(s), to measure sustainability of improvements in safety culture; and (c) lead to establishment of multi-institutional large clinical trials to assess the efficacy of improvements in safety culture in reducing selected adverse patient outcomes (Class IIb; Level of Evidence C).

2. Design and funding of multidisciplinary prospective studies of human and systems factors that predispose to error in the cardiac OR is reasonable (Class IIb; Level of Evidence C).

Acknowledgments

We recognize with gratitude the significant contribution made to this scientific statement by the efforts of our dedicated librarians who conducted the exhaustive and critical literature searches that underpin it: Teri Lynn Herbert, MS, MLIS, Medical University of South Carolina Library, Charleston, SC; Rebecca H. Kindon, MLS, SUNY Upstate Medical University, Syracuse, NY; Whitney Townsend, MLIS, A. Alfred Taubman Health Sciences Library, University of Michigan, Ann Arbor, MI; Elizabeth Schneider, MS, AHIP, Treadwell Library, Massachusetts General Hospital, Boston MA; Carole Foxman, MA, MS, AHIP, Treadwell Library, Massachusetts General Hospital, Boston MA; Deborah Jameson, MS, AHIP, Treadwell Library, Massachusetts General Hospital, Boston MA; and Lorri Zipperer, MA, Zipperer Project Management, Albuquerque, NM. In addition, we recognize the contributions of Donna Stephens, Cheryl Perkins, and Melanie Turner of the American Heart Association for their support of the Writing Committee work.

Disclosures

Writing Group Disclosures

<table>
<thead>
<tr>
<th>Writing Group Member</th>
<th>Employment</th>
<th>Research Grant</th>
<th>Other Research Support</th>
<th>Speakers’ Bureau/Honoraria</th>
<th>Expert Witness</th>
<th>Ownership Interest</th>
<th>Consultant/Advisory Board</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joyce A. Wahr</td>
<td>University of Michigan</td>
<td>AHRQ*</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Nancy A. Nussmeier</td>
<td>SUNY Upstate Medical University</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>J.H. Abernathy III</td>
<td>Medical University of South Carolina</td>
<td>None</td>
<td>None</td>
<td>PharMEDium*</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Michael H. Culig</td>
<td>West Penn Allegheny Health System</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Pirooz Eghtesady</td>
<td>Washington University, St. Louis</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Michael R. England</td>
<td>Physician’s Organization at Tufts Medical Center</td>
<td>None</td>
<td>None</td>
<td>Hospira†</td>
<td>None</td>
<td>SafePath Medical†; Echo Therapeutics†</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>David C. Fitzgerald</td>
<td>Inova Heart and Vascular Institute</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>John S. Ikonomidou</td>
<td>Medical University of South Carolina</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Robert C. Groom</td>
<td>Maine Medical Center</td>
<td>None</td>
<td>None</td>
<td>Various honoraria from nonprofit anesthesia, perfusion, and surgery societies*</td>
<td>Expert witness for defense (industry), CPB-related accidents; 2 ongoing cases witness for defense (hospital)*</td>
<td>None</td>
<td>FDA consultant on device issue*</td>
<td>Editor-in-Chief, Journal of ExtraCorporeal Technology*; treasurer for AmSECT*</td>
</tr>
<tr>
<td>Elizabeth H. Lazzara</td>
<td>University of Central Florida</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>Elizabeth A. Martinez</td>
<td>Massachusetts General Hospital</td>
<td>AHRQ†</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Richard L. Prager</td>
<td>University of Michigan</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Eduardo Salas</td>
<td>University of Central Florida</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Juan A. Sanchez</td>
<td>St. Agnes Hospital, Johns Hopkins School of Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Bruce E. Searles</td>
<td>SUNY Upstate Medical University</td>
<td>Transonic Systems†; Circulatory Technologies†</td>
<td>None</td>
<td>None</td>
<td>Expert witness for defense in 2010 and 2011 for standards of care for perfusion practice†</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

(Continued)
Writing Group Disclosures, Continued

<table>
<thead>
<tr>
<th>Writing Group Member</th>
<th>Employment</th>
<th>Research Grant</th>
<th>Other Research Support</th>
<th>Speakers' Bureau/Honoraria</th>
<th>Expert Witness</th>
<th>Ownership Interest</th>
<th>Consultant/Advisory Board</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patricia C. Seifert</td>
<td>Inova Heart and Vascular Institute</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Frank W. Sellke</td>
<td>Lifespan/Brown Medical School</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Expert witness for defendant in aortic dissection case*</td>
<td>None</td>
<td>CLS Behring*; Novo Nordisk*; Regado*; The Medicines Co*</td>
</tr>
<tr>
<td>Scott A. Shappell</td>
<td>Clemson University</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Bruce D. Spiess</td>
<td>Virginia Commonwealth University Medical Center</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Thoralf M. Sundt III</td>
<td>Massachusetts General Hospital</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Vinod H. Thourani</td>
<td>Emory University</td>
<td>AHA*; Edwards Lifesciences*; Maquet Medical*; NIH*</td>
<td>None</td>
<td>None</td>
<td>Edwards Lifesciences*; Maquet Medical*; Sorin Medical*; St. Jude Medical*</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

This table represents the relationships of writing group members that may be perceived as actual or reasonably perceived conflicts of interest as reported on the Disclosure Questionnaire, which all members of the writing group are required to complete and submit. A relationship is considered to be “significant” if (1) the person receives $10,000 or more during any 12-month period, or 5% or more of the person’s gross income; or (2) the person owns 5% or more of the voting stock or share of the entity, or owns $10,000 or more of the fair market value of the entity. A relationship is considered to be “modest” if it is less than “significant” under the preceding definition.

*Modest.
†Significant.

Reviewer Disclosures

<table>
<thead>
<tr>
<th>Reviewer</th>
<th>Employment</th>
<th>Research Grant</th>
<th>Other Research Support</th>
<th>Speakers’ Bureau/Honoraria</th>
<th>Expert Witness</th>
<th>Ownership Interest</th>
<th>Consultant/Advisory Board</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paul Barash</td>
<td>Yale University Medical Center</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Paula Graling</td>
<td>Inova Fairfax Hospital</td>
<td>Inova Seed grant (compliance with surgical safety checklist across perioperative services)†</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>AORN (unpaid)*</td>
</tr>
<tr>
<td>Loren Hiratzka</td>
<td>Bethesda North Hospital</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Jeffrey Riley</td>
<td>Mayo Clinic, Rochester</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Marc Ruel</td>
<td>University of Ottawa Heart Institute</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Doug Wiegmann</td>
<td>University of Wisconsin–Madison</td>
<td>US Department of Defense†</td>
<td>None</td>
<td>None</td>
<td>Grand rounds talk*</td>
<td>None</td>
<td>None</td>
<td>American College of Surgeons (unpaid)*</td>
</tr>
</tbody>
</table>

This table represents the relationships of reviewers that may be perceived as actual or reasonably perceived conflicts of interest as reported on the Disclosure Questionnaire, which all reviewers are required to complete and submit. A relationship is considered to be “significant” if (1) the person receives $10,000 or more during any 12-month period, or 5% or more of the person’s gross income; or (2) the person owns 5% or more of the voting stock or share of the entity, or owns $10,000 or more of the fair market value of the entity. A relationship is considered to be “modest” if it is less than “significant” under the preceding definition.

*Modest.
†Significant.

References

205. Papaspyros SC, Jagvanska KC, Adluri RK, O’Regan DJ. Briefing and debriefing in the cardiac operating room: analysis of impact on theatre

Selected in 2009 by the Health Care database team: "Windows on Health Care: a project to develop and evaluate learning from medical error reports submitted to the National Partnership for Patient Safety."

Patient Safety in the Cardiac Operating Room

Wahr et al

1167

327. Sibbald B. Winnipeg inquest recommendation could leave young MDs in lurch, expert warns. CMAJ. 2001;164:393.

Rosenten AH, O’Daniel M. Study links disruptive behavior to negative patient outcomes. OR Manager. 2005;21.1. 20, 22.

Patient Safety in the Cardiac Operating Room: Human Factors and Teamwork: A Scientific Statement From the American Heart Association

on behalf of the American Heart Association Council on Cardiovascular Surgery and Anesthesia, Council on Cardiovascular and Stroke Nursing, and Council on Quality of Care and Outcomes Research

Circulation. 2013;128:1139-1169; originally published online August 5, 2013; doi: 10.1161/CIR.0b013e3182a38efa

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231

Copyright © 2013 American Heart Association, Inc. All rights reserved.

Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:

http://circ.ahajournals.org/content/128/10/1139

An erratum has been published regarding this article. Please see the attached page for:

/content/128/12/e192.full.pdf

Data Supplement (unedited) at:

http://circ.ahajournals.org/content/suppl/2013/09/03/CIR.0b013e3182a38efa.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation_ is online at:
http://circ.ahajournals.org/subscriptions/
In the article by Wahr et al, “Patient Safety in the Cardiac Operating Room: Human Factors and Teamwork: A Scientific Statement From the American Heart Association,” which published online August 5, 2013, and appeared in the September 3, 2013, issue of the journal (Circulation. 2013;128:1139–1169), a correction was needed.

On page 1139, in the author byline, Bruce E. Searles’ degrees were listed incorrectly as “MSN, CCP.” They have been changed to read, “Bruce E. Searles, MS, CCP.” The authors regret the error.

This correction has been made to the print version and to the current online version of the article, which is available at http://circ.ahajournals.org/content/128/10/1139.
Patient Safety in the Cardiac Operating Room:
Human Factors and Teamwork:
A Scientific Statement from the American Heart Association

on behalf of the American Heart Association Council on Cardiovascular Surgery and Anesthesia, Council on Cardiovascular and Stroke Nursing, and Council on Quality of Care and Outcomes Research

Circulation. published online August 5, 2013;
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231 Copyright © 2013 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/early/2013/08/05/CIR.0b013e3182a38ef.citation

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org/subscriptions/
心臓手術室の医療安全：ヒューマンファクターとチームワーク：
米国心臓協会(American Heart Association)からの科学ステートメント

Joyce A. Wahr, MD, FAHA, Co-Chair ; Richard L. Prager, MD, FAHA ;
J.H. Abernathy III, MD ; Elizabeth A. Martinez, MD ; Eduardo Salas, PhD ;
Patricia C. Seifert, MSN ; Robert C. Groom, CCP ; Bruce D. Spiess, MD, FAHA ;
Bruce E. Seale, MS, CCP ; Thoralf M. Sundt III, MD ; Juan A. Sanchez, MD ;
Scott A. Shappell, PhD ; Michael H. Culig, MD ; Elizabeth H. Lazzara, PhD ;
David C. Fitzgerald, CCP, FAHA ; Vinod H. Thourani, MD ;
Pirooz Eghtesady, MD, PhD, FAHA ; John S. Ikonomidis, MD, PhD, FAHA ;
Michael R. England, MD ; Frank W. Sellke, MD, FAHA ; Nancy A. Nussmeier, MD, FAHA, Co-Chair ;
on behalf of the American Heart Association Council on Cardiovascular Surgery and
Anesthesia, Council on Cardiovascular and Stroke Nursing, and Council on Quality of Care and Outcomes Research

心臓手術室は、複雑な医療行為が行われる場であり、重度の心疾患と重大な合併症に苦しむ患者を治療するべく、高度な訓練を受けた医師およびメディカルスタッフが精巧な器具を用いてチームとして治療に取り組む場所である。近年の心臓手術の進歩により、何千もの患者の命が救われ、その予後も著しく改善された。実際、冠動脈バイパス術の手術死亡率と合併症発生率は、過去10年間にわたり低下を続けている(図1)1。だが、高い技術を有し献身的に仕事に励む心臓手術室のスタッフであっても、人間である以上はエラーを起こす。1991年に出されたLeapeら2,3の報告によると、1984年にニューヨークで入院した2,719件の有害事象が発生していたとの推計が発表された。他の報告でも、入院患者の最大16%が実際に被害を被ったことを示唆するエビデンスもあるという4。Gawande5は、外科における有害事象の発生率が心臓外科の患者では12%であるのに対し、他の領域の外科患者では3%であったことを報告し、有害事象の54%は防止できると主張した。現在、心臓手術を受ける年間約35〜50万人の患者のうち、有害事象は28,000名に発生し、冠動脈バイパス術に関連する死亡の3分の1は予防可能であると考えられている5。

洗練された医療技術、先進的なテクノロジー、医療チーム内の連携の推進により、心臓手術の成績は著しく改善された。しかしながら、米国医学院(Institute of Medicine)の報告書6が出されて10年以上が経過した現在においても、エラーの減少や防止が大いに進んだというエビデンスはほとんど得られていない7。潜在的なリスクを測
定するツールや医療安全を改善するための方策は、いまだ開発とテストの初期段階にあり9。医療安全研究のための資金投入も不十分なままである。既報の文献からは医療安全対策の成果が表れたというエビデンスは限られたものしか得られていない8、9。さらに、既存研究の大半はその性格上、質的あるいは記述的な研究であり、従来型の定量的な統計解析には利用できない。そのため、このような研究に精通した臨床医は少ないのが現状である。

