High Anthocyanin Intake Is Associated With a Reduced Risk of Myocardial Infarction in Young and Middle-Aged Women

Aedín Cassidy, PhD; Kenneth J. Mukamal, MD; Lydia Liu, MSc; Mary Franz, MSc; A. Heather Eliassen, ScD; Eric B. Rimm, ScD

Background—Our current knowledge of modifiable risk factors to prevent myocardial infarction (MI) in young and middle-aged women is limited, and the impact of diet is largely unknown. Dietary flavonoids exert potential beneficial effects on endothelial function in short-term trials; however, the relationship between habitual intake and risk of MI in women is unknown.

Methods and Results—We followed up 93,600 women 25 to 42 years of age from the Nurses' Health Study (NHS) II who were healthy at baseline (1989) to examine the relationship between anthocyanins and other flavonoids and the risk of MI. Intake of flavonoid subclasses was calculated from validated food-frequency questionnaires collected every 4 years using an updated and extended US Department of Agriculture database. During 18 years of follow-up, 405 cases of MI were reported. An inverse association between higher intake of anthocyanins and risk of MI was observed (hazard ratio, 0.68; 95% confidence interval, 0.49–0.96; \(P=0.03\), highest versus lowest quintiles) after multivariate adjustment. The addition of intermediate conditions, including history of hypertension, did not significantly attenuate the relationship (hazard ratio, 0.70; 95% confidence interval, 0.50–0.97; \(P=0.03\)). Combined intake of 2 anthocyanin-rich foods, blueberries and strawberries, tended to be associated with a decreased risk of MI (hazard ratio, 0.66; 95% confidence interval, 0.40–1.08) in a comparison of those consuming >3 servings a week and those with lower intake. Intakes of other flavonoid subclasses were not significantly associated with MI risk.

Conclusions—A high intake of anthocyanins may reduce MI risk in predominantly young women. Intervention trials are needed to further examine the health impact of increasing intakes of commonly consumed anthocyanin-rich foods. (Circulation. 2013;127:188-196.)

Key Words: anthocyanins ■ diet ■ epidemiology ■ myocardial ■ infarction ■ women

Clinical Perspective on p 196

From a dietary perspective, growing evidence supports the beneficial effects of dietary flavonoids on endothelial function and blood pressure, suggesting that flavonoids might be more likely than other dietary factors to lower the risk of CHD in predominantly young women. Specific flavonoids appear to improve endothelial function by exerting antiinflammatory effects, inhibiting low-density lipoprotein oxidation and endothelial NADPH oxidase, modulating nitric oxide synthase activity/expression, and augmenting nitric oxide status. Flavonoids are widely distributed in many plant-based foods and beverages, including fruits, vegetables, tea, and wine, and the subclasses commonly consumed in the US diet include flavanones, anthocyanins, flavan-3-ols, flavonols, flavones, and polymeric flavonoids. Which classes of flavonoids might be associated with risk of CHD, if any, is uncertain. The limited available data from...
older adults suggest that the flavonoid subclasses anthocya-
nins, flavonols, and flavanones are associated with a reduc-
tion in CHD mortality. In middle-aged and older women, the
beneficial effects of anthocyanins on blood pressure were
greatest in young and middle-aged women with a 12% reduc-
tion in incident hypertension when the extreme quintiles of
intake were compared,11 supporting a role for flavonoids in
lowering the risk of CHD in this age group. A recent meta-
analysis of intervention trials highlighted the cardioprotective
effects of the flavan-3-ol subclass on biomarkers of CHD
risk, including blood pressure, vascular function, and insulin
resistance. From these data, we hypothesized that a higher
intake of anthocyanins and flavan-3-ols would be associated
with a reduced risk of MI in young and middle-aged women.

