Bone Marrow Tinctures for Cardiovascular Disease
Lost in Translation

Jalees Rehman, MD

Warburg’s Tincture was a blockbuster antifever remedy in the 19th century. It was invented by Dr Carl Warburg to treat a broad range of fevers, achieving widespread usage in the British Empire, the Austrian Empire, and also in the United States. Many renowned physicians prescribed it, but others were envious of Warburg’s success and not too happy about the fact that he kept its formulation secret. In 1870, Warburg finally revealed the secret ingredients and gave permission to Professor W. C. Maclean, one of the most ardent supporters of the remedy, to publish them in the Lancet1: The elusive tincture contained many components, such as Rhubarb root, Angelica seeds, gentian root, