A 41-year-old man with a partially cystic cardiac mass was referred to our institutions. About 17 years previously, he had undergone the excision of a lipoma in the left popliteal region. The patient had been well until 3 to 4 months earlier, when dyspnea on exertion developed.

Two-dimensional echocardiography (Figure 1A and 1B), computed tomography (Figure 2A and 2B), and magnetic resonance imaging (Figure 3A and 3B and Movies I–3 in the online-only Data Supplement) displayed a patchy lobulated epicardial mass (transversal diameter, 7 cm; thickness, 4 cm) near the left cardiophrenic angle, partially occupying the left ventricular chamber.

Cardiac catheterization showed dislocation of the left anterior descending artery by the mass without a significant coronary stenosis.

A review of his medical history revealed that the tumor resected in the popliteal region was actually a myxoid liposarcoma. Whole-body positron emission tomography revealed only a mild myocardial uptake, and a gated myocardial perfusion single-photon emission computed tomography (Figure 4 and Movies IV and V in the online-only Data Supplement) showed a perfusion defect in the myocardial area occupied by the mass. Surgical resection of the mass was judged technically feasible, so the patient underwent surgery (Figure 5A and 5B).

First, the left phrenic nerve was dissected from the pericardium via an intrapleural approach, and then dissection of the mass was started with an incision of the pericardium around the mass. The epicardial fat above the left descending anterior coronary artery was dissected, and the mass was separated from the epicardial surface of the heart. Extracorporeal circulation was then started. A cleavage plane was found, and the mass was resected up to the base of the posterior papillary muscle, which was partially reimplanted. The hole in the left ventricular wall was closed by a Dacron patch (2.5 × 3 cm). The histopathological analysis of the tumor, which macroscopically resembled a jellyfish (Figure 5B), revealed a low-grade myxoid liposarcoma (Figure 6).

The postoperative course was uneventful, and the patient was discharged after 12 days.

The patient presented 8 months later with disease progression (heart, mediastinum, pleura), so chemotherapy with trabectedin was begun and is still ongoing 1 year after surgical treatment.

Liposarcoma is the most common soft-tissue sarcoma; the myxoid subtype is the most prevalent and the least aggressive. These tumors arise more commonly in the lower extremities and have an indolent course, with high disease-free survival rates when appropriate surgical resection with or without radiotherapy is performed. Histological grade remains the most important prognostic factor. Myxoid tumors tend to metastasize to extrapulmonary and unusual sites, with an overall rate of 14.5% at 5 years and 15.3% at 10 years; the time to distant metastases may vary from 3 to 73 months. Definitive differentiation between metastatic disease and metachronous primary disease is often elusive. Primary cardiac sarcoma has a worse prognosis compared with secondary tumors, with a median overall survival of 6 versus 93 months in a series; median survival is significantly better for patients suitable for treatment.

Figure 1. Echocardiography. Apical 4-chamber view showing a large cardiac mass infiltrating the apex, lateral, and anterior walls of the left ventricle. A second small cardiac mass is attached to the left wall; presence of pericardial effusion. Contrast-enhanced ultrasound shows the large infiltrative cardiac mass. Inside the mass are large nodular, nonperfused or hypoperfused areas surrounded by vascularized nonmyocardial tissue infiltrating the normal myocardium.
surgery,3,4 which remains the best therapeutic option, even if most patients eventually die of widespread disease. Few anecdotal reports have been published on cardiac myxoid liposarcomas, so the role of adjuvant therapy (radiotherapy or chemotherapy) still needs to be defined. Chemotherapy is indicated in extensive disease. Anthracyclines and ifosfamide are the agents of choice, but recently the novel agent trabectedin has proved to have special antitumor activity in myxoid liposarcoma.

Disclosures

None.

References

Figure 2. Multislice computed tomography axial image of the mass projecting inside the left ventricle. Volume-rendering technique reconstruction on a coronal plane showing the mass in green and the ventricle in red.

Figure 3. Magnetic resonance imaging (2-chamber off-axis view, A and 4-chamber off-axis view, B). The mass, expanding from the wall to the cavity of the left ventricle, is hyperintense on T2–Short Tau Inversion Recovery sequences (B) because of the myxoid component and presents inhomogeneous late enhancement that extends to the pericardium on post-contrast images (A).
A Case of Cardiac Liposarcoma

Figure 4. Single-photon emission computed tomographic images (short axis, vertical long axis, horizontal long axis) demonstrate a severe transmural (no viable myocardium) perfusion defect involving the following akinetic segments with absent systolic thickening: apical anterior, apical septal, and apex, and a moderate nontransmural (viable myocardium) perfusion defect of a medium anterolateral normokinetic segment in the distribution territory of left descending coronary artery.

Figure 5. Macroscopic view of the mass after thoracotomy (A) and at the end of surgery (B).

Figure 6. Low-power image of a myxoid liposarcoma that contains a multinodular proliferation of fusiform and round cells suspended in a myxoid matrix, creating a lace-like pattern with contiguous cartilaginous differentiation (hematoxylin-eosin stain; magnification ×50).
Jellyfish in the Heart
Maria Dieli, Caterina Simon, Antonio Brucato, Patrizia Pedrotti, Tiziano Colombo, Antonella Moreo, Giorgio Fasolini, Mauro Gori, Andrea Gianatti, Giuseppe Medolago and Paolo Ferrazzi

Circulation. 2013;127:e443-e445
doi: 10.1161/CIRCULATIONAHA.112.116848
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2013 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/127/6/e443

An erratum has been published regarding this article. Please see the attached page for:
/content/127/15/e551.full.pdf

Data Supplement (unedited) at:
http://circ.ahajournals.org/content/suppl/2015/03/02/127.6.e443.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/
In the article by Dieli et al, “Jellyfish in the Heart,” which appeared online in the February 12, 2013 issue of the journal (*Circulation*. 2013;127:e443-e445), the 8th author’s name was listed incorrectly. The author’s name appeared as Maurizio Gori. It should have appeared as Mauro Gori.

The error has been corrected in the current online version of the article. The authors regret the error.