Methods

Study Population

In 1989, 116,430 women 25 to 42 years of age were enrolled in the
Nurses’ Health Study II (NHSII). Each participant returned a ques-
tionnaire by mail on lifestyle and medical history and received fol-
low-up questionnaires biennially to record newly diagnosed illnesses
and to update lifestyle factors. Beginning in 1991, they received semi-
quantitative food-frequency questionnaires (FFQs) every 4 years. Participants
who reported a history of myocardial infarction (MI), stroke, angina, other cardiovascular diseases (CVDs), coronary by-
pass surgery, or cancer (except nonmelanoma skin cancer) at base-
line were excluded. Participants who were missing dietary data at
baseline or had implausible values for total caloric intake (<500
or >3500 kcal/d) were also excluded, resulting in the inclusion of
93,600 women in these analyses. The institutional review board at Brigham and Women’s Hospital reviewed and approved this study,
and participants provided implied consent by virtue of returning their
questionnaires.

Outcome Assessment

The outcome was incident MI, which included nonfatal MI and fatal
CHD that occurred after the return of the 1991 questionnaire and be-
fore 2009. Nonfatal MI was confirmed if data in the medical records
met World Health Organization criteria based on symptoms plus ei-
ther diagnostic ECG changes or elevated cardiac enzyme concentra-
tions. Fatal CHD was defined as a fatal MI if confirmed by hospital records or autopsy or if CHD was listed on the death certificate as
cause of death and evidence of previous CHD was available.

Dietary Assessment

Dietary intake data were collected from NHSII participants in 1991
and subsequently every 4 years. A database for assessment of intake
of the different flavonoid subclasses was constructed as previously
described11 and was compiled before the release of the more recent
flavonoid database, the phenol-explorer database. Briefly, intakes of
individual compounds were calculated as the sum of the consumption
frequency of each food multiplied by the content of the specific
flavonoid for the specified portion size. We derived intakes of the
subclasses commonly consumed in the US diet, specifically flavanones
(eriodictyol, hesperetin, naringenin), anthocyanins (cyanidin,
delphinidin, malvidin, pelargonidin, petunidin, peonidin), flavan-3-ols
(catechins, epicatechin), flavonols (quer cetin, kaempferol, myricetin,
isohamnetin), flavones (luteolin, apigenin), and polymers (including
proanthocyanidins, theaflavins, and thearubigins). Cumulative intakes
(energy adjusted) were calculated for a given questionnaire cycle by
averaging the intake for the current and preceding FFQs. The validity
and reproducibility of the FFQs have been reported previously, and
correlations between major dietary sources of flavonoids (fruits,
vegetables, tea, and wine) measured by diet records and the FFQ were
0.70, 0.50, 0.77, and 0.83 respectively.16–18

Statistics

Participants contributed person-time of follow-up from the date of
return of the 1991 questionnaire to the date of MI diagnosis, death, or
end of follow-up (June 2009). We used a left-truncated Cox propor-
tional hazard regression for time-varying covariates, with a counting
process data structure and age in months as the time scale, stratifying
additionally on calendar year,19 to estimate the hazard ratio (HR) for
flavonoid subclass intake in relation to the risk of MI with the lowest
intake quintile as the referent group. Covariates were updated bienni-
ally. We controlled for body mass index (<25, 25–29.9, or ≥30 kg/
m²; physical activity (metabolic equivalents per week, in quintiles); alcohol
consumption (0, 0.1–4.9, 5–14.9, 15–29.9, ≥30 g/d); energy intake (kcal/d, in quintiles); cereal fiber intake (g/d, in quintiles); satu-
rated, trans, polyunsaturated, and monounsaturated fat intake (g/d, in
quintiles); caffeine intake (mg/d, in quintiles); use of aspirin (non-
user or <6 or ≥6 per week); menopausal status (premenopausal, un-
known menopause, postmenopausal); postmenopausal hormone use
(never, past, or current hormone use); oral contraceptive use (never,
past, or current hormone use); smoking (never, past and current [1–14
or ≥15 cigarettes per day]); and family history of MI. All analyses
were conducted with SAS software, version 9 (SAS Institute, Inc, Cary, NC). All P values were 2 sided. We examined the possible non-
linear relationship between anthocyanin intake and risk of MI non-
parametrically using stepwise restricted cubic splines.21,22 Tests for nonlinearity used the likelihood ratio test, comparing the model with
only the linear term and the model with the linear and cubic spline
terms that were selected.