防止できるエラーの多くは、医療技術や訓練、知識などに関係したものではなく、認識、システム、チームワークの欠如を反映している（図2）10-14。コミュニケーションや協力、共同作業、リーダーシップなどのノンテクニカルスキルは、チームワークの重要な構成要素であり、こうした対人技能の欠如はしばしば有害事象やエラーの原因となっている15-17。訴訟に発展した手術症例を対象としたレビューでは、医師により至ったシステムとしての失敗の37％がコミュニケーションの失敗が占めていた18。そして、それらのコミュニケーションの失敗は、医療従事者と患者の間ではなく、主として医療従事者の間で発生していた。

手術手順の妨げや手術の停滞につながるチームワークの失敗は、このほか頻繁に起こっており、心臓手術を対象とした研究19により1時間当たり17.4回、他の研究20
では1時間あたり11回の頻度と報告されている。ここで重要なことは、このような手術の停滞が重なってくると、技術的なエラーの発生から有害な結果を招くということである。このような停滞の原因の多くはチームワークの欠如に関連したものであり、こうした停滞は手術エラーにつながることが示されている。

軽微なイベント、すなわち患者の手術結果には影響を及ぼさないと考えられるイベントですら、チームが重大なイベントから立ち直る能力を示すことにより、死亡とニアミスの双方と有意に関連することがある。ある研究では、1件の手術で発生する軽微な問題の件数は平均9.9回であり、この平均を3回上回る毎に、術中元をもつなぎ、手術時間が延長していた。軽微な停滞とイベントの発生が重複していくと、重大なエラーに対処する心臓手術チームの能力が損なわれるものと考えられる。要するに、「ひとりも音もなく」となり、「ちりも音もなく」となる。これはチームの安定を欠くチームが、心臓手術におけるチームワークスキルの低下を招くものと考えられる。

手術チームの各メンバーが互いに自分の役割や問題のチームワークスキルに関する認識はメンバーごとに異なる。複数の研究で示された検討では、コミュニケーションスキルとチームワークスキルに関する外科医と循環器科医の自己評価は、同じチーム内の看護師や体外循環技士の見解とは大きく異なる。外科医は他の外科医とのチームワークについて、85％が「高い/非常に高い」と評価したが、看護師は自身と外科医の連携について「良い/非常に良い」と評価したのは48％にとどまったものである。チームワークスキルを客観的に評価できれば、メンバー間の技能水準の差を明らかにして、教育と訓練の機会をつけることが可能である。

本文書で示す科学ステートメントには、チームワークスキルに関する多くのデータを盛り込んでおり、重点はコミュニケーションに置いている。米国医療機関認定合同委員会（Joint Commission on Accreditation of Healthcare Organizations）の報告によると、コミュニケーションの不足は2004～2012年に報告された観察イベント（sentinel event）の根本原因のうち、65％と最大の割合を占めており、投薬ミス、手術部位の取り違え、術中および術後イベントの主要な発生要因であった。また、心臓手術の不具合が頻繁に起きていること（慣れたチームでも手術1件当たり5～4回、慣れないチームでは手術1件当たり15～44回）不慣れたチームでは手術1件当たり15～44回）を示した。さらに、これらのチームワークの不具合をもたらした主な原因（58％）はコミュニケーション不足によるものであった。

米国心臓協会（American Heart Association）は、今回示す科学ステートメントの作成にあたり、医療安全上のリスクに関するエビデンスを要約するとともに、心臓手術における術前リスクとチームワークを考慮したための対策を明確化するために努めた。医療安全に対するすべての潜在的リスクとそれに対する対策を網羅した包括的
「医療安全の評価」

医療安全を改善する方法を理解するには、これまでで研究者たちはノンテクニカルスキルとその影響をどのように評価してきたかを理解する必要がある。そのために第1に必要となるのは共通の指標であり、「ノンテクニカルスキル（nontechnical skill）」という用語を定義して、研究の比較と議論におけるものとしなければならない。第2には、ヒューマンエラー（Human error）が医療安全に関与するという見解に基づく評価方法における進歩を目指すことを期する。

テクニカルスキルは客観的に測定可能な（たとえ10分間に作れるものや数式など）であるが、ノンテクニカルスキルを測定するには、専門家による観察評価や一観すると主観的な評価が必要となる場合がある。こうした観察調査は半数の臨床医にとって困難が伴うが、この方法により、手術室で発生する有害事象の件数、種類、重症度がすでに特定されている。有害事象発生の誘因となるチームおよび個人の多くが接触と、優れた手術で全くみられる行動を明らかにされている。しかし、このような観察調査にも限界がある。それは、有効な結果を得るには観察者を訓練する必要があり、訓練しても全員が調査の専門家になるわけではないということである。調査では、2名の観察者がともに捉えた事象の評価が一致したものの、2名が一致して捉えた事象は、全体の事象のわずか32%にすぎなかった。

一方、ノンテクニカルスキルを評価する方法として、フィードバックシステムを導入する方法を選んだ。テクニカルスキルの質の評価は、ノンテクニカルスキルについても、能力を評価し、教育の機会を提供する必要がある。前述のように、ノンテクニカルスキルの観察調査には、観察を前提とした経験豊富な観察者が必要である。しかし、今日まで、訓練をされた観察者が研究の一翼を担うことはあっても、臨床能力の訓練または観察するためにはない。手術シミュレーターにおいて、テクニカルスキルに関する専門家の評価と外科医の評価には差があることが示されており、ノンテクニカルスキルについては現在、医療領域の多くの研究者、外科医の間で研究が展開されているが、臨床医の観察が信頼される。
チームワークの測定

ノンテクニカルスキルの測定ツールは数多く使われてきたが、表1が、広く認められた単一のツールは存在しない。多くのものには、特定のサブチーム（麻酔科、外科）、あるいは非技術的なチームの評価を評価するように設計されている。これらの行動評価システムは有用で（測定すべきものや測定できる）、再現性がある（観察者内および観察者間の相違が十分相関する）。感度が高く、行動の違いがあれば検出できる、実用可能で（実験が容易で費用対効果がよい）なければならない。手術チームと術者（外科医、麻酔科、看護師などのチーム）のスキルを測定する方法では以下の4つの測定ツールが設計されている。これらの行動評価システムは有用で、再現性がある（観察者内および観察者間の相違が十分相関する）。感度が高く、行動の違いがあれば検出できる、実用可能で（実験が容易で費用対効果がよい）なければならない。

チームワークの定義

チームワークとは、チーム内のメンバーが協力して、共同に目標を達成するための連携と相互作用を指す。チームワークの評価は、チーム内の情報を共有し、共同の意思決定を行い、共同の行動をとることを意味する。

表1 チームワーク評価ツール

<table>
<thead>
<tr>
<th>チーム内のチーム</th>
<th>ワークスキル評価ツール</th>
<th>定義</th>
</tr>
</thead>
<tbody>
<tr>
<td>OTAS 24, 33, 34-44</td>
<td>患者、機器、コミュニケーション評価に</td>
<td>目を向けた、業務手術チェックリスト</td>
</tr>
<tr>
<td></td>
<td>ての助言</td>
<td>チーム詳細</td>
</tr>
<tr>
<td></td>
<td>共同作業</td>
<td>がよい</td>
</tr>
<tr>
<td></td>
<td>共通のリーダーシップ</td>
<td>がよく</td>
</tr>
<tr>
<td></td>
<td>共通の監視</td>
<td>がよく</td>
</tr>
</tbody>
</table>

NOTECHS 44-45 | 欧州で使用されている航空業界の | NOTECHS尺度を適用 |
		協力/チームワーク
		リーダーシップ/管理
		状況認識
		問題解決/意思決定

NOTECHSは「Observational Non-Technical Skills」、OTASは「Observational Teamwork Assessment for Surgery」を指す。

チームワークとノンテクニカルスキルの関係

チームワークとノンテクニカルスキルの関係は非常に重要である。チームワークの良否は、チーム内でのコミュニケーション、協力、共同作業の度合いに大きく影響される。チームワークの良いチームでは、チーム内の情報共有がよく行われ、共同の意思決定を行い、共同の行動をとることができる。これにより、チーム内のノンテクニカルスキルも向上する。一方、チームワークの悪いチームでは、情報共有が不十分であり、共同の意思決定ができず、共同の行動も取ることができない。これにより、チーム内のノンテクニカルスキルも低下する。したがって、チームワークの向上は、ノンテクニカルスキルの向上に寄与する。
行われた18万9000件の手術を対象に研究を行っている。

病院の安全風土はコミュニケーションエラーと相関があるので、安全もしくはチームの「感情的な風土（emotional climate）」に対する実態の変化を結果の指標として利用し、その影響を測定した研究もある。これらの研究は、ノンテクニカルスキルの訓練が医療安全の改善に有効であることを示している[44,70]。

要約
1. 個人およびチームのノンテクニカルスキルは医療安全に影響を及ぼす。
2. OTASおよびNOTECHSは、評価指標としての妥当性と実用性が高いことが示されている。これらからのツールから正確な結果を得るには、使用する観察者の訓練が必要である。
3. ノンテクニカルスキルを改善するために提唱された対策としては、実施に先だって検証し、実際にスキルを改善することを確認する必要がある。

コミュニケーションとチームワーク

チーム内のコミュニケーション

コミュニケーション（Communication）

コミュニケーションとは、「送り手と受け手との情報交換」であり、手術においては、複数の個人が同時に情報をやりとりする。しかしこの場合、コミュニケーションスキルは手術室でのチームワーク行動のうち、最も不十分な項目の1つである。医療安全の欠如は、コミュニケーションの失敗または遅延に起因することが多い。コミュニケーションの難易が起きるのは、情報の送り手がメッセージをきちんと伝達した場合（煩雑な表現や不十分な表現など）、受け手が情報を不正確に理解した場合、情報が送られるタイミングや相手が関心している場合である。コミュニケーションの失敗は一般的にみられる現象で72,74,75、多数の研究において問題の主たる原因としている。手術においても、コミュニケーションの難易が効率と有床移動の根拠であると指摘されている31。チームのメンバーが互いのことをよく知らない状況がさらに悪くなる。

手術室のコミュニケーションの失敗は、情報の誤受のタイミング、内容（関連性）、もしくは不十分なデータ、目的、受け手（関与した人に指示したり伝達したり）の誤りによる。送り手側のコミュニケーションは効率であり、適応性があり、明確で、簡潔であり、それは医療安全の促進を支援する風土で育まれる可能性がある。この要素、情報が関与したコミュニケーションは直接のない活動を生む。適応性のあるコミュニケーションはチームのメンバーが同僚機能を有している。情報が適切に伝達され、効果的なコミュニケーションは現実の行動を高める。ノンテクニカルスキルがチームパフォマンスに果たす役割を高める。ノンテクニカルスキルは医療のコストを控え、医療体験チームの役割を高める。
暗黙の共同作業には、業務と環境、そしてチーム内の個々の役割と責任に関する共通の理解が必要である。これがあれば、明確なコミュニケーションがなくともメンバーは互いの実行と必要とするもの予想でき、これにより効率が高まる。114,115。また、相手理解があれば、メンバーが支援、情報、フィードバックを提供し合うことができるため116、チームはパフォーマンスを損なうことなく機能とプロセスを修正することが可能になる117。特に、改善ストレスに曝される状況において、有効なチームワークとパフォーマンスのための対策に欠かせないのが、事態を予想する能力である118。共同作業が行われない場合、チームメンバーは同じ会社に勤めているが、それぞれの行動は異なると認識され、チーム内での親和性が低下することを示した研究もある119,120。

チーム内のコミュニケーションの有効性は、業務上の問題を解決するうえで重要である121,122。チームのコミュニケーションを改善する方法として、以下のようなものが挙げられる123,124。

1. 共同作業の効率を高めるため、チームのメンバーは同じとき、同じ目的で行動を起こすことが必要である。これは、チーム内のメンバーが同一の方向に動くのを促進し、全体的な行動が一致することを示す。
2. 情報共有は、チーム内の理解を深め、誤解を防ぐのに役立つ。情報共有は、全体の理解を向上させ、共同作業を円滑にする。
3. チーム内のメンバーは、お互いの役割を理解し、それぞれが果たすべき責任を明確にすることが必要である。これにより、チーム内の理解が深まり、共同作業が円滑になる。
4. チーム内のメンバーは、問題を早期に発見し、早めに対策を講じることが肝要である。これにより、問題が拡大するのを防ぎ、全体の作業が円滑に進む。

チーム内のコミュニケーションが円滑である場合、チーム内の理解が深まる一方で、メンバー間の対立も減少する。これは、チーム内の情報共有が円滑であることに起因していると見られる。

チーム内のコミュニケーションの効果は、業務上の問題を解決するのに極めて重要である。これは、チーム内のメンバーが同一の方向に動くのを促進し、全体的な作業が円滑になる。これは、チーム内の一人一人が果たすべき責任を明確にすることが必要である。これにより、チーム内の理解が深まり、共同作業が円滑になる。
と定義され、期待を下回るパフォーマンスしか示していない個人のパフォーマンスを向上させたり、優れたパフォーマンスを発揮する見込みのある個人の技能を強化したりする方法として用いることができる135。コーチングの行動としては、チームにおける問題の特定やメンバー間で協議が行われるように誘導することがある132。

