Atrial fibrillation (AF) is associated with a stubbornly elevated mortality (3.5% to 4% per year in trials), at odds with the decline in mortality after a first myocardial infarction. Furthermore, the prevalence and incidence of AF are increasing as our societies get older, and treatment of other acute and chronic cardiac disorders that predispose to AF will further prolong the lives of patients at risk of AF. Hence, there is a need to improve outcomes in patients with AF.

In light of the difficulty involved in detecting rare and often clustered episodes of paroxysmal AF, and when the prevalence of AF (1% to 2% in the population) is considered, trying to detect silent AF may appear like a fishing expedition. As in fishing, a successful expedition requires experience, equipment, and the right environment to achieve a good catch.

In this issue of Circulation, Engdahl and colleagues report on a successful fishing expedition for silent AF: They went to Halmsted municipality in Sweden and invited all inhabitants aged 75 to 76 years to participate in a stepwise screening program for AF. Initially, all participants underwent 12-lead ECG recording and collection of a history of cardiovascular risk factors and diseases. Thereafter, those without known AF who also had at least 1 additional stroke risk factor (heart failure, diabetes mellitus, hypertension, prior stroke or transient ischemic attack) were given a patient-operated hand-held ECG system. They were instructed to record daily short-term ECGs twice per day for 2 weeks. The researchers detected previously unknown AF in 10 of 848 patients (1%) using the initial 12-lead ECG. Furthermore, 81 of 848 of the screened patients (10%) had known AF but did not receive anticoagulant therapy. The subsequent screening by patient-operated ECG detected silent AF in an additional 30 of 403 patients with 1 additional risk factor (7.4%). Overall, this relatively simple screening program identified previously unknown AF in 75 of 848 patients (9%) in need of oral anticoagulant therapy and generated a stimulus to start anticoagulation in 81 additional patients with known AF. In 57 of 75 patients in whom screening identified silent AF (76% of those with an indication of anticoagulant therapy, 7% of those who were screened, and 4% of those invited for screening), anticoagulant therapy was initiated after the screening program. This indicates that predominantly asymptomatic patients newly diagnosed with AF are receptive to oral anticoagulation. Indeed, this is a good catch.

Engdahl and colleagues followed good anglers’ advice: They picked a good fishing ground, the elderly, in whom AF prevalence is high. In addition, they used simple yet effective techniques: They recorded a 12-lead ECG in all patients to detect chronic forms of AF and used a simple, validated patient-operated ECG to search for paroxysmal AF in those at highest risk (ie, participants with 1 additional CHADS2 factor added to age). Another strength of the study is its population-based approach as opposed to, for example, screening programs instituted in patients who have suffered a cryptogenic stroke. This distinguishes the present study from almost all prior fishing expeditions for silent AF. Hence, Engdahl and colleagues are to be applauded for pioneering the systematic fishing for AF in an unselected elderly population.

Other waters have been fished with the use of diverse techniques: Silent AF can be identified in stroke survivors with a condition that is refractory to all therapeutic interventions.
higher accuracy than usual care when stroke unit telemetry, or prolonged Holter ECG recordings are used. Ongoing studies are evaluating these technologies and implanted long-term ECG monitors (eg, Study of Continuous Cardiac Monitoring to Assess Atrial Fibrillation After Cryptogenic Stroke [CRYSTAL AF], NCT00924638) in stroke survivors in multicenter settings close to clinical practice. Additional fishing grounds have also been probed, at least in preliminary data sets: A patient-operated ECG system similar to the one used by Engdahl and colleagues identified silent AF in patients who seek medical help for the treatment of hypertension, diabetes mellitus, or stroke, especially in those who accumulate several stroke risk factors. Blood-based biomarkers, including genetic markers, may in the future help to further define good fishing grounds for silent AF, although their role in clinical practice is yet to be defined. Also, the first step of the screening program may be facilitated by recording an ECG only in practice is yet to be defined. Also, the first step of the screening program may be facilitated by recording an ECG only in unselected elderly populations. Much|

References


Key Words: Editorials ■ atrial fibrillation ■ ECG ■ population studies ■ screening ■ stroke
Gone Fishing (for Silent Atrial Fibrillation)
Yousif Ahmad and Paulus Kirchhof

Circulation. 2013;127:870-872
doi: 10.1161/CIRCULATIONAHA.112.000985

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2013 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/127/8/870

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/