In secondary analyses, we additionally adjusted for potassium,
folate, and fruit and vegetable intake, both individually and in com-
bination. We created several Cox proportional hazards regression
models to measure the associations between flavonoid subclasses
intake and MI in the presence of intermediate outcome measures,
including history of hypertension, diabetes mellitus, angina, and
hypercholesterolemia.

To identify risk factors that may modify the relationship between
flavonoid subclasses that were associated with MI risk, we examined
the associations among strata of smoking, physical activity, prevalent
hypertension, alcohol, and body mass index. We also conducted food-
based analyses of the main sources of anthocyanins, flavonols, and
flavonoid polymers: tea, onions, apples, strawberries, and blueberries.

Results

During 18 years of follow-up, among the 93,600 participants,
we documented 405 cases of incident MI. Baseline charac-
teristics of the participants according to quintiles of anthocy-
nin intake are shown in Table 1. The median age of cases at
diagnosis was 48.9 years, with an age range of 33.8 to 60.8
years. Women with higher anthocyanin intake smoked less,
exercised more, and had lower total fat and energy intakes and
higher whole grain and fiber intakes. The flavonoid polymer
subclass contributed most to total flavonoid intake (58–643
mg/d), whereas anthocyanin intakes ranged from 2 to 35 mg/d.

After multivariate adjustment, we observed an inverse
association between anthocyanin intake and MI risk (P for
trend=0.047), and the greatest reduction in risk was 32% when
participants in the highest and lowest quintiles of anthocyanin
intake were compared (HR, 0.68; 95% confidence interval
[CI], 0.49–0.96; P for trend=0.047; Table 2). We tested for deviation
from linearity and did not detect any significant deviations from linearity (P for deviation=0.41). The addition of
intermediate conditions, including history of hyperten-
sion, diabetes mellitus, angina, or hypercholesterolemia, to
the model did not significantly attenuate the relationship (HR,
0.70; 95% CI, 0.50–0.97). For every 15-mg increase in intake
of anthocyanins, the relative risk of MI decreased by 17%
In stratified analyses, the inverse association between anthocyanins and MI was stronger among women who never smoked compared with those who currently smoked, although this interaction was not significant (P for heterogeneity=0.73; Table 3). In other stratified analyses, we found that the inverse association was similar in alcohol drinkers and nondrinkers and in those without diabetes mellitus and those with a history of the disease, although these interactions were also not significant (Table 3).

To confirm these findings and to relate the effects to public health and dietary guidelines, we conducted food-based analyses for the main dietary sources of anthocyanins. When we combined intakes of blueberries and strawberries and compared those who consumed >3 servings per week with those who rarely consumed these fruits, there was a trend toward

| Table 1. Characteristics of the Women From the Nurses’ Health Study II by Quintile of Anthocyanin Intake at Baseline |