コーチングの効果としては、メンバー間の人間関係改善、メンバーの満足度向上、チーム力の強化、心理的安心感と安全の向上などがあげられる132。リーダーシップといわれる概念と個々およびチームの双方の実力を向上（すなわち、個人またはチームを削減しているという感覚、と作業を完遂するとの対応）は強固結びており、チームの実力の向上はチームのパフォーマンス全体を向上させる132。リーダーシップを要因、コーチングの効果を促進し136、死亡率を減少させられる61 ことが示されており、リーダーシップのコーチングは、望ましい行動のいかなる形を示し、チームのパフォーマンスを強化する建設的なフィードバックを提供して、オープンなコミュニケーションと真摯な発言を促す効果がある135。心臓手術チームの第一のリーダーは心臓外科医と考えられることが多いが、他のメンバーもリーダーシップ発揮し、他のメンバーにある効果的なコーチングを行うことができる。このチームのコーチングにおいて、メンバーが望ましい行動のフィードバックを実施し、実施が十分な領域を特定し、業務の完遂を促すことも含まれ133。「助け合い、勤務、指示、指導を与え、起こり得るエラーに対する注意を促し、必要に応じて決まり事を破るメンバーと明確に向き合う」などの行動が求められる131。しかし、これらのコーチング行動が有益なのは、チームのメンバーが提案と建設的批評を受け入れるだけの精神的基盤を持つ場合を除く131,136。

エラーや減らすための対策
病院と手術室内のチームワークを改善すべて設計された対策として、チーム訓練とマネジメント、プロトコルなどがあり、対策はこれらの分類のいずれかあるいは複数に関連することが多い132。これらの対策は患者とスタッフの満足を高め、死亡率を低下させる77-135。プロトコルを使用した重要な連携作業（引き続きのフィードバック）を標準化するとき、情報の内容とその整理を改善し、スタッフの参加数を増やすことができる77,137。しかし、予想外の葛藤、悪化するメンバー間の対応心を増していくことも多135,136。医師は、検査と自身のノンテクニカルスキルを過大評価して、ストレス、疲労、停滞の影響を軽視する。また、チェックリストやマニュアルの使用を強制するときと、個々の患者に合った医療を実施する能力が制約される135。症例の数が増えることによるスタッフの交渉を期待する135,44-62,136,137。しかし、ノンテクニカルスキルの訓練、チェックリスト、プロフィンガ、シミュレーション訓練、よく練られたコミュニケーションの手順が航空安全に果たした役割は否定できない。そして実際に、これらの対策が外科的ケアの質を改善するという評価が示されている138,139。

手術においては、航空産業と同様に、プロトコルの活用とチームワークが最善の形で行われるとしても、エラーまたは事故（患者に重傷を及ぼす率）を根絶することはできない。Porell137,138 が示し、事故はリスク産業にはつきものであり、最高のチームでさえゼロに発表することはできない。変更されるのは、次の事故が発生する間隔が長いのかいかである。Vannucciら137,139 は、中心静脈留置後にガイドワイヤーを抜去をための4件の事象のうち、2件はガイドワイヤーの抜去を忘れていたための事象であり、これが発生したと記載している。ガイドワイヤーを抜去された医師も、その訓練プログラムに不満を感じていた。したがって、チームワークの問題だけでなく、これらの事象が発生するには、両方の医療用に改善することが必要になるであろう。この作業（根本原因分析、警戒事象の検出、臨床医の能力の検証など）は全体としての目標の目的ではないが、医療安全にとってはきわめて重要である。

チーム標準
不十分なチームワークスキル（コミュニケーション、リーダーシップ、状況認識）のエラーおよび有害な結果の誘因となることについては、多額のエピデンスが得られている14,16,21-23,58,61,75。この示唆が示しているのは、ノンテクニカルスキルを改善するためにチームワーク訓練を実施すれば、エラーを減らすはずであることを示す140,149。米国医学院は、「To Err is Human」と題した報告書を公表した後、航空産業におけるCRMの利用を通じたエラー削減の成功例を研究し、重症患者管理でのチーム訓練プログラムの導入を推奨した。しかし、そいうためにはCRMの原則を医療用に変更し、チーム訓練法を開発して、その結果を評価せざるを得ないから、これらの推奨事項の実施は進んでいない。しかしながら、最近行った調査によれば、CRM型の戦略がチームワークの改善に寄与して寄与し150。チームのパフォーマンスと患者の転帰（合併症の発生率など）を改善することが明らかになった。また、医療安全に対するチームの認識と取り組みは医療安全の質と大いに関連している151。

正規のチームの訓練の利点に関する報告は、緊急医学チームの行動の質が著しく改善し、臨床のエラーの発生率が31%から4.4%まで減少したことを示している152。Halmersonらは、4年間の産学問でのコーチングからなるチーム訓練カリキュラムにより、前年のプログラムの導入が増加し153。コミュニケーションの効率が高まった153。チームの訓練報告書とCRMの報告書を示した。これにより、集中的な訓練セッションは、手術室でのコミュニケーションを有意に改善する155。血腫手術と一般手術において対策の前後を観察した研究で、Oxford大学の研究者らがCRMに基づくチームワーク訓練（9時間にわたる通常の講義と双方向の討論型の教育）を実施したところ143,45。チームワークのスコアとチームワーク風土のスコアが改善し、技術的なエラーと手順のエラーの発生率も低下了46。CRMの要件に基づく退役軍人病院（Veteran's Administration）のMedical
チーム訓練のリスクを定義する中で何が有効であったかを示すデータはほとんど存在せず、訓練期間も数時間から数日、数週にわたる。チームの内容もさまざまなあった。これは、学習の改善が見られた場合がある原因かもしれない。また、学習の改善を含む訓練を手術チームに受けさせ、訓練後に観察研究を行ったところ、この安全指標の改善率はわずか60%であり、同様の他の研究では、ただ改善されたコミュニケーションとチームのスキルが3カ月後には元に戻っていた。しかし、同じでなかった指標が改善された「安全指標が発生する機会に直接関与するという意識」（threat-to-outcome score）、3カ月前後にも有意な向上を維持していた。利用可能なデータが示しているのは、チームを個人としてはなくてチームとして訓練する必要があり、全体を用いたシュミレーションの使用が効果的であり、有効な処置には経験と経験管理のリーダーシップがきわめて重要である。さらに、訓練効果を絶えず維持するには、コーチングの復活や継続が必要であるということである。

タイムアウト、チェックリスト、ブリーフィング、デブリーフィング

タイムアウト（timeout）、チェックリスト（check-list）、ブリーフィング（briefing）により、コミュニケーションエンゲージメントを高むことができる。チェックリストとタイムアウトは提案が決まると、特定の情報を口に出して確認する。これに対し、ブリーフィングは短時間に話し、自由回収方式のチェックリストに従って実施する。チェックリスト内容は内容が毎回同じで、すべての処置を通じて手順をカンパリしているのに対し、ブリーフィング内容は毎回変わり、処置の異なる側面に焦点を当てている。ブリーフィングでは他言が行われ、手術チームスタッフ全員に「詳細を確認し、情報を交換し、疑問を尋ね、問題や懸念を特定する」機会を提供する。デブリーフィング（debriefing）は、複雑な作業が完了した後に、そこで学んだ内容の共有を促進することを目的として行われ、たいていは「今日は何が上手く行ったか」および「明日もっと円滑に行えるようにするために何ができるか」の質問が出される。

タイムアウトを初めて提案し、その後2003年以降に実施を義務付けたのは米国医療機関認定合同委員会（Joint Commission on Accreditation of Healthcare Organizations）であり、その目的は手術部位の取り違えを減少させることであった。同委員会が作成した若干プロトコル（universal protocol）では、手術部位に印を付けて患者を同定するとともに、手術または処置の前に「タイムアウト」を行うように求めている。チェックリストは単純な認識ツールであり、単純作業（買い物など）と複雑な作業（航空機を飛行するなど）の両方を改善でき、見落としがちなルーチン業務を思い出させる上で有効である。世界保健機関（World Health Organization: WHO）は「術前安全チェックリスト（Surgical Safety Checklist）」を開発し、世界中で導入するように強く推奨している。これは、手術中に（1）麻酔導入の前に、（2）皮膚切開の前に、そして（3）患者を退室させる前のタイミングで、標準化されたタイムアウトを計3回行うというものである。これからのタイムアウトでは、患者確認、手術確認、手術部位、抗生物質およびバルスオキシメーターの使用、薬物アレルギーの有無など広範囲にわたる情報が確認される。これの導入により死亡率が低下することが示されている（図3）。

チェックリストは、腹腔鏡下胃摘出術のような一般的な手術において重要な手順を確認したり、発生率の低いかい危機的状況を起こした場合の指示を与える方法として利用できる。Ziewaczらは、手術室で最も発生頻度が高かった危機的シナリオを12種類（膀胱損傷、無脈性電気活動、心室性心跳、巨細胞）を定め、それに特定かつ不可欠な処置を評価する指標を科学的根拠に基づいて開発した。その後の研究では、危機管理チェックリストがある場合とない場合のそれぞれについて、2つ の手術チームに4つの危機の状況をシミュレートさせたところ、チェックリストを使用したほうが重要性の順番が1位に減少することが示唆した。また、チェックリストがある場合とない場合で手術時の危機対応シミュレーション（17の手術チームが計106のシミュレーションを実施）を行ったArriagaらは、予測を遅らせた研究において、チェックリストの使用により、救命のための手順が適切に行われなかった事例が有意に減少した（手術後の発生頻度はチェックリスト使用時では6%，非使用時には23%であった）。

チェックリストを使用すれば、ペストプラクティスの実践を促進したり、膨大な量に及ぶガイドラインを簡略化して最も重要でエビデンスに基づくべき業務だけをまとめたりすることも可能である。さらに、チェックリストによって患者の転帰の改善を図ることもできるが、そのた
手術の安全 チェックリスト

図3 世界保健機関の手術安全チェックリスト（World Health Organization Surgical Safety Checklist）

手術の安全 チェックリスト

麻酔導入前に
(少なくとも手術部分と麻酔科脇で)

患者同定、手術部位、手術手技、インフォームドコンセントの確認
あり

手術部位のマーキング
あり

輸血の確認
あり

麻酔下、担当科の確認
あり

手術開始の確認
あり

手術に入り全員のメンバーが自己紹介と
役割の確認
あり

患者名、手術部位、手術部位の確認
あり

監理の確認
あり

手術の分野の従事者の判断のみが行った
か？
あり

術者外
あり

予想される主要な事項

外科医科

必要、または行うべき準備
あり

500ml以上割れの輸血の準備
あり

エラート以上の輸血が心肺停止を緩和する

患者送診前に
(手術部、麻酔科、外来科で)

麻酔医、手術科、外来科の確認
あり

手術に入り全員のメンバーが自己紹介と
役割の確認
あり

患者名、手術部位、手術部位の確認
あり

監理の確認
あり

手術の分野の従事者の判断のみが行った
か？
あり

術者外
あり

予想される主要な事項

外科医科

必要、または行うべき準備
あり

500ml以上割れの輸血の準備
あり

エラート以上の輸血が心肺停止を緩和する

本チェックリストは（全ての診療）を包括するものではない。診療ごとの実情に応じた追加や変更は、推奨される。
2009年1月改訂 ©WHO（世界保健機関）

めには、チェックする個々の項目が単純で、エピデンスに基づき、職場の実状に合っている必要がある210。チェックリストを導入することで、中心静脈ラインの感染と人工呼吸器関連肺炎の発生率、さらに死亡率を低減できること

が示されている209,210。

しかししながら、医療安全を向上させるのはチェックリス

トを実現する技術ではなく、チーム全体の適応努力であると

専門医は主張している211。チェックリストに記載された

行動を目標として抜本的に自身の行動を変えようという

チームをあげての意欲がある状態で、ただ上層部がチェック

リストを強制するようなことがあれば、至命線をもむし

ろ、チェックリストによって自身の権威が損なわれ、子

ども扱いされ、患者に対する有効な診療が阻むという恐れ

もある212,213。オランダでは、Dutch Health Care

Inspectorateによって2008年までにWHOチェックリ

ストの使用が義務付けられがたが、完全な形で実施したのは

全症例11151件中わずか39%であった。しかし、統計死

亡率は3.13%から2.85%に低減し、この死亡率の低下

にはチェックリストの遵守と関連が強く認められた214。

チェックリスト導入プロジェクトで最も大きな効果を収

めたもののは1つに、カテテル関連感染の根絶を目的と

したMichigan Keystone Projectがある215。このプロジョ

ェクトが成功したのは、単にチェックリストを提供して使

用するよう命じたのではなく、実務と確かにデータの使用

を改めてルール作りを進めると共通の使命で結ばれた

「緊密なネットワーク」を作り上げたからであると分析

されている216。

ブリーフィングを行うべき、チームがこれから行う業務に

関して共通のイメージを確立することができる。そのた

め、軍隊、パイロット、港湾労働者、このブリーフィ

ングという方法を広く用いてきた。前にブリーフィング

を実施すれば、チームのメンバーがこれから行う業務に関

する知識と起こりうるイベントの知識を共有できる217,218。

航空産業では、コックピットでのブリーフィングは大規模

として技術的な検証を行う上で重要とされるが、ここで重

要となるもう1つ要素は、チームのメンバーが自身が

感じている懸念を何であろうと明確に述べなければなら

ないことを明確にすることである219。すなわち、パイロットは、

安全に関わる情報はすべて伝えてほしい、そのためには自

分に誤解を残すことっても懐かない、と歩き回る貢
葉にして伝える必要がある。外科手術では、CRM を導入する前の航空産業に普通にみられたのと同様に、厳しい上
下関係が存在し、医師以外のメンバーは医師に異議を唱え
るのは困難である216。前述の手術スタッフの
多くが、意見を率直に述べられ、意見を唱えたりするのは
難しいと報告されている106。

