Pharmacotherapeutic algorithms developed to treat heart failure in adults with acquired heart disease have often provided the template for treatment of ventricular dysfunction or heart failure symptoms in patients with underlying congenital heart disease. Superficially at least, this is not completely irrational, because congenital patients often demonstrate similar levels of functional incapacity and a neurohormonal profile similar to that seen in acquired heart failure.1 Scratch beneath the surface, however, and the situation is much less clear. Systolic failure as the primary manifestation and driver of disease progression is rather rare, fundamentally the circulation in these patients is often quite different, and the rate of functional decline and adverse events tends to be substantially lower than that observed in the major studies of β-blockade and modifiers of the renin–angiotensin system in acquired heart failure. Consequentially there is an ever-increasing catalog of, albeit irrationally, because congenital patients often demonstrate similar levels of functional incapacity and a neurohormonal profile similar to that seen in acquired heart failure.1–6 The study by van der Bom et al,7 examining the role of valsartan in patients with a systemic right ventricle (RV) and published in this issue of Circulation, can now be added to that list.

In congenital heart disease with a biventricular physiology, there are 2 main situations where the circulation depends on the ability of the right ventricle (RV) to drive blood through the systemic vascular bed. These are transposition of the great arteries (TGA) after an atrial-level surgical correction and congenitally corrected transposition of the great arteries (ccTGA). In both settings, the RV is positioned beneath the aortic valve and at high risk for long-term failure, the incidence of which increase with age. In each subgroup systemic RV dysfunction usually precedes the onset of clinical heart failure, and once symptoms do occur, they are a strong predictor of mortality.8 By their mid-40s, more than half of patients with ccTGA exhibit moderate-to-severe RV dysfunction and a similar proportion have developed clinical heart failure, outcomes that are strongly associated with the presence and severity of tricuspid valve regurgitation.9 The incidence of systemic RV dysfunction is similar for patients who have undergone atrial redirection procedures for TGA.10 However, in this cohort, clinical heart failure is somewhat less common and RV dysfunction predicts the risk of sudden cardiac death, which is the primary driver of mortality.11,12 Although the full arsenal of conventional heart failure therapy (lifestyle modification, medication, electric therapies, transplant, and ventricular assist device) can and have been used in patients with systemic RV dysfunction, a lack of data specific to this population makes it difficult to know which strategy to adopt and who to target. Out of a desire to do something that might (even theoretically) help, when these patients develop more than mild systemic RV dysfunction or symptomatic heart failure, physicians often initiate medical treatment proven to be effective against heart failure in structurally normal hearts, usually an angiotensin-converting enzyme inhibitor (ACEI) or angiotensin receptor blocker. A scientific understanding of not only the pathophysiology of functional decline, but also of the potential for such therapies to modify it, underpins the success of such strategies in acquired heart failure. Unfortunately, for patients with systemic RV dysfunction, there is circumstantial evidence to suggest that neither the pathophysiology nor the mechanism of action of treatment will be conducive of therapeutic success. For example, after atrial redirection procedures it appears that, consequent on the conduit function of the baffles, it is a failure of atrioventricular coupling, with an inability to increase stroke volume with exercise or dobutamine stress13,14 which limits stroke volume and cardiac output responses. Although this is demonstrably not an issue for those with ccTGA (who have normal stroke volume responses to exercise and dobutamine stress),15 evidence for primary RV myocardial failure is similarly lacking. Indeed, in an analysis of long-term outcomes in patients with ccTGA, those devoid of significant tricuspid (systemic) valve insufficiency remained free heart failure for decades.16 Not only does this suggest that early attention to valve function might be a better therapeutic target in the latter group, but on the basis of their pathophysiologic substrates, afterload reduction as a therapeutic target may be flawed for either group, at least in the short-term.

In this issue of Circulation, Van der Bom et al7 present a study that furthers our understanding of heart failure management in adult congenital patients with a systemic RV dysfunction. The investigators are to be congratulated for conducting a 3-year, prospective, multi-center, double-blind, placebo-controlled trial of the angiotensin II type 1 receptor antagonist valsartan in patients with systemic RV dysfunction. This is no small achievement, because well-designed trials in patients with congenital heart disease are notoriously difficult to complete.17,18 Although essentially a negative study, van der Bom et al’s work nonetheless provides
an important message for clinical practice and also, once again, illustrates the complexities and challenges of studying patients with congenital heart disease.