<table>
<thead>
<tr>
<th>Quintile 1 (n=18676)</th>
<th>Quintile 2 (n=18736)</th>
<th>Quintile 3 (n=18727)</th>
<th>Quintile 4 (n=18729)</th>
<th>Quintile 5 (n=18732)</th>
<th>P for Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y</td>
<td>36.4 (4.7)</td>
<td>36.4 (4.7)</td>
<td>36.6 (4.7)</td>
<td>36.7 (4.6)</td>
<td></td>
</tr>
<tr>
<td>BMI, kg/m²</td>
<td>25.1 (5.8)</td>
<td>24.8 (5.4)</td>
<td>24.5 (5.1)</td>
<td>24.4 (5.0)</td>
<td>24.2 (4.8)</td>
</tr>
<tr>
<td>Prenopausal, %</td>
<td>96.2</td>
<td>96.2</td>
<td>96.0</td>
<td>96.5</td>
<td>96.6</td>
</tr>
<tr>
<td>Oral contraceptive use, %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never</td>
<td>16</td>
<td>15</td>
<td>15</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Past</td>
<td>74</td>
<td>74</td>
<td>73</td>
<td>74</td>
<td>73</td>
</tr>
<tr>
<td>Current</td>
<td>10</td>
<td>11</td>
<td>11</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>Smoking, %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never</td>
<td>61</td>
<td>66</td>
<td>67</td>
<td>68</td>
<td>66</td>
</tr>
<tr>
<td>Former</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td>Current, 1–14 per day</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Current, ≥15 per day</td>
<td>12</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Physical activity, METs/wk</td>
<td>16.4 (24.2)</td>
<td>18.3 (24.2)</td>
<td>20.7 (26.2)</td>
<td>23.2 (29.3)</td>
<td>25.8 (30.7)</td>
</tr>
<tr>
<td>Family history of MI, %</td>
<td>23</td>
<td>21</td>
<td>22</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>History of hypertension, %</td>
<td>7.3</td>
<td>6.3</td>
<td>6.2</td>
<td>5.9</td>
<td>5.9</td>
</tr>
<tr>
<td>History of diabetes mellitus, %</td>
<td>0.9</td>
<td>0.9</td>
<td>1.1</td>
<td>0.9</td>
<td>1.0</td>
</tr>
<tr>
<td>History of hypercholesterolemia, %</td>
<td>16.1</td>
<td>15.0</td>
<td>14.1</td>
<td>13.9</td>
<td>13.7</td>
</tr>
<tr>
<td>Energy intake, kcal/d</td>
<td>1847 (594)</td>
<td>1831 (486)</td>
<td>1740 (606)</td>
<td>1922 (523)</td>
<td>1606 (461)</td>
</tr>
<tr>
<td>Alcohol, g/d</td>
<td>3.0 (7.1)</td>
<td>2.8 (5.5)</td>
<td>3.0 (5.5)</td>
<td>3.4 (6.0)</td>
<td>3.3 (6.1)</td>
</tr>
<tr>
<td>Total fat, g/d</td>
<td>68.3 (25.2)</td>
<td>65.7 (20.2)</td>
<td>60.7 (23.7)</td>
<td>66.0 (21.1)</td>
<td>52.9 (17.3)</td>
</tr>
<tr>
<td>Saturated fat, g/d</td>
<td>24.7 (9.7)</td>
<td>23.4 (7.7)</td>
<td>21.5 (8.9)</td>
<td>23.3 (8.0)</td>
<td>18.5 (6.5)</td>
</tr>
<tr>
<td>Monounsaturated fat, g/d</td>
<td>26.1</td>
<td>25.0 (8.1)</td>
<td>23.0 (9.4)</td>
<td>25.0 (8.4)</td>
<td>19.9 (6.8)</td>
</tr>
<tr>
<td>Polyunsaturated fat, g/d</td>
<td>11.6</td>
<td>11.6 (4.1)</td>
<td>10.9 (4.6)</td>
<td>12.0 (4.2)</td>
<td>9.8 (3.6)</td>
</tr>
<tr>
<td>Trans fat, g/d</td>
<td>3.8 (1.8)</td>
<td>3.5 (1.5)</td>
<td>3.1 (1.6)</td>
<td>3.3 (1.5)</td>
<td>2.5 (1.1)</td>
</tr>
<tr>
<td>Dietary fiber, g/d</td>
<td>15.7 (6.6)</td>
<td>17.6 (6.8)</td>
<td>17.9 (7.7)</td>
<td>20.6 (7.8)</td>
<td>18.9 (8.0)</td>
</tr>
<tr>
<td>Whole grain, g/d</td>
<td>16.8 (15.4)</td>
<td>19.6 (15.5)</td>
<td>20.0 (16.3)</td>
<td>23.1 (17.2)</td>
<td>20.7 (16.3)</td>
</tr>
<tr>
<td>Potassium, mg/d</td>
<td>2734 (924)</td>
<td>2890 (860)</td>
<td>2837 (995)</td>
<td>3199 (961)</td>
<td>2857 (929)</td>
</tr>
<tr>
<td>Total flavonoids, mg/d</td>
<td>351 (541)</td>
<td>366 (451)</td>
<td>422 (502)</td>
<td>402 (423)</td>
<td>520 (519)</td>
</tr>
<tr>
<td>Flavanones, mg/d</td>
<td>26.8 (34.3)</td>
<td>30.4 (31.1)</td>
<td>34.4 (35.4)</td>
<td>34.4 (32.8)</td>
<td>41.2 (38.5)</td>
</tr>
<tr>
<td>Flavonols, mg/d</td>
<td>16.0 (13.7)</td>
<td>17.2 (12.8)</td>
<td>18.6 (13.2)</td>
<td>19.3 (12.5)</td>
<td>21.6 (13.9)</td>
</tr>
<tr>
<td>Flavones, mg/d</td>
<td>1.2 (1.1)</td>
<td>1.4 (1.0)</td>
<td>1.6 (1.0)</td>
<td>1.7 (1.0)</td>
<td>1.9 (1.2)</td>
</tr>
<tr>
<td>Flavan-3-ols, mg/d</td>
<td>58.1 (93.8)</td>
<td>58.4 (83.7)</td>
<td>62.6 (89.2)</td>
<td>60.2 (77.6)</td>
<td>71.1 (90.5)</td>
</tr>
<tr>
<td>Polymers, mg/d</td>
<td>246.8 (439)</td>
<td>254.0 (359)</td>
<td>297.4 (403)</td>
<td>273.3 (336)</td>
<td>351.4 (415)</td>
</tr>
</tbody>
</table>