ブリーフィング自体は、チーム訓練や正式導入の以前
は、ほとんど実施されていない217,218。ブリーフィングの
導入に至った課題の 1 つは、ブリーフィングの構成
要素に関する医療従事者間の見解の相違である。英国で実
施された調査では、外科医の 39%がブリーフィングを毎
回実施するとの報告があり、同じく報告した看護師はわず
か 4%であった179。同様の現象は、Mayo Clinic の循環外
科学で実施された調査でも報告されている156。また、3
373 割を対象とした Safe Surgery Checklist Study においても、術前にブリ
ーフィングを実施している例はほとんどみられなかっ
た195。

Surgical Patient Safety System (SURPASS) のチェ
ックリストには、ブリーフィングとデブリ・リングが含
まれており122。確定した賠償請求を調査した研究では、
ブリーフィングを含む SURPASS チェックリストを使用
していなければ、有害事象の誘導の 3 分の 1 を排除し、死亡
例の約 40%を予防できる可能性122が示されている。
なお SURPASS の導入により、合併症の発生率が
27.3%から 16.7%に、院内死亡率が 1.5%から 0.8%に
低下した213。WHO 手術安全チェックリストにもブリーフ
ィングに関する多くの領域が含まれており、その導入によ
り死亡率が 1.5%から 0.8%まで、合併症の発生率が
11.0%から 7.0%まで低下し、ほとんどの場合が 15%である
179。この研究は、5 大陸の 8 病院で 3,500 件を超える
症例を対象として実施されたもので、基本的なものから高
度なものまで、あらゆる手技が用いられている。さらに、
25,513 名の患者を対象にした最近の研究において、van
Kleijn ら214 は、術前のブリーフィングを含む WHO チェッ
クリストの導入により、入院 30 日間当たりの死亡率が
3.15%から 2.85%まで減少したと報告している（オッ
ズ比：0.85, 95% 信頼区間：0.73-0.98）。この結果は、
チェックリストの遵守によりさらに確かなものとなった。
チェックリストを完全に遵守した場合のオッズ比は 0.44
(95% 信頼区間：0.28-0.70) で、これに対して部分的に
遵守した場合でまったく遵守しなかった場合で、それぞれ
1.09 (95% 信頼区間：0.78-1.52) と 1.16 (95% 信頼
区間：0.86-1.56) であった。

近年、退職医師健康管理局（Veterans Health Admin-
istration）は、健康需要管理プログラムを実現する一環とし
てブリーフィングの実施を求めるよう呼びかけている。チーム訓
練実施後に死亡率が 18% 減少し182。さらに、他の 2 件
の研究では、ブリーフィングとデブリ・リングの導入後
に抗菌物質と深部静脈血栓予防に関する投薬遵守率が上
昇した151,152。注意散漫と手術の流れの停滞、深刻な手
術エラーの大きな原因であるが、ブリーフィングはこれらの
者を減少させる22。Gillespie ら221 は待機手術と緊急手術
を観察し、チームのメンバーが互いに相手をよく知っている
こととコミュニケーションの創分の発生数に逆相関があ
り、手術の停滞数とコミュニケーションの創分の発生数
に逆相関があることを示した。組織立った短時間のブ
リーフィングの導入により、手術の停滞数、症例に関す
る知識の欠乏、スタッフ間のコミュニケーションの遅延が
半減する222。この結果は、もともと「メンバー同士が互
いによく知っている」チームに導入した場合も同様であっ
た。また、看護師が必要な補給品を取りに調剤室に移動す
る回数および調剤室での滞在時間が減少し、薬剤の数も減
少し224。さらに、別の研究179 では、ブリーフィン
ングにより手術の予定シェールが 11% 減少し225。
ブリーフィングは待機群に手術があらかじめ行われるの
ではなく、チームワークの風土、行動、パフォーマンスを強化
する。ある調査では、ブリーフィングを日常的に実施していると
述べた回答者は、ブリーフィングを実施していないという回答
者と比べて、良好な安全風土を持っていると報告し
た213。ブリーフィングは、リスクの減少と強化された協
働の認識と関連する216。また別の研究179 では、ブリフ
ィングの前後で参加者が、その意見は重要なんだ、自信
を持ってほしい」と、「みな、納得できない時にお口に出
して言うのを考えるようになった」、もっと、しばしば無
忘れで口に入れるようにしていたから」とコメントした。さら
に、イスラエルで実施された研究では、ブリーフィングに
より、それにしか発生しない事象が 25% 減少し、メン
バーが「自身の業務、チームワークおよび医療安全を高
める評価をしようとすることが」の利用を持っていた217。そ
して、英
国で 6 ヶ月間にわたって行われたブリーフィングに関す
る研究では、スタッフが、チーム文化が改善され、潜在的
な問題が浮き彫りになったと調査していることが明らかに
になっている212。O’Neill212 は、リーダーシップはスタッフ
を尊重と敬意をもって扱うような文化を生むものでな
ければならず、日常的に優れた医療を実施するには、透明性
と問題共有が必要であると記載している。そして、この
透明性と問題共有をもたらすのがブリーフィングとデブ
リーフィングなのである。

ブリーフィングにより手術時間は延長することはな
く222。手術中の中断と注意散漫を減らすことで、むし
ろ手術時間は短縮できる222。35,000 件を超える症例を対
象に実施された研究では、ブリーフィングの長さは平均
2.9 分（分布：1～5 分）であった218。

ブリーフィングの効果を支持する根拠たるエビデンスは
あるにもかかわらず、「ブリーフィングは手術室の安全の
ために強制されるもの」と考える方が多い216。その背
景には、医療従事者たちは自分自身の医療スキルを実
際よりも過大評価する傾向が存在し、これを改善す
る必要はないという見解を広める傾向がある218,219。医
外科医の中には、ブリーフィングがチームワークを改善す
ることに同意しない者もいるが、実際にブリーフィングを
導入した外科医らは、効率が上がり、チームの労働意欲が
高まると報告している217。チェックリスト介入群に無

Wahr et al 心臓手術室の医療安全 11
作為に割り付けられた外科医たちは、対象群と比較して、安全に関するチーム行動を積極的に実践していた。しかし、その一方で、進捗、チーム効率、コミュニケーションについては低い評価を付けており、これは、チェックリストまたはブリーフィングの使用に慣れてきても居心地悪く感じることがある可能性を示している235、有効に導入するには、専門家にリーダーの役割ならびに現場の協力が重要である236、それができた。それは、ブリーフィングとデブリファイングに対するさまざまな反応(受容から抵抗まで)により導入が阻害されるためであり、これらの方策を有効に導入するには、この点について理解しておおく必要がある237, 238, 239。

ブリーフィングやデブリファイングについてはあまり研究されていないが、進捗管理実務者による大規模研究であるVeteran-an's Health Administration Study240 や始めとするアウトカム研究で、ブリーフィングが検討されている。それにすると、ブリーフィングを実施すると、健康チームのメンバーはどのように考え、何がうまくいかなかったかを評価できるようになり、チームの強化を、次回のパフォーマンスを改善することができる241, 242。また、今後の計画を作成すると、システムの改善を検討して実施し、コミュニケーションが不十分な部分に対応する機会も得られる243。デブリファイングの方法と実践プロセスについては既刊の文献を参照のこと244-249。

結論として、手術時のブリーフィングとデブリファイングが合併症発生率と死亡率を著明に低下させることを示唆した文献が増えている。導入に対する障害に関する研究も有用であるが、今日までに示されたエビデンスが支持しているのは、心臓手術においては症例ごとに組織をつくったブリーフィングとデブリファイングを行うのが有効であるという研究である。すなわち、ブリーフィング、デブリファイング、システムの構築は、臨床現場における複雑な対応を適切に行うために不可欠であると考えられる。

システム

航空産業ではシミュレーション訓練が普及しており、個人の技能訓練や個人およびチームのテクニカルおよびノンテクニカルスキルの評価のほか、エラーの発生機序その防止を検討する研究にも利用されている250。これに対して、医療分野では、シミュレーション訓練の導入が進まなかったが、技術および教育的ソリューションとして、医療現場に即したシミュレーション訓練を支える技術が急速に進化し、発展している251, 252。シミュレータは、教育の方法253-259 およびその技能の評価260 に有効なツールとして導入した。シミュレーターを使ったこれらの技術の評価が専門医認定プロセスに組み込まれた医学情勢もある260, 261, 262。

シミュレータは、スタッフのノンテクニカルスキルの評価に訓練者としても望ましい263, 264-268。現在の患者シミュレータは正確に想定できる臨床シナリオを用いて、本格臨床環境を用いて、医師の問題認識を示すための現実的な患者データを提供する。この技術を用いるには、教育者はカリキュラムの評価と評価項目を定義として、教育環境の妥当性を実証する必要がある261-264。初期の研究の多くは、テクニカルスキル訓練とその評価を焦点をあてている265-267。特に、最近のエビデンスから、チーム訓練とノンテクニカルスキルの開発にシミュレーションを用いるのが有効であることが示されていている241, 245, 246, 247。シミュレーションを利用すれば、患者をリスクにさらすことなく、ヒューマンファクター(疲労、ストレスなど)がテクニカルスキル243-247, 248。危機におけるコミュニケーション249、教育法の244、テクニカルスキルとノンテクニカルスキルの関係253, 254、およびチームワークと臨床でのパフォーマンスの関係255 などに与える影響を科学的に検討することも可能である。

臨床現場に即したシミュレータでは、適切な学習環境を提供できる可能性がある。これが特に有効となるのは危機的状況に関する訓練であり、患者を及ぼす恐怖ないし、個人とチームに緊急事態における理解課題、ストレス、身体的要素などを考慮に入ることができる。たとえば、致命的なインシデントが発生すると、チームは時間的なプレッシャーの下で共同作業を要する複雑な対応を迫られる。しかし、このようなインシデントは減らしにくい、正確に訓練されたチームが対応できる。これに対して手術シミュレーションであれば、チームのコミュニケーションを職能的で臨床的問題への対応を練習し、正確に評価し、明確に改善させることができる256。YerkesとDodson257は、これは過去の有名な学習の研究に関する研究を行い、学習は適度な刺激(興奮)により強化され、適度の興奮により退化することを示している。

シミュレーションが特になしに存在するのは、人間の緊急事態に関する訓練である。これが初めて文献に記載されたのは1997年のことであった258, 259。この訓練では、成人および小児患者の循環を模したコンピュータ制御の圧注モデルを利用し、通用の状態と危機的状況をシミュレーションできる259-261。2002年の調査では、臨床技術者のはほぼ全員が、このシミュレーション訓練は有用であると回答したが、実際に訓練を受けたことがあるのならわずか17%であった262。臨床現場に即したシミュレーションを用いた手術チーム全体の体験管理に関する教育については、最近研究が実施され、参加者は最も重要で、高改善がみられたとして以下の2つの領域をあげた。1つはきわめて重要な情報を正確に伝えるよう努めること、もう1つは異なる職種の間のコミュニケーションの改善で、これには、意味のある受け手を明確に定義(情報を伝える相手の名前を呼ぶ)、口頭でのやりとりにおいては必ず復唱することが重要である263。

構築されたコミュニケーション手法

コミュニケーションを改善すうるのは、情報の提示と想起を円滑化する情報交換266と、受けた情報を認識して内容を検証する閉鎖的なコミュニケーション(closed-loop communication)である267。このコミュニケーションは、ストレスにさらされたチームが明確にその対象を理解できない場合に特に重要になる268, 269。この形のコミュニケーションにより、チームが目的、予想、状況認識、計画遂行を確実に共有できる261。

構築されたコミュニケーション技術には、その文字を含む単語の使用(アルファの a, ブラボーの b, チャーリーの c
チーム間のコミュニケーション

チーム間で患者との医療情報を受け渡すことが、引き継ぎ（handover）あるいは受け渡し（handoff）と呼ばれ、医療では頻繁に行われる。しかし、チーム間での情報の伝播は困難であり、医療上のエラーの大きな原因であることが知られている33, 275。特に手術の際は、外科医や術者、麻酔科医、看護師、病棟スタッフ、腫瘍科医などの複数の専門家が協力して患者の治療を進める。しかし、情報の伝播が不完全であると、医療上のエラーのリスクが増大する可能性がある。

Gawandeらは、医療機関が患者の情報を正確に伝えることを重要視し、チーム間での情報の伝播の重要性を強調している34。チーム間での情報の伝播が不十分であると、医療上のエラーのリスクが増大する可能性がある。
あるものの、引き続きの質を高めるような設計された対策は、ほぼすべてが有効なことが示されている。先天性心疾患手術後の手術室から集中治療室への移送の引き続きに関する前向き研究では、チームワークに基づくプロセスと手順の実施により、引き続き1回に発症するエラーの数が6.24回から1.52回に、口頭でのコミュニケーションにおける必須情報の省略が引き続き1回当たり6.33回から2.38回までそれぞれ低下した。また、自動車レースの最高齢であるF1のピットストップでの作業手順に基づくプロセスを形成して実施したところ、引き続き前の準備、情報伝達の前完了を早める業務、伝達すべき情報差を特定できる。これにより技術的なエラーと情報の伝達の発症頻度を下げ、引き続きのかかる時間を10.8分から9分44秒まで著しく低下することができた。23

別の研究では、1ページの単純な穴埋め式シートの導入により、引き続きスコアの合計点と手術中の情報サプライアウトが改善し、引き続きの所要時間の延長もみられなかった。24