Six centers in the Netherlands took part in the study, and potential participants were identified from CONCOR, the Dutch national registry and DNA-bank of adult congenital heart disease patients. Eighty-eight patients with a systemic RV in the setting of ccTGA or TGA after atrial redirection procedure were recruited and randomized in a 1:1 distribution to receive either placebo or 160 mg valsartan twice a day for 3 years. Participants who were taking an ACEi before enrollment desisted for 4 weeks before the study began. Investigations were performed at baseline and as close to 3 years after enrollment as possible. The primary end point was RV ejection fraction (RVEF), measured by cardiac MRI or computer tomography as determined by clinical factors such as the presence of a pacemaker. Valsartan was well tolerated, and there were no excess adverse events in the valsartan group. At a mean follow-up of 3.2 years, RVEF remained unchanged in both the placebo patients (37.6±6.5% versus 36.7±6.1%; \(P = 0.23 \)) and those taking valsartan (34.9±7.4% versus 35.1±9.6%; \(P = 0.79 \)), and the difference in RVEF between the two groups was not statistically significant. No statistical differences were found between the placebo and valsartan groups regarding changes in the degree of tricuspid regurgitation, parameters of exercise capacity, quality of life scores, or neurohormonal activation during the course of the study, and the groups showed no differences in the occurrence of clinical end points. Positive findings of the study relate to indices of ventricular remodeling, which suggest valsartan may have tempered progression of RV dilatation and hypertrophy. However, only absolute values for these measurements are reported, and it is unclear whether these findings would persist were the data presented in the more usual format, indexed for body surface area. The investigators performed additional subgroup analyses, and here the important finding was that in symptomatic patients RVEF and VO\(_2\) peak declined during follow up in the placebo group (36.9±8.8% versus 33.6±7.5%, \(P < 0.01 \) and 27.0±6.6 mL/kg/min versus 22.5±7.3 mL/kg/min, \(P < 0.01 \)), whereas they remained unchanged in patients taking valsartan (33.4±9.6% versus 34.8±10.9%, \(P = 0.46 \) and 20.1±5.2 mL/kg/min versus 18.7±4.6 mL/kg/min, \(P = 0.58 \)). As can be seen, both RVEF and VO\(_2\) were lower at baseline in the valsartan patients, however. The authors conclude that their data fails to support the routine use of losartan in asymptomatic patients with a systemic RV but that therapy might be more appropriate for specific subgroups, especially those with symptoms.

The current study is important because it is one of only 3 prospective trials testing the effect of pharmacological treatment in patients with a systemic RV.\(^4\)\(^6\) Moreover, it includes the largest number of patients studied to date and the longest duration of follow-up. Of the previous studies, 2 considered the effects of renin-angiotensin-aldosterone system blockade.\(^5\)\(^6\) In a crossover study design, Dore et al\(^7\) compared the effects of twice daily losartan 50 mg and placebo in 29 adults with either ccTGA or Mustard baffle. After 15 weeks of treatment there were no differences in measures of exercise capacity, neurohormonal activation, echocardiographically assessed ventricular function, or tricuspid regurgitation.\(^5\) Therrien et al\(^6\) studied the effects of ramipril therapy or placebo in 17 patients treated for 1 year using MRI to assess RVEF, a cardiopulmonary exercise test, and the Minnesota Living with Heart Failure Questionnaire; again there were no benefits seen in the treatment group. Nonrandomized studies of renin-angiotensin-aldosterone system antagonism in the systemic RV have included few patients with limited follow-up (n=7, follow-up 8 weeks\(^3\)\(^6\); n=14, follow-up 18 months\(^2\)\(^5\); n=9, follow-up 1 year\(^2\)\(^3\)). Only Lester et al\(^7\) found noted benefit after treatment, and their study was the smallest with the shortest duration of follow-up. With clear methodological advantages, van der Bom et al have confirmed and strengthened existing data, and the available evidence simply does not support the routine use of ACEi or angiotensin receptor blockers in patients with a systemic RV.

It is time to ask whether the strength of this evidence is sufficient to dismiss potential theoretical benefits of ACEi and angiotensin receptor blockers (reduction of fibrosis, inhibition of hypertrophy, reduction of sudden death) in this population and to change current clinical practice. Herein lies the problem with research in small and heterogeneous patient groups. With the initial intent of recruiting >128 patients\(^2\) and using a multi-center approach, van der Bom and colleagues only managed to enroll 88 study participants of 323 potentially eligible candidates. Of these, only 62 both continued the study medication until completion and underwent final evaluation. Compare this with VA1-HFt, which included 5010 patients with left ventricular dysfunction and found that 160 mg of valsartan twice daily produced a 13% lower risk of the combined clinical end point.\(^2\)\(^1\) The original power calculation for the present study suggested that a minimum of 102 patients were required for 80% power to detect a difference in ejection fraction of 5.6%.\(^2\)\(^1\) It is therefore quite possible that van der Bom et al’s trial was simply underpowered to detect clinically relevant effects of valsartan therapy. One suspects that this argument, and the desire to do good, may remain stimuli for clinicians to continue treating these patients with conventional heart failure medications. Indeed, almost 60% of >500 Fontan patients studied by The Pediatric Heart Network were receiving ACEi,\(^2\)\(^4\) despite the only randomized, placebo-controlled, crossover trial of their use showing reduced cardiac output response to exercise during active treatment.\(^3\) Alternatively, congenital heart disease specialists might abandon their slavish pursuance of therapies developed for treatment of heart failure with a completely different morphological and pathophysiologic substrate, and instead identify new and more directly relevant targets for intervention. At the very least, the time is ripe for funding agencies and researchers to re-aim their focus on development of novel therapeutic solutions.

Disclosures

None.

References

Key Words: Editorials ■ angiotensin-converting enzyme inhibitors ■ congenital heart disease ■ transposition of great vessels
Right Ventricle: Wrong Targets?: Another Blow for Pharmacotherapy in Congenital Heart Diseases
S. Lucy Roche and Andrew N. Redington

Circulation. 2013;127:314-316; originally published online December 17, 2012; doi: 10.1161/CIRCULATIONAHA.112.155887
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2012 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/127/3/314

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org/subscriptions/