BMI indicates body mass index; METs, metabolic equivalents; and MI, myocardial infarction. All values (except age) are age-adjusted mean ± SD.
a decrease in the risk of MI (HR, 0.66; 95% CI, 0.40–1.08; \(P=0.09 \); the Figure). For the other main foods that contributed to flavonoid intake, we did not observe a significant reduction in risk with increased intake, except for onions, for which an intake of \(\geq 5 \) times per week was significantly associated with reduced risk (HR, 0.27; 95% CI, 0.08–0.87; \(P=0.03 \)).
Discussion

In this prospective cohort study of well-characterized young and middle-aged women with 18 years of follow-up and repeated measures of dietary intake, we observed that a higher intake of anthocyanins was associated with a 32% reduction in risk of MI and that this inverse association was independent of established dietary and nondietary CVD risk factors. These compounds are present in red/blue fruits and vegetables and are readily incorporated into the habitual diet, and simple dietary change could have an impact on prevention efforts.

Our current knowledge of modifiable risk factors to prevent MI in young and middle-aged women is limited. Over the last few decades, several small case-control studies have reported on the increased risk of MI associated with use of oral contraceptives, heavy smoking, history of diabetes mellitus, and hypertension in younger women.2,3,23–25 From a dietary perspective, the only available case-control data suggest a reduction in risk with moderate alcohol consumption and a modest increase in risk with very high coffee intake (≥10 cups per day).26,27 Our data suggest a potential role for flavonoids, specifically anthocyanins, in reducing risk.

To date, limited randomized, controlled trials have examined the impact of anthocyanins on blood pressure and endothelial function relative to other subclasses.8 However, a recent 3-month randomized, controlled trial in dyslipidemic patients showed that anthocyanin intake improved the lipoprotein profile, resulting in an increase in high-density lipoprotein cholesterol levels and a decrease in low-density lipoprotein cholesterol levels, effects that were thought to be mediated via cholesteryl ester transfer protein inhibition.28 A
growing body of evidence from animal models and in vitro experiments supports a cardioprotective role for anthocyanins and their degradation products or metabolites; however, the concentrations used in many cell culture experiments are frequently higher than are physiologically achievable through dietary intake. In addition, many in vitro studies focus on the parent anthocyanin glycosides, and their biological effects may not reflect the effects of in vivo degradation or the colonic metabolites that may be responsible for at least part of the cardiovascular bioactivity of anthocyanins. In vitro, anthocyanins inhibit angiotensin-converting enzyme activity, exert antiinflammatory effects, and inhibit inducible nitric oxide synthase protein and mRNA expression and the activation of nuclear factor-κB and nitric oxide production in a dose-dependent manner. Some of these biological effects were also observed after exposure to their metabolites, including protocatechuic acid. In a rat heart model, anthocyanins increased cardiac glutathione concentrations and reduced infarct size after coronary occlusion and perfusion, which resulted in the myocardium being less susceptible to ischemia and reperfusion injury ex vivo. In an apolipoprotein E–deficient mouse model, anthocyanins enhanced atherosclerotic plaque stabilization, suppressed the development of atherosclerotic lesions and the metabolite protocatechuic acid, and directly inhibited atherosclerosis development. Anthocyanins have also been shown to act on a range of cells involved in atherosclerosis development, including suppressed tumor necrosis factor-α–induced monocyte chemoattractant protein-1 secretion in primary endothelial cells and reduced expression of vascular endothelial growth factor–stimulated platelet-derived growth factor in vascular smooth muscle cells via deactivation of p38 mitogen-activated protein kinases and c-Jun N-terminal kinase.