さらに、異なる引き続きシートを用いた小児循環器外科における同一の結果を得ている。このようなシートの導入により、注意深さ、注意的、情報の流れが著しく改善し、業務の中断が減少した。最後に、心疾患患者を手術室から集中治療室に移送する際に標準化された引き続き手順を実施したところ、重要なスタッフ全員の引き続きへの参加が96%から当時68%まで増加し、情報の省略が26%から19%まで減少し、集中治療室の看護師の満足度スコアが61%から81%まで上昇した。しかし、シート導入後も欠落した情報の割合が19%まであったことは、問題の深刻さを示している。

電子技術を用いた引き続き手順が提案されているが、技術はほとんど存在していない。MAGIC（Multimedia Abstract Generation of Intensive Care）という自動化手順の枠組みは状況認識手法と量的分析手法を組合せたもので、電子技術に基づき、ブローニングでの引き続き情報一式の提供を可能にする。ただし、術期管理看護師協会は、引き続き手順の目指と医療従事者、医師のための教材を含む教育プログラムを開発した。

自由度の高い引き続き手順は、基本的な手術の種類と順序だけを示し、記憶を支えるSBAR（状況・背景・評価・提案）を使用することが多い。このSBARを引き続きの際に用いると、治療、麻酔、手術に関する情報の正確な伝達が容易になることが示唆されている。また、心臓手術における看護師も、これを利用して心臓手術における医師の連携性を通じた患者の管理を円滑に接続している。さらに、ビデオとロールプレイングを用いてSBARを教えるカリキュラムにより、指示入力の際のエラーの発生率が低減した。

物理的な観察を含む場合があるチーム（患者を介した循環器専門医と心臓外科医）の間のコミュニケーションは一つである。しかし、心臓ケアチームと手術前後を行う際の専用のインターネット回路を通じて血液造影データを電子的に伝送受信することで、心臓ケアチームを実施してから手術を決定するまでの時間が36時間から1時間まで短縮され、診断から緊急手術までの時間、56時間から18時間になった。患者の転院や経済的な側面に関するデータは得られていないが、必須の患者データの電子送信によりエラーを大幅に減らし、医療を迅速に提供できる可能性がある。

複数回の引き続きを含む医療の連携性を検証した対策がいくつか存在する。1つのアプローチは、主として1つのベッドを多目的に使うことで引き続き回数を最小限にし、引き続きのエラーを減らそうというものである。このアプローチでは、1人の患者が、同じ専門医と同医師のチームによる集中治療、ハイケアユニット治療、病棟レベルの治療を同じ場所とベッドで受ける。全国基準（創設外科医学会データベース）に検索してみると、1つのベッドを多目的に使用すると、人工呼吸器使用日数と集中治療室への入院、入院日数が減少し、脳卒中発症が発生せず（0/610）、患者1人当たり平均6200～9500ドル削減できた。

要 約

1. コミュニケーションスキルは、手術室におけるチームワーク行動のうち、現状では最も不十分な項目の一つである。

2. 一般外科と心臓外科側の手術を対象とした複数の研究により、エラーと有害な結果の根本原因で最も多いのがコミュニケーションの失敗であると指摘されている。

3. チームワーク的重要要素は6つのC、すなわちコミュニケーション（Communication）、協力（Cooperation）、共同作業（Coordination）、認知（Cognition）（集合的な知識と共通の理解）、対立解決（Conflict Resolution）、コーチング（Coaching）（チーム訓練）で要約することができる。

4. ヒューマンエラーを減らすための対策の一つに、チームワーク訓練プログラムがある。退役軍人の病院のMedical Team Training（MTT）やTeamSTEPPSプログラム（米国医療研究品質評価[Healthcare Research and Quality]と国防省[Department of Defense]による政府出資のプログラム）などの研究では、手術室でのチームワークとコミュニケーションスコアの有効な改善と手術患者の死亡率および合併症発生率の低減が証明された。しかしながら、こうした改善を持続していくために、コーチングの再発や継続が必要である。

5. エラーの減少を目的とする他の対策には、WHOが開発した手術安全チェックリストなどのチェックリスト、術前のブリーニングと術後のディスコースなどがある。チェックリスト適用はプロセスにより患者の転院が改善し、中心静脈ライン感染、人工呼吸器使用日数をそれぞれ、1つずつ低減することが研究から明らかになっている。

6. 他の研究は、ブリーニングが注意深くと病院の停滞の発生回数を減らし、チームのパフォーマンスを強化するとともに、合併症を減らす可能性があることを証明した。しかしながら、これらのツールの導入は心理学的障害
と文化的な障害のためあまり進んでいない。
7. シミュレーションは、手術手のスタッフのコミュニケーション、協力、共同作業、認識、対立解決、コーチングを含むノンテクニカルスキル、ならびにテクニカルスキルとノンテクニカルスキルの関係を評価し、訓練するための有望なツールである。
8. 心臓手術を受ける患者はチームからチームに何度もその自体を貫くか否かを分析した研究ではなく図示の言葉を改善する目的に寄与する研究すべてに要するが、最も欠陥を少なくすることを実証している。

物理的環境

ヒューマンファクターの問題

「環境」の定義は、「人間を取り巻く状況、物性または状態」である291。手術室の環境は、物理的空間、機器、人間（スタッフと患者）から、人間工学は「人間が使用する物の設計および手元に関連する応用科学で、人間と物の最も効率かつ安全な相互作用を生むことを目的とする」292と定義される。しかし、手術室での人間工学は、医療環境という観点から最も適当にあるといえない292-294。過去10年間に外科の専門に関する技術が大量に導入されたのに対し、手術室の密閉状態になっている一方295。手術室の設計と空間の改善がこの変化に追い付いていない193-294。このような手術室や機器の設計が人間工学的に不適切であることは、手術の流れの停滞につながる大きな要因となり、結果として技術的なエラーを招くと大きく考えられており、また、手術部位感染との関連も報告されている194-295。

空間と設計

手術室の広さとレイアウトの双方が安全に影響する。小さな手術室では、機器が寄せ集まることで手術の流れが停滞し、逆に過度に広い手術室では、スタッフが動く動線を移動されなければならない。Brogniezら297は、労働災害の2番目に多い要因が、段差のないところでも足滑りを防ぐために、手術室の動転を改善するための介入を推奨した。またCesaranoとPriegeorge298は、散らかった機器から求めたが邪魔をして医療従事者が安全に医療を行えることがでできず、患者とスタッフの安全に危険にさらされた県を「スパゲッティ症候群(spaghetti syndrome)」と記載した。このような環境では、患者の近傍に電源と機器を持ち込むこと自体が非常に困難になり199。

スタッフと移動

手術室内にスタッフが動いていることは避けがたいが、その結果としてスタッフの注意が否らされたり、感染リスクが高まることで、手術室の安全が損なわれることを含めるため、手術室内をスタッフが移動する目的の約20％が情報の獲得、25％が休憩、そして、20％が機器の運送と除去である299。Healeyら12は、手術室内の移動と手術中の外科医の注意をそらすスタッフの交渉をいったとした干渉の程度を関連付け、これの注意散漫は手術室での不具合の要因の1例であるが、これは改善できると結論付けた。

スタッフの移動の増加はドアの開閉頻度が高まることを意味し、これにより汚染源となりうる物質を除去する換気システムの効果が低下することが示されている200。また、手術室の空気と周囲の空気が混じることで細菌数が増加する可能性もある200。整形外科と一般外科の事故例では、1時間当たりのドアの平均開閉回数は37回から135回に、1分間に約1回あった201-202。心臓手術においては、ドアの平均開閉回数は、時間に19回で、人工材料を使用する場合は22.6回あった203。これは、1時間当たり5.64分ドアが開いている計算になる。これに、使用していない手術室のドアが密閉下におかれていたままになっていると、室内の微生物数が大きく増加する202。

手術中にスタッフが新たに手術室内に入ると、感染リスクが高まる恐れがある。必要な最低人数より5人分に手術室内に入ることは、微生物数が15倍を超える204。整形外科領域の内服手術に関する他の研究は、ロニーエントリー数と、手術室内の人数の間にはっきりした正の相関があることを明らかにしている205。この手術室内の人数と手術感染の発生率との関係は、人数が多いそのものか、または手術室の出入口や手術室内での移動が増加することに起因する可能性がある206-207。

機器

機器や機械は人の生活や患者が受ける医療を改善するが、その一方で患者に直接被害を与える、この点を考慮して有効に利用するための研究を進めている。Wahretal208は、手術室に潜在的危険に関する調査を行い、機器（脳死心臓のフローポートにによる食道損傷など）、人工心肺（体外循環開始に伴う大動脈解離など）、手術器具（OPCABのフローに起因する気道塞栓など）に関する問題を多数記載した。この中で機械と技術が患者に害を及ぼす機器として、以下の4つが同定されている。（1）誤使用（不十分な訓練または不注意、）（2）装置の使用による固有の危険、（3）不十分なメンテナンス、そして、（4）機械の完成度の低さ、不十分な訓練、または使用認可を受けていない装置の使用、医療従事者の不適切なリスク認識。機器の管理におけるペーストフラクティクスの不遵守がリスクを高める209。これに加え、機器に該当する有害事象に関して報告されているものに共通する事項は、誘因となる組織的なエラーを探求できていないということである209。

現代の機器の大量が機械効率と生体適合性に焦点をあてて設計されており、設計がヒューマンエンジニアに影響を及ぼすかどうかという観点はほとんど重視されていない。Wiegmannら210は、不具合解析を用いて人工心肺装置を研究し、情報ディスプレイの位置、読みやすさ、
書式に問題があることを見出した。図表や図版は機器にしっかり組込まれておらず、空間設計と品目の配置の設計も理想的でなかった。そして、報文音の音量が小さすぎたり大きすぎたりし、音の調整も不適切であった。

実際、手術室での注意散漫の最大の原因の１つは、機器が発する警報音である210-212。警報音は事前に設定した基準を超えたことを術者に知らせる役割を果たしているため、警報が発生する状態を確認できる。しかし、典型的に心臓手術室では、視覚または聴覚に訴える警報を発する約80機の異なる機器が設置されている213。Schmidら214は、心臓手術1件の間に警報が351回発生することを報告した。これは1分間に12.8回の発生である215。この結果、手術の実施を担当する麻酔科師と術者の精神的負荷は、警報音を発する結果であると考えられる216。

図4 心臓手術室における精神的負荷は、術者の業務を重視して手術の過程全体を通じて変化する。NASAの業務負荷指数（NASA TLX: NASA-TASK Load Index）（n=30）

CRNA：認定看護師、CST：認定外科学専門、NASA：米国航空宇宙局、Elsevierの許可を得てWadheraら217から転載。©2010 American Association for Thoracic Surgery

雑音

上述のように、手術室の移動、会話、警報、時には音楽のせいで、室内の雰囲気が職業安全衛生管理局（Occupational Safety and Health Administration）と国際職業保健・健康協会（National Institute for Occupational Safety and Health）の基準を越えるレベルに達することがある218。このような不快な音や治療従事者同士の会話の妨げ、患者の転院に影響を及ぼす危険が219、220ある。研究によると、腹部手術後でのSSI（術部部位感染）が起こった患者の手術環境では、雑音レベルが有意に高かった221。また、手術内容と関係の会話は、雑音レベルの著しい上昇と同等に認識される222。

Mooreら219は、観察研究を実施して、通院の腹部手術の雑音が80dB以上になると、医療上のエラーの著しい増加につながると結論付けた。また、スタッフの疲労が生じる場合、頭上での静音地区の車行音、歯科機械の歯科手術の実施に、音楽が有効な影響を与えることが明らかになっている223。その一方で、手術室での音楽の適切な使用により、ストレスを減らし、一部の手術室スタッフのパフォーマンスを改善できることを示唆した研究もある224。しかしながら、調査した麻酔科業務の25%が、手術室に音楽が流れている間のスタッフと有効に情報交換するのに助けとなると回答している225。覚えるとすると、あるスタッフにとっては心地よく有効な音楽が、他のスタッフの注意散漫を招く恐れがあるといえる226。この問題がさらに念及びには、手術中の情報伝達の確認において、様々なタイミングでチーム間の担当者と関係がなければならず227。また、手術中の設備や機器の配置は、無菌性、手術室、メイヨー高校、人工心肺装置の位置関係を考慮されていないなければならない228。無菌室のドアと患者が出入りするドアの近くには、可動アームのある機器や固定用の機器を配置しないようにする。手術室のドアは、作業領域内を移動しても無菌領域に立ち入ることができないような場所に設置される必要がある229。
手術室内の人数を制限して、室内の移動を調整することで、スクラブと物品から落ちる空中浮遊汚染物質を減らす可能性がある235,256。ここに最近、医療機関管理看護師協会の「Standards and Recommended Practices」は、手術室内の移動のベストプラクティスを提示した257。

心臓手術室内の物品や消耗品の最適な位置関係に関する文献はまだないが、指針は、手術室には最低50平方フィート（4.64m²）の収納場所が必要であるとしている255。常識的に考えれば、消耗品を手術室内に保管すれば、作業の流れが改善し、ドアの開閉回数が減るように思われる。しかしこれに関わるデータは、いわゆる「術前にブリーフィングを行う」という Openset に関する回数が減少する258。

手術室内の雑音については、雑音の抑制により患者が改善することを明らかにした研究が現時点では存在しない。なかには、航空機のコックピットでの「減音」概念（sterile cockpit）の採用を推奨する文献もある257。Wadharaら259は、手術の途中でチームの認識負荷が変化することを実証し（図4）、手術の重要な部分（ヘパリン投与、カニューレ挿入、人工心肺の開始、人工心肺からの離脱など）ではチームが入る会話をするよう提案した。しかし、この提案が実際にエラーや遅らすかどうかは検証されていない。

どのような症例であっても、手術中に利用できる最大の量の観察および閉鎖情報の統合化するのは容易ではない。モニターと記録システムは、スタッフが術野に関心を向けて手術に集中したまま参ざれるように設計されるべきである260。2006年、Eganら261は、マサチューセッツ総合病院の「未來の手術室」を記述した。さまざまなモニター、コンピューター、機器が視界を遮らないように壁のパネルに取り付けて、これにより、スタッフは情報を統合しながら手術を進めることに、情報伝達の単純化、患者を囲む機器を減らし、お互いはコミュニケーションを改善すること262。

また、現在いらないチームのメンバーと外科的手技のリアルタイム画面上を共有できるところから、引き続き容易になる260,261。

麻酔科の対策と外科的対策を電子カルテ上で統合化されば、警察による疲労、警備に関する注意防護を減らすことができる。KrugrとTremper262、「将来的手術室」とは、将来における3つの主要な領域を提案した。（1）これらシステムを設計し、理論上の構想と、その臨床診療への統合の構想をする。（2）医学領域のさまざまな領域の知識を、包括的生理的モデル及び発展モデルに結ぶ。（3）この領域の知識を利用して、感度と特異度の高いアラームシステムを製作するための高度なアルゴリズムを開発する。

最後に、臨床現場に至る性質の歪曲化影響や、人間と機械のインテグレートされた改善を検討するのに必要で、次世代の安全性の機器を生み出方法について工場業界にヒントを与えている263。また、患者を危険にさらすことなく、最適な手術室の設計とレイアウトを検討することができる。

要約
1. 手術室の開通工学的配慮（広さとレイアウト）が不十分だと、手術の流れの停滞、技術的なエラー、SSI（手術部位感染）、スタッフの労働災害など、ヒューマンエラーの発生や潜在的危険につながる。
2. 最適な手術室の設計には、患者のベッドと手術台の頭部の位置の標的、機器とスタッフの移動に十分な空間、患者への注意の持続、作業の流れを支える技術の使用を確実に盛り込む。
3. 手術室内の移動を防ぎ、患者のリスク（手術の流れの停滞とSSI）を減少させられる可能性がある。

4. 手術室には、機器の音報、会話、音楽などによる雑音がある。これに対して、患者の安全性を満足する必要があると考えられる264。手術室のスタッフ（静かにくさ）に危険が及ぶ。

安　全　文　化

組織文化

安全文化的欠落は、心臓手術後の良さな結果につながることが指摘されている265。チームワークと協力の風土は、エラー防止に留意する患者安全を守るために集団プロセスやコミュニケーション方法と同様に重要である。これは、新型手術で代替されるリスクと臨床現場においても患者の有害事象を認識し、防止できる266。

心臓手術の安全に関する研究は大規模なのが後方267、研究者により実施されてきた。前向き研究はわずかずつしか、安全を改善するよう設計された対策を選択されたものはさらに少ない。しかしながら、これらの研究により改善可能な領域が指摘されている。たとえば、アメリカのピストル268,269とカナダのウィニペグ270,271にある小児心臓病院で、完成度の低い質保証プログラムがより高い死亡率の減少につながっていた。ブリストル病院（Bristol Infirmary）の医療従事者は患者の転換が不良であることに懸念を抱いていた。それらの意見は取り上げられている。これは主として、問題を特定して対処する病院管理部門や「病院の質保証部門」が存在しなかったからである。デンマークでは症例数が少ないかため、問題の有無や質保証プログラムの有無に不十分なものであり、機器を検査したり、それに対処したりできなくなっていた。この双方の事例が示しているのは、内部からの懸念の声が上がってきて問題を認識したがかった文化と対応が不十分な医療の質保証システムによる二重の危険性である。

本稿では、医療における組織文化についてレビューや安全を先にねば行動を特異することに、心臓手術に限定して記載された少数の文献を含めて、医療安全を目的とすなわちの実態を示すことを検討する。

医療環境における組織文化

病院における組織文化。すなわち院内ですでに培われた信条、思い込みは、患者を安全に保つことに対してスタッフが示す態度に多大な影響を与え、見栄を張る似た病院が、まったく異なる文化とサポートチャートを有する

Wahr et al 心臓手術室の医療安全 17
こともあり、病院スタッフの大部分が、自身の環境の安全文化に貢献して、これを創造する方法を学んでいる。医療における現在の的確構造は長い年月をかけて進化してきた。しかしながら、特に心臓外科領域で見られるように、複雑な技術的洗練度が後退していることを考えると、医療従事者の間の強い差を重視する組織文化は安全でないことがある。組織文化が医療安全に与える影響に関しては、現在の教育および訓練パラダイムを再評価し、より協力で職務を果たすアプローチを重視することの重要性を強調するデータが増えている323-324。 安全文化 対 安全風土 組織の安全文化は、危険を特定して減少させる能力と、エラーの誘因をシステムの状況に影響するチームとしての行動の統合を含んでいる。一方で、組織文化が医療安全に与える影響に関しては、安全教育および訓練パラダイムを再評価し、より協力で職務を果たすアプローチを重視することの重要性を強調するデータが増えている323-324。

安全文化の発達にとって、安全文化は、危険を特定して減少させる能力と、エラーの誘因をシステムの状況に影響するチームとしての行動の統合を含んでいる。一方で、組織文化が医療安全に与える影響に関しては、安全教育および訓練パラダイムを再評価し、より協力で職務を果たすアプローチを重視することの重要性を強調するデータが増えている323-324。
手術エラーは手術チームの文化を踏まえて理解しなければならない。Mazzoccoら17は手術チームの研究を通じ、チームワーク行動、特に手術中と、引き続き腫のデブリフィングで情報の共有がありまされるチームは、医師の死亡と合併症の発生リスクが高いことを明らかにした。また、心臓外科医による技術的ナースの発生頻度の違いの約45%がチームワークの要素だけに起因することを示す研究もある25。そしてNurokら26は、スタッフを混乱（ピリピリ）させるような手術のスピードと、術者外科チームの低いパフォーマンスが関連することを見出した。

破壊的行動（disruptive behavior）とエラー、さらにには不適切に要請する行動が問題である。手術では危険的な行動が重要なマイノリティプロセスに与える影響は、過去の行動のために対話に至ったことがあると回答した参加者が7%といった報告をしている27。心臓手術についてでは、データを少なくしながら、RosensteinとO’Daniel28が、「強いストレス下では破壊的行動が起きやすく、患者に害が及ぶ恐れがある」と示した。また、4530名の病院勤務医と看護師を対象にした調査では、医師による破壊的行動を自身の病院内で目撃した回答者が77%に上り、看護師による同様の行動を目撃した回答者が65%いたことも報告している27。

この回答者による、破壊的行動が最も起きやすいのは一般外科（28%）で、心臓血管外科では13%であっ
た。この行動はすべての専門領域で認められた。また、手術前に関する研究では、回答者の75%が病院内で破壊的行動を目撃し、麻酔科医によるものは64%、看護師によるものは59%、外科レジデントについては43%、そして麻酔科レジデントによるものは35%が目撃したと報告された29。さらに、回答者の46%が、これらの破壊的行動が有害事象を招く可能性を認識していると述べるものに、19%が破壊的行動に起因する有害事象をはっきり目撃したと報告した。また、周術期医療に関わるスタッフの80%以上が、破壊的行動による集中力の低下、コミュニケーション・協力機会の低下、そしてチームの他のメンバーとの関係悪化を報告している。研究者らは、最終的なスタッフが、これらの行動が医療安全と患者の安全に影響を与えると想定していると指摘した27,30-33。

米国医療機関認定共通委員会は、2009年に「病院全体での安全と質の文化的創造と維持」を義務付けるリーダーシップ基準を導入しており、それには破壊的行動に対する対処方針の策定を、認定できない行動を管理する新たなプロセスが含まれている29-32。これらの破壊的行動の具体的な定義は以下のとおりである。「危険で破壊的な行動は、医療の提供者、身体的威嚇などの目に見えない行為で、患者を陥れる危険な行動、またはそれが心臓手術の安全を脅かす行動である。これらは、患者の死亡を防ぐために必要な行動、または患者の安全を脅かす行動である。これらは、患者の安全を脅かす。そして、米国医療機関認定共通委員会はこれを「安全性を損なう行動」と定義している。」

破壊的行動と機会は共通する部分があなたが、ある一時的の破壊的行動が増幅された例という見方でもできる。Workplace Institute34は、いじめをこのように定義している。「健康を害する虐待で、以下のいずれかに該当するものが反復される状態、a)暴力、b)威嚇、c)脅迫、または強い暴力で、攻撃的な行動（非法律的なものを含む）。そして、c)業務の完了とあわない行動または発言。」

周術期の医療環境は、強いストレスに曝され、高い集中を必要とするため、破壊的行動もしくは暴力の潜在性に起こりやすい状況に繋がる。手術は迅速な反応を求めるものである。特に、手術前の看護師あの他のスタッフに対するいじめ、手術の実施にあたるストレス、患者の高齢化の高さ、周術期医療専門家（AN）の不足、緊急勤務、通夜を含む待機状態、そして個々のスタッフの専門分野がそれぞれ異なる、その中で孤独であるという事実からも起こりやすい可能性がある。35破壊的行動は、医師を点とするような期間の構築と、スタッフが感じている「沈黙の空白」により引き続き、回復を期待して口にできていないことが、小さなエラーが蓄積重なって大きな事象を招く環境を生む。つまり、いじめはチームワークと、安全性の構築に深く関与している。}

手術エラーは手術チームの文化を踏まえて理解しなければならない。Mazzoccoら17は手術チームの研究を通じ、チームワーク行動、特に手術中と、引き続き腫のデブリフィングで情報の共有がありまされるチームは、医師の死亡と合併症の発生リスクが高いことを明らかにした。また、心臓外科医による技術的ナースの発生頻度の違いの約45%がチームワークの要素だけに起因することを示す研究もある25。そしてNurokら26は、スタッフを混乱（ピリピリ）させるような手術のスピードと、術者外科チームの低いパフォーマンスが関連することを見出した。

破壊的行動（disruptive behavior）とエラー、さらにには不適切に要请する行動が問題である。手術では危険的な行動が重要なマイノリティプロセスに与える影響は、過去の行動のために対話に至ったことがあると回答した参加者が7%といった報告をしている27。心臓手術についてでは、データを少なくしながら、RosensteinとO’Daniel28が、「強いストレス下では破壊的行動が起きやすく、患者に害が及ぶ恐れがある」と示した。また、4530名の病院勤務医と看護師を対象にした調査では、医師による破壊的行動を自身の病院内で目撃した回答者が77%に上り、看護師による同様の行動を目撃した回答者が65%いたことも報告している27。

この回答者による、破壊的行動が最も起きやすいのは一般外科（28%）で、心臓血管外科では13%であった。この行動はすべての専門領域で認められた。また、手術前に関する研究では、回答者の75%が病院内で破壊的行動を目撃し、麻酔科医によるものは64%、看護師によるものは59%、外科レジデントについては43%、そして麻酔科レジデントによるものは35%が目撃したと報告された29。さらに、回答者の46%が、これらの破壊的行動が有害事象を招く可能性を認識していると述べるものに、19%が破壊的行動に起因する有害事象をはっきり目撃したと報告した。また、周術期医療に関わるスタッフの80%以上が、破壊的行動による集中力の低下、コミュニケーション・協力機会の低下、そしてチームの他のメンバーとの関係悪化を報告している。研究者らは、最終的なスタッフが、これらの行動が医療安全と患者の安全に影響を与えると想定していると指摘した27,30-33。

米国医療機関認定共通委員会は、2009年に「病院全体での安全と質の文化的創造と維持」を義務付けるリーダーシップ基準を導入しており、それには破壊的行動に対する対処方針の策定を、認定できない行動を管理する新たなプロセスが含まれている29-32。これらの破壊的行動の具体的な定義は以下のとおりである。「危険で破壊的な行動は、医療の提供者、身体的威嚇などの目に見えない行為で、患者を陥れる危険な行動、またはそれが心臓手術の安全を脅かす行動である。これらは、患者の死亡を防ぐために必要な行動、または患者の安全を脅かす行動である。これらは、患者の安全を脅かす。そして、米国医療機関認定共通委員会はこれを「安全性を損なう行動」と定義している。」

破壊的行動と機会は共通する部分があなたが、ある一時的の破壊的行動が増幅された例という見方でもできる。Workplace Institute34は、いじめをこのように定義している。「健康を害する虐待で、以下のいずれかに該当するものが反復される状態、a)暴力、b)威嚇、c)脅迫、または強い暴力で、攻撃的な行動（非法律的なものを含む）。そして、c)業務の完了とあわない行動または発言。」