These mechanistic insights into anthocyanins are important because the pathogenetic mechanisms underlying MI in young and middle-aged women may differ from those in older women and men. For example, risk in younger women may particularly reflect atherosclerosis with plaque disruption and ulceration leading to MI with nonobstructive coronary artery disease. Coronary artery spasm, a consequence of endothelial dysfunction, also may underlie CHD in younger women. Available data suggest that it is a frequent cause of acute coronary syndrome, with coronary spasm identified in 50% of patients.

In an attempt to explore the biological pathways underlying the associations we observed, we added intermediate conditions, including history of hypertension, hypercholesterolemia, diabetes mellitus, and angina, to the multivariate models, but the risk estimates were not substantially attenuated. This suggests that other mechanisms beyond these may be involved. There was a suggestion of a stronger association in those with prevalent hypertension, although the interaction was not significant (Table 3), potentially because of a lack of statistical power. The addition of other plant-based food constituents, including potassium or folate, to our model also did not substantially attenuate the relationship, nor did adjusting for total intake of fruits and vegetables. These models suggest that the benefits are specific to a food constituent in anthocyanin-rich foods (including blueberries, strawberries, eggplants, blackberries, blackcurrants) and not necessarily to nonspecific benefits among participants who consume high intakes of fruits and vegetables.

We did not observe a substantial change in risk in the middle 3 quintiles of anthocyanin intake, but the difference in intake in these 3 quintiles was only 8 mg. With such small differences in intakes, measurement error or misclassification is likely to be greatest. However, when we examined the possible nonlinear relationship across the entire distribution of anthocyanin intake, we did not detect any significant deviations from linearity. To date, limited dose-response trials of anthocyanins and biomarkers of MI risk have been conducted, but given our knowledge of other subclasses, including the isoflavones and flavan-3-ols, there is likely a threshold of intake for a biological effect, and very low levels of intake are unlikely to be bioactive. When we compared extreme deciles of intake, those in the top decile had a 47% reduction in risk of MI, suggesting a continual dose-response at higher levels of habitual intake.

In food-based analyses, we similarly observed a trend toward a reduction in risk of MI with increasing intake of the 2 main sources of anthocyanins, strawberries and blueberries (which equated to almost 60% of total anthocyanin intake), with a 34% decrease in risk for those who consumed >3 portions per week compared with those who ate these fruits ≤1 time per month. These data are important from a public health perspective because these fruits can be readily incorporated into the habitual diet.

Previous prospective studies on flavonoids and CVD risk have been mixed, in part because, until recently, databases did not contain the comprehensive range of flavonoids present in the diet. Two recent studies suggest inverse associations between increased flavanone and anthocyanin intake and fatal CVD risk in older women, although 1 study was based on the earlier 2003 US Department of Agriculture database. Our data included both fatal CHD and nonfatal MI, and we had insufficient power to examine the association between anthocyanin intake and fatal CHD risk in younger women (n=36 cases). In relation to age, in these middle-aged women (median age, 48.9 years at diagnosis; age at baseline, 25–42 years), we observed a 32% reduction in risk in a comparison of extreme intake quintiles, a finding that supports our previous study in which we observed the greatest magnitude of effect on blood pressure in younger and middle-aged women. This compares with the 2 previous studies of older women (mean age, 69 years; age range, 55–69 years at baseline, respectively) in which the magnitude of the association was lower: 18% and 9% reduction in risk, respectively.