周術期の医療環境は、強いストレスに曝され、高い集中を必要とするため、破壊的行動もしくは暴力の潜在性に起こりやすい状況に繋がる。手術は迅速な反応を求めるものである。特に、手術前の看護師あの他のスタッフに対するいじめ、手術の実施にあたるストレス、患者の高齢化の高さ、周術期医療専門家（AN）の不足、緊急勤務、通夜を含む待機状態、そして個々のスタッフの専門分野がそれぞれ異なる、その中で孤独であるという事実からも起こりやすい可能性がある。35破壊的行動は、医師を点とするような期間の構築と、スタッフが感じている「沈黙の空白」により引き続き、回復を期待して口にできていないことが、小さなエラーが蓄積重なって大きな事象を招く環境を生む。つまり、いじめはチームワークと、安全性の構築に深く関与している。
表2 安全文化を推進するための10段階のプロセス

<table>
<thead>
<tr>
<th>ステップ</th>
<th>対策</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 項目化</td>
<td>リーダーシップの表明、評価、構造</td>
</tr>
<tr>
<td>2. 安全な臨床医療の促進</td>
<td>識識と理解</td>
</tr>
<tr>
<td>3. 識識と理解の促進</td>
<td>集団教育と訓練</td>
</tr>
<tr>
<td>4. 集団活動の促進</td>
<td>危険予防技術の導入</td>
</tr>
<tr>
<td>5. 安全な手術の促進</td>
<td>医療機器の管理</td>
</tr>
<tr>
<td>6. 医療システムの改善</td>
<td>統合コミュニケーションツール</td>
</tr>
<tr>
<td>7. 統合システムの改善</td>
<td>報告と対策</td>
</tr>
<tr>
<td>8. 安全な医療の推進</td>
<td>緊急対策を実施</td>
</tr>
<tr>
<td>9. 安全な医療の推進</td>
<td>安全な医療を推進</td>
</tr>
<tr>
<td>10. 安全な医療の推進</td>
<td>安全な医療を推進</td>
</tr>
</tbody>
</table>

「ヒーロー文化」の構築

破壊的行動を問題視しない厳しさで上下関係構造をさらに複雑化するのを、疲労した手術チームの「ヒーロー文化」をメディアがをはやすということである。外科医と手術チームのメンバーが自らを犠牲にして、疲労困憊をもたすとすれば患者のニーズを満たすというイメージは、疲労がパフォーマンスに及ぼす影響を正確に反映していない、「心臓病における手術チームについて行われた研究のうち、期間における勤務時間とそれに伴う疲労不足が注意に払うならびに集中治療室の勤務するレジリエンスによる患者の結果のエラーの発生率741に及ぼす影響を記載したものが2件ある。また、他の研究者らは、疲労不足の発生の制御のリスク326と、レジリエンスの運動時の自動車事故のリスク326を上げさせることが示した。このように、疲労と長時間勤務が低いパフォーマンスと疲労患者の転帰を招く懸念が高いことから、医療安全を改善しようとする努力の一環として、レジリエンスの勤務時間における制限がかけられることになった383。

特に疲労と睡眠不足が手掌心痛病に与える影響に関連して、解析した研究は3件あるが、いずれも、睡眠不足と重複型の合併症または死亡率との関連については実証していないう334-338。しかし、これらの研究は、検査方法や修学の発症率などの中間範囲を測定していないため、この結果は疲労と睡眠不足が影響しないということではなく、我々が起きても休むするチームの回復力を反映している可能性がある。診療士数を対象にした調査では、15%が起きても明らかに見せられた長時間に人工心肺装置を担当し、50%が人工心肺装置中にテストに出た経験があると述べている339。さらに、各ごとの脈拍で疲労に関連する小さなエラーを報告し、6.7%が疲労のせいでの人工心肺に関連する重大な事故を起こしたことを認めていいる339。

安全文化の促進

組織文化の多様性に関する文献のほとんどが、心臓手術レポートではなく、病院レポートでの報告である146, 146, 146, 146, 158, 158, 164, 164, 164, 164, 183, 183, 278, 278, 278。手術室での質と安全を改善するための対策は、まだ未解明にあり、これらの対策が、心臓手術などの危険性の高い環境の安全維持を強化できるかを示すことができる限界のありうるデータは不足している。前述のように、チェックリスト、ブリーフィング、チームワーク訓練といった手術室でのコミュニケーションを改善するための対策を導入すると、通常は手術室スタッフの安全に対する態度の改善、さらに医療安全の改善が認められる137。しかし、安全に対する組織全体の取り組みを変えていくとされる試みは、組織文化というのも自体の難しい性格を変えることの困難を増し得ること。

一方でチーム単位で対策を行うとすると、それまで団体で積まったものではないというも、その対策を受入れやすいことが示されている。部署を単位とする包括的プログラムである Comprehensive Unit-Based Safety Program (CUSP) は、安全文化の構築を目指したプログラムであり、手術室ではなく集中治療室で検討されていた230。この CUSP は、Michigan Keystone Project の一環として安全文化の改善を目指す対策であり、カテーテル関連感染の減少の目的として、100 例の集中治療室が共同で取り組んでいる230。これは、チームワークとの改善ツールを導入するための5段階からなる反復的プロセスであり、まず安全科学についてスタッフを教育し、問題を特定する。その上で、経営者がスタッフと共同で安全に関する潜在的危険に優先的に対処しつつ必要な情報と責任を提供し、毎月1件の問題から教訓を得て、文化を決定的に定義し、明確に評価するというのである。このプログラムは組織の関与を高める計画に組み込むことができるが、安全に対する危険を特定し、これを正す決定権は最高層のスタッフに与えてその数値に置き換える。CUSP アプローチを特定のチェックリストと併用すれば、カテーテル関連感染の事実上の根治230、人工呼吸器関連肺炎の有効な減少230、ならびにチームワーク風土の著明な改善235を達成できる。

組織による質の重要性がもたらす有益性

小児心臓手術患者が多数死亡したプルストルとウィルブロックの経験は、医療が安全に大きさと質保証プログラムの必要性を強調する335-339。この団体で、危険が問題を特定して対処する能力が十分で、発せられた警告が受けられなかった。調査委員会、組織として医療の質管理システムを優先し、あらゆる関係者（患者と家族を含む）からのフィードバックを取り込み、医療従事者全員が直面に声を上げ、それに耳を傾けるよう奨励する文化を確立するなどの根本的な改革を推進した。そして、病院全体の医療の質管理するの部局がこれらの努力を先導し、問題を検出し、対策の実施後の追跡を監視すべきであると記載している335-339。

References 44, 63, 158, 164, 171, 183, 278, 389.
単一病院が実施した改善

個々の医療行為は医療の連続性を通じて緊密に結びついているため、心臓外科における医療の質改善問題の大半は、手術室だけでなく周辺を含んでいるわけではない。心臓手術患者の管理に用いる包括的なアプローチには、Total Quality Management(TQM)、Institute for Quality Improvement Breakthrough Collaboratives(TQC)、ProvenCare(TM)、Operational Excellence等がある。これらの取り組みが奏効するかどうか、各モールがどの程度、チームの信頼、データの統合、臨床的リーダーシップ、組織の関与、質改善のための基盤からなる要素を満たしているかが決定される。308

Doranら309,310は、地域の成人心臓手術プログラムにおける迅速サイクル改善モデル（米国医療の質改善研究のBreakthrough Series）使用の結果を報告し、入院期間、人工呼吸器使用期間、患者満足度、費用が有意に改善することを見出した。またStanfordら311は、Total Quality Managementシステムの効果を発表した。このシステムは、外科医師主導による術後管理チェックリストの導入、看護師による追跡の監視、「誰かを咎めるのではなく問題解決を重視する」M & Mカンファレンス（mortality and morbidity conference）の実施、そして多職種チームによる協調の義務化から、冠動脈バイパス手術を受けた患者の手術死亡率を有意に低減させた312です。

ProvenCareは、病院が単独で推進する医療の質改善プログラム（Geisinger Health System、米国ペンシルバニア州ダンビル）で、待機的冠動脈バイパス術患者に対する40の要素からなる医療指針であり、これは心臓外科医に依頼して開発された。これらの要素はエビデンスに基づくもので、一貫して実践できるよう医療プロセスに組み込まれており、この医療プロセスはパフォーマンスを改善するための枠組みと修正された。その結果、術後死亡率の発生、集中治療室への再収容、ならびに再入院が減少した。ProvenCareモデルは術後死亡率の予測を削減できるとして大いに注目されたが、それとともにその、有効性と一貫性により、継続的な質管理と、安全文化を目的とする重要な実践的なモデルである。313

プロセスを重視する多職種アプローチ（process-oriented multidisciplinary approach: POMA）は、イングランドの心臓手術プログラムの一環で、冠動脈バイパス術を受ける患者を医療従事者全員に術前に行われる準備をするよう求めている314。POMA実施以前（n=262）と実施以後（n=248）に冠動脈バイパス術を受ける患者の比較すると、平均入院期間、手術の費用の中央値が、そして心房細動と呼吸器感染の発生率の改善が認められた315。

ウッヒルら316は、冠動脈バイパス手術を受ける患者を多職種チームが毎日まとめて回答する技術について記載した。この調査には、患者、患者の家族、薬剤師、看護師、ソーシャルワーカー、医師助教、心臓外科医が参加する。その結果、患者満足度が大いに上がり、死亡率も低下した。

最後に、Cuiligら317は、トヨタ自動車の生産システム（Toyota Production System）から着想を得た「Operational Excellence」の効果を調査した。これは、地域で使用する新たな心臓外科ドックプログラムで、正式な問題解決プロセスを含む1日10分間のきちんととした会議を実施したところ、厳格で、上下関係が厳しく、「問題を提出するべきである」と考える文化を、協力的で「問題が見つかるのはよいことだ」と考える文化に変換できた。そして、自治体の担当部門が持つデータで診断状況を2年間にわたって追跡したところ、冠動脈バイパス術合併症のリスク調整済み発生率が、対照として用いた地域を含む観察された数値の60%に低下した。

医療の安全と信頼の文化は、質と安全を有効に改善する第一にである。「非独占」の意識を強化し、「公正な文化」のほうが、信頼構築に必要なムードと行動を生む318,319。改善の科学的訓練を受けた臨床分野のリーダーは、職場の問題を特定し、その解決を求めるのを一貫した行動を通じて職場の信頼を強化できる320。このようなリーダーシップ行動は、医療の質改善を目指す組織の決定を示すとともに、医療の品質の基盤を提供することになる。

複数の病院が共同で実施した改善

多施設が長年にわたり共同で取り組むことで、心臓手術の質と安全の改善が得られている。その成功した理由の一部は、心臓手術に関する各施設・各外科領域のデータをベースにブロックを共有することに、心臓外科におけるこのモデルは、1987年にNorthern New England Cardiovascular Disease Study Groupの設立に伴い始めた321。5つの病院とそれぞれの病院施設チームが、患者の人口統計学的データとプロセスおよび結果に関するデータの収集と共有を開始し、予測可能なモデルを構築するためのリスク調整法を開発するとともに、標準化、実践による改善、学習の共有などを重視しながら、互いの施設にサイトピットを設け、頻繁に会合わせて会議を行った322。このモデルの実用化により、総死亡率323、女性患者の死亡率324、出血再開胸止血325などのデータが改善された。

この成功を基礎として、他の多施設共同プログラムも開発されている。1996年には、心臓外科医のグループにより、17の病院と10の循環器および胸外科グループが参加するVirginia Cardiovascular Surgery Quality Initiative326が設立された。この多施設共同のプロジェクトは、米国バージニア州全域で術前心房細動の発生率を低下させ、血栓管理を改善し、術後の免疫を低下させた327、またミシガン胸外・心血管外科学会（Michigan Society of Thoracic and Cardiovascular Surgeons）は、患者ブランクからからのプライバシーを守る目的で構築を策定した328。現在、この構築は健康保険からからの資金投入を受けており、対策とテクノロジーの共有のために動くことで、冠動脈バイパス手術における左内胸動脈の使用を増加させ、長期間の人工呼吸器使用率を低下させた329,330。成人の冠動脈バイパス手術患者を対象とした上記以外の共同プロ
グラムとしては、Alabama Coronary Artery Bypass
Grafting Project, Washington Clinical Outcomes Pro-
gram, California Local/Regional Cardiac Surgery Da-
base, Minnesota Local/Regional Cardiac Surgery
Database234などがある。

一方で、医療の質改善を目的とした共同プログラムの全
般的な有効性に疑問を呈した研究もある416, 417。資金不足、
データの信頼性、外科医にかかわる競合的プレッシャーによ
り、共同プログラムは長続きしない可能性があるという主
張もある。今後は、外部データを共有したり、組織を超え
て学習しうる有用性を検討することで、どのような
プログラムの参加全員のパフォーマンスを最大化するの
cかを示す可能性がある。また、医療環境での使用を想
定して改善策が提言されるが、観察された環境依存性を
使えば、持続的なアウトプットの改善をもたらす対策の開
発に役立つであろう。

将来の研究

心臓手術環境でのヒューマンエラーの理解を深める上
で、次段階として行うべきは、エラーの原因となる因子
に関する多職種を対象にした前向き研究であるかもしれない
347, 418, 419。このヒューマンファッチャー研究では、より大
きな組織、作業環境、必要な臨床的、技術的プロセスを
人間と相互作用、そしてひとり人間同士の相互作用
（コミュニケーションとチームワーク）について検討する
必要がある。また、臨床の専門知識を有する研究者（外
科医、看護師、麻酔科医、臨床工学技士）と、臨床以外の
専門知識を有する研究者（ヒューマンファッチャー専門家,
システム分析の専門家）が共同して実施するものであっ
てなければならない348。CatchpoleとWeigman211は、心臓手
術室での安全とパフォーマンスをより深く理解するべく,
将来の研究では、研究デザイン、改善のためのシステム改
革、そして臨床に及ぼす影響の測定を重視するよう推奨し
ている。この方法論に基づいて「起きるはず」の事象では
なく、実際に起きる事象の観察と分析を行えれば、有用でな
かったインシデントと有害事象について、インシデント報
告を超える情報が得られるであろう347。