We hypothesized that increased flavan-3-ol intake would also be associated with a reduction in risk, given the wealth of mechanistic support for this subclass. However, to the extent that we could assess intake, no relationship was apparent for habitual intake in this population. Our recent meta-analysis of flavan-3-ol randomized, controlled trials and CVD risk biomarkers suggested that ≥50 mg/d epicatechin, one of the main flavan-3-ol compounds, is required for beneficial...
effects on systolic and diastolic blood pressures.12 By their very nature, FFQs cannot capture all sources of flavonoids, and some sources of flavan-3-ols may not have been accurately captured. Specifically, dark chocolate is one of the main sources of flavan-3-ols, but its overall consumption in the 1990s was quite low, and most FFQs of that era did not assess different chocolate types.

There was a trend toward a reduction in risk of MI with increasing intake of flavonoid polymers and flavonols, although this did not reach statistical significance. The association with flavonoid polymer intake is intriguing because, to date, many of these compounds remain poorly defined, and we currently know little about their biological activity and bioavailability. This subclass includes proanthocyanidins, theaflavins, and thearubigins, found predominantly in the habitual diet in tea and apples, and the relative impact of these different constituents on biomarkers of CVD risk merits further investigation in future randomized, controlled trials.

The strengths of this study include the prospective design, focus on middle-aged and not older women, large sample size with long-term follow-up, repeat measures of dietary intake, detailed data on important risk factors and confounders for CVD risk, and comprehensive assessment of the range of flavonoid subclasses present in the habitual diet. The limitations of our study also warrant discussion. We adjudicated cases of acute MI using standard criteria, but we did not collect catheterization results. Therefore, although we speculated that coronary spasm may underlie CHD in younger women, we were unable to delineate which women had evidence of coronary spasm during their infarction. Although we adjusted for possible confounders that are strongly associated with MI risk (including body mass index, smoking, family history), there is still the possibility of residual or unmeasured confounding from additional unmeasured factors, which may be greatest when those consuming the highest and the lowest anthocyanin intakes are compared. However, given our detailed and updated adjustment for potential confounders, it is unlikely that these would account fully for the observed results, and in our stratified analyses, we showed that even in nonsmokers and in normal-weight, physically active participants, the point estimates remained similar (Table 3). Of all the flavonoid subclasses assessed, only anthocyanin intake was associated with a reduction in MI risk, suggesting something specific about this subclass. Our FFQ assesses intake of each food up to 6 times per day; therefore, even among the few participants who consume that many servings of blueberries or strawberries, we would be able to accurately assess their intakes. Our data may underestimate the true benefits of lowering blood pressure because we have only a dichotomous variable. It is likely that anthocyanin intake exerts benefits across the entire range of blood pressure, not just at an artificial threshold set for hypertension diagnosis. We used repeated measurements of diet to obtain a more accurate assessment of long-term flavonoid intake and to reduce measurement error. Mean cumulative dietary flavonoid intakes were calculated from a database developed from the most recent US Department of Agriculture databases11 with additional input from other sources. These data sets allowed us to quantify a broad range of flavonoid subclass intakes more robustly than previous analyses. The flavonoid content of foods varies, depending on growing conditions and manufacturing processes, but despite this variation, these data allow us to rank order intakes and to compare high and low intakes in large population groups. Although correlations between the major dietary sources of flavonoids (fruits, vegetables, tea, wine) have been determined for our FFQ,16,17 our FFQ has not been validated specifically for the intake of flavonoid subclasses. However, in a recent study, the sum of 7 flavonoid biomarkers measured in 24-hour urine samples was correlated with intakes of fruits and vegetables (0.43–0.66),41 correlations similar to our validation studies. There are currently no specific biomarkers for anthocyanins because there is currently a limited understanding of their degradation and metabolism after ingestion. It is possible that our findings for anthocyanins might be due to other constituents found in the foods that contribute most to this subclass; however, the addition of other potentially beneficial constituents of fruits, including potassium, folate, and total fruit and vegetable intake, to our multivariate model did not substantially attenuate the relationship between anthocyanins and MI risk, suggesting that anthocyanins may be another important cardioprotective constituent. However, in a population-based study like ours, it is impossible to disentangle the relative influence of all the constituents of fruits and vegetables.

Our findings suggest that bioactive compounds present in red and blue fruits and vegetables commonly consumed in the habitual diet may be associated with a reduced risk of MI in young and middle-aged women. Further prospective studies, including studies with biomarkers of CHD risk to elucidate mechanisms, are needed to confirm these associations. Randomized trials focusing on commonly consumed anthocyanin-rich foods are also needed to examine dose-response effects and to be of long-enough duration to assess clinically relevant end points.

Sources of Funding
This study was supported by Public Health Service grants NCI CA050385 and HL091874 from the US National Institutes of Health, Department of Health and Human Services and the UK Biotechnology and Biological Sciences Research Council (BBSRC Reference BB/J004545/1).

Disclosures
None.

References
Cassidy et al

An anthocyanin and myocardial infarction

25. Rosenberg L, Palmer JR, Rao RS, Shapiro S. Low-dose oral contra-

30. Min SW, Ryu SN, Kim DH. Anti-inflammatory effects of black rice, cyan-
idin-3-O-beta-D-glucoside, and its metabolites, cyanidin and protocate-

31. Hidalgo M, Martinez-Santamaria S, Recio I, Sanchez-Moreno C, de Pascu-
al-Teresa B, Rimbach G, de Pascual-Teresa S. Potential anti-inflammatory, anti-adhesive, anti-estrogenic, and angiotensin-converting enzyme inhibi-

tin, and daidzein inhibit STAT-1 and NF-kappaB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-
 kappaB activation along with their inhibitory effect on iNOS expres-

36. Xia X, Ling W, Ma J, Xia M, Hou M, Wang Q, Zhu H, Tang Z. An antho-
cyanin-rich extract from black rice increases atherosclerotic plaque stabi-

37. Miyazaki K, Makino K, Iwade T, Iwata Y, Ishikawa F. Anthocyanins from purple sweet potato Ipomoea batatas cultivar Ayamurasaki suppress the development of atherosclerotic lesions and both enhancements of oxidative stress and soluble vascular cell adhesion molecule-1 in apoli-

38. Wang D, Wei X, Yan X, Jin T, Wang W. Protopotechac acid, a me-
tabolite of anthocyanins, inhibits monocyte adhesion and reduces ath-

39. Garcia-Alonso M, Minihane AM, Rimbach G, Rivas-Gonzalo JC, de Pas-

CLINICAL PERSPECTIVE

To date, attention has focused on risk factors for coronary heart disease in older age groups, and risk factors may vary with age, particularly in women. Knowledge of modifiable risk factors to prevent myocardial infarction (MI) in young women is limited, particularly in relation to diet. Dietary flavonoids, bioactive compounds present in plant-based foods and drinks, exert potential beneficial effects on endothelial function and blood pressure in short-term trials, but the effects of habitual intakes on MI risk in younger women are unknown. The mechanisms underlying coronary heart disease in younger women may also differ, and coronary vasospasm, a consequence of endothelial dysfunction, may be important. We prospectively studied 93,600 young women from the Nurses’ Health Study II for up to 18 years and examined the relationship between intakes of flavonoid subclasses and risk of MI. Individuals with a higher intake of 1 subclass, anthocyanins (responsible for the red/blue color of plants and present in strawberries, blueberries, and red wine), had a significantly lower risk of MI than women consuming low intakes. This 32% reduction in risk was independent of established dietary/lifestyle CVD risk factors, including smoking, body mass index, and fruit and vegetable intake. To relate these findings to public health, we showed that the combined intake of the main anthocyanin sources (strawberries and blueberries) was also associated with a reduction in MI risk. This study suggests that high anthocyanin intakes may reduce MI risk in young women. Intervention trials are needed to assess clinically relevant end points, and prevention efforts should focus on increasing intakes of commonly consumed anthocyanin-rich foods.
High Anthocyanin Intake Is Associated With a Reduced Risk of Myocardial Infarction in Young and Middle-Aged Women
Aedín Cassidy, Kenneth J. Mukamal, Lydia Liu, Mary Franz, A. Heather Eliassen and Eric B. Rimm

Circulation. 2013;127:188-196
doi: 10.1161/CIRCULATIONAHA.112.122408
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2013 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/127/2/188

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/