要 約

1. 心臓手術の医療安全に関する研究の大半は、現状の
傾向を確認するための後向き研究であり、ヒューマンエ
ラーの減少や安全の改善を目的とした対策をテストする
ための前向き研究ではない。

2. 米国医療機関認定合同委員会は、『病院全体での安全
と質の文化の創造と維持』を義務付け基準を定めてはお
り、維持的行動に対する対処方針の策定と、報告しない
行為を推奨している。

3. 三不法チームワーク行動とポリビアした風土は、
手術チームのエラーと患者の悪い転帰につながる。

4. 心臓手術環境における地域および地方レベルの医療
の質改善構想は、とりわけ血流製薬の使用量、人工呼吸器
使用時間、入院期間、集中治療室への再入院、再入院、死
亡率、患者満足度、ならびに費用を改善させた。

5. 心臓手術に関する多施設共同の医療安全改善プログ
ラムは、具体的には、患者の人口統計学データをプロセ
スおよび結果に関するデータを共有して互いの病院をサイ
トビンディングすることで、ベストプラクティスの地域にお
ける標準化と、総死亡率、女性の死亡率、血液製薬の使用
量、長期にわたり人工呼吸器の使用、ならびに血糖管理を
改善し、内胸動脈の使用率を増加させた。

結 論

心臓手術はリスクの高い医療行為であることから、医療
安全に大きな注意を向けなければならない。そのため、手
術の安全を確保するための対策を講じることが求められ
る。米国医療機関の研究による、心臓手術の医療安全
に関するデータを用いて、心臓手術の医療安全に関する対
策を推進することが求められている。

将来の対応と研究に関する推奨事項：

WHOの主な目標の1つは手術エラーの減少である。そ
のため、2008年にガイドラインを公表し、手術を受ける
患者の安全を確保するための実験を複数行い、推奨した
420。それでもエラーはなかなか減らない。しかし、ヒューマ
ンエラーを減らすための具体的なアプローチは、通常は病
院または専門学会の医療管理委員会が主導したもので,
て、医療安全を問う問題点を著しく改善する先例を確立
してきた。上記の研究は基に記載したように、現在まで
に示されているエピデミーは限られている。いくつかの
対策を実施した。これらの対策の実施が効果的であると
は、必ずしも医療安全を確保できる。さらに、共通で行う努
力を通じて臨床研究の独自の領域であるヒューマンエラー
に関する科学的研究を拡大することで、心臓手術の医療
安全を推進するための対策を講じることが求められる。こ
れは、具体的な研究領域には、以下の内容が含まれてい
る必要がある。（1）コミュニケーションの失敗とチーム
ワークの崩壊に関する理解の深化。 （2）コミュニケーション
とチームワークを改善する対策（チームワーク訓
練、ブリーフィングおよびディスカッション、シュミレーションなど）を実践し、強化する最善の方法、（3）プロフェッショナルズムと安全文化を推進する対策、そして、（4）
理想的な空間とレイアウトを含み、流れの停滞とスタッフ
の移動を最小限にする手術室の間隔学、さらには、行動
の変化とコミュニケーションスキルなどの医療従事者の側
の改善と、合併症発生率（感染症など）と費用などの患者側
の転帰を測定するのが理想的である。

コミュニケーションとチームワークに関する最新
知識の臨床現場への利用を容易にする機会

表3に、米国心臓病学会財団と米国心臓委員会が取り決
表3 推奨事項の分類とエビデンスレベル

<table>
<thead>
<tr>
<th>クラスⅠ: 高度の推奨</th>
<th>具体的・一般の推奨</th>
<th>推奨事項の分類とエビデンスレベル</th>
</tr>
</thead>
<tbody>
<tr>
<td>クラスⅠ: 高度の推奨</td>
<td>具体的・一般の推奨</td>
<td>推奨事項の分類とエビデンスレベル</td>
</tr>
<tr>
<td>クラスⅠ: 高度の推奨</td>
<td>具体的・一般の推奨</td>
<td>推奨事項の分類とエビデンスレベル</td>
</tr>
</tbody>
</table>

エビデンスレベル A または C の推奨事項であっても、それだけでは推奨の値を高めることを意味するわけではない。ガイドラインで示される推奨のレベルは、基盤研究の質や信頼性、研究の数及び研究の内容等を考慮して設定されているものである。

*推奨事項の分類は、推奨事項の内容及び適用図を含む。

doi:10.1093/clinpractice/pcy094
利用する標準化された重要な相互的な対策は、心臓手術室では他の手術室でも同様に重要である。さらに、チーム訓練に関する長期研究による、改善の維持が容易でないことが示唆されている164, 197, 198。

推奨事項
1. 心臓手術症例では必ずチェックリスト、プリフィングまたはその両方を実践すべきであり、心臓手術のリーダーは術後のデリファインティングを奨励すべきである（クラスI, エビデンスレベルB）。
2. 心臓手術室では、コミュニケーション、リーダーシップ、状況認識を改善するためのチーム訓練を実施すべきであり、その対象には心臓手術チームのメンバー全員を含めるべきである（クラスI, エビデンスレベルB）。
3. 心臓手術主任他の総合医療者に対する危険な状況下に、正式な引き続き手順を実施すべきである（クラスI, エビデンスレベルB）。
4. 重大であるがそれに起因となる事象（人工肺の緊急交代）を想定したシナリオ訓練を、心臓手術チームのメンバー全員を対象として定期的に実施するのが妥当である（クラスIIa, エビデンスレベルC）。
5. チームワークとコミュニケーションに関して以下の研究を今後実施していくのが妥当である。（a）最も適切なコミュニケーションモデル（心臓手術室でのプリフィングを構築されたコミュニケーション手順）を検討する研究。（b）心臓手術室での使用に「最善の成果」を判断するためのチーム訓練モデルを検討する研究。これらの研究は心臓手術センターの安全を改善する可能性がある（クラスIIa, エビデンスレベルC）。
6. ある病院環境での医療専門職による破壊的行動を観察した病床との対策を、対応できない行動に改めるための正しいプロセスが示唆される。これを考慮した対策として、専門職のプログラムを導入した。これにより、対策の詳細な事例報告制度を確立することを推奨する（クラスIIa, エビデンスレベルC）。
7. 安全文化: プロフェッショナリズムと質に関する方針の実践
2009年、米国医療機関認定合同委員会は、安全文化の確立と維持を目的付与する基準を導入した。そこでは、破壊的行動に対する対策が策定され、認容できない行動を改めるための正しいプロセスが示唆される。心臓手術チームを含む各部門の組織の改善、適切な事例報告と対策を含めた独自の文化を構築することを推奨する。
推奨事項

1. 技術志向で複雑な心臓手術室の環境での対策に対して科学的な検討を行うことが妥当であり、具体的には（a）安全文化と安全風土を改善するべく設計された既存のツールをテストし新たなツールを開発すること。（b）対策後に継続的な評価を実施して安全文化的持続的改善を測定すること。（c）選択した有効な転帰を減少させるか否か、安全文化的改善における有効性を評価する大規模な多施設共同臨床試験の確立につなげること、などがあげられる（クラス IIb、エビデンスレベル C）。

2. 心臓手術室でのエラー発生の素地となるヒューマンファクターとシステム要因を検討する多職種を対象とした前向き研究の計画と、それに対する資金投入は妥当である（クラス IIb、エビデンスレベル C）。

謝辞

この研究の一部は、重要性の高い発表に対する意欲的な努力と多大な貢献に支えられたことを私たちが認識しており、深甚なる謝意を表します。

Wahre et al 心臓手術室の医療安全 25

利益相反の開示

Writing Group Disclosures

<table>
<thead>
<tr>
<th>Writing Group Member</th>
<th>Employment</th>
<th>Research Grant</th>
<th>Other Research Support</th>
<th>Speakers’ Bureau/Feierals</th>
<th>Expert Witness</th>
<th>Ownership Interest</th>
<th>Consultant/Advisory Board</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joyce A. Wahr</td>
<td>University of Michigan</td>
<td>AHRO*</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Nancy A. Nuessmeier</td>
<td>SUNY Upstate Medical University</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>J.H. Abernathy II</td>
<td>Medical University of South Carolina</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Michael H. Cull</td>
<td>West Penn Allegheny Health System</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Pirezz Eightsadny</td>
<td>Washington University, St. Louis</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Michael R. England</td>
<td>Physician’s Organization at Tufts Medical Center</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>David C. Fitzgerald</td>
<td>Mayo Clinic</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>John S. Konaridis</td>
<td>Medical University of South Carolina</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Robert C. Groom</td>
<td>Maine Medical Center</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Elizabeth H. Lazzara</td>
<td>University of Central Florida</td>
<td>TB0</td>
<td>TB0</td>
<td>TB0</td>
<td>TB0</td>
<td>TB0</td>
<td>TB0</td>
<td>TB0</td>
</tr>
<tr>
<td>Elizabeth A. Martinez</td>
<td>Massachusetts General Hospital</td>
<td>AHRO*</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Richard L. Proper</td>
<td>University of Michigan</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Eduaro Salas</td>
<td>University of Central Florida</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Juan A. Sanchez</td>
<td>St. Agnes Hospital, Johns Hopkins School of Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Bruce E. Searfes</td>
<td>SUNY Upstate Medical University</td>
<td>Transcan System; Circulatory Technology*</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

(Continued)
Writing Group Disclosures, Continued

<table>
<thead>
<tr>
<th>Writing Group Member</th>
<th>Employment</th>
<th>Research Grant</th>
<th>Other Research Support</th>
<th>Speakers/Bureau/Honararia</th>
<th>Expert Witness</th>
<th>Ownership Interest</th>
<th>Consultant/Advisory Board</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patricia C. Siefert</td>
<td>Inova Heart and Vascular Institute</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Frank W. Selke</td>
<td>Lighthouse/Brown Medical School</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Scott A. Shuppling</td>
<td>Columbia University</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Bruce D. Spiegel</td>
<td>Emory University Medical Center</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Thoralf M. Sundt II</td>
<td>Massachusetts General Hospital</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Vindu H. Thourani</td>
<td>Emory University</td>
<td>AHA*, Edwards Lifesciences*, Medtronic Medical*, NIH*</td>
<td>None</td>
<td>Edwards Lifesciences*, Medtronic Medical*, AstraZeneca*, St. Jude Medical*</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

This table represents the relationships of writing group members that may be perceived as actual or reasonably perceived conflicts of interest as reported on the Disclosure Questionnaire, which all members of the writing group are required to complete and submit. A relationship is considered to be “significant” if (1) the person receives $10,000 or more during any 12-month period, or $5% or more of the person’s gross income; or (2) the person owns 5% or more of the voting stock or share of the entity, or owns $10,000 or more of the fair market value of the entity. A relationship is considered to be “modest” if it is less than “significant” under the preceding definition.

*Modest. **Significant.

Reviewer Disclosures

<table>
<thead>
<tr>
<th>Reviewer</th>
<th>Employment</th>
<th>Research Grant</th>
<th>Other Research Support</th>
<th>Speakers/Bureau/Honararia</th>
<th>Expert Witness</th>
<th>Ownership Interest</th>
<th>Consultant/Advisory Board</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paul Barash</td>
<td>Yale University Medical Center</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Paula Nadeen</td>
<td>Inova Fairfax Hospital</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Loren Hromatka</td>
<td>Bethesda North Hospital</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>AINM (unpaid)*</td>
<td>None</td>
</tr>
<tr>
<td>Jeffrey Riley</td>
<td>Mayo Clinic, Rochester</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Marc Reit</td>
<td>University of Ottawa Heart Institute</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Doug Wiesmann</td>
<td>University of Wisconsin-Madison</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>US Department of Defense</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>American College of Surgeons (unpaid)*</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

This table represents the relationships of reviewers that may be perceived as actual or reasonably perceived conflicts of interest as reported on the Disclosure Questionnaire, which all reviewers are required to complete and submit. A relationship is considered to be “significant” if (1) the person receives $10,000 or more during any 12-month period, or $5% or more of the person’s gross income; or (2) the person owns 5% or more of the voting stock or share of the entity, or owns $10,000 or more of the fair market value of the entity. A relationship is considered to be “modest” if it is less than “significant” under the preceding definition.

*Modest. **Significant.

References

118. Dejbet in press.

119. Dejbet in press.

null
Waher et al. 心臓手術室の医療安全 35

Correction

In the article by Wahr et al., “Patient Safety in the Cardiac Operating Room: Human Factors and Teamwork: A Scientific Statement From the American Heart Association,” which published online August 5, 2013, and appeared in the September 3, 2013, issue of the journal (Circulation, 2013;128:1139-1169), a correction was needed.

On page 1139, in the author byline, Bruce E. Searles’ degrees were listed incorrectly as “MSN, CCP.” They have been changed to read, “Bruce E. Searles, MS, CCP.” The authors regret the error. This correction has been made to the print version and to the current online version of the article, which is available at http://circ.ahajournals.org/content/128/10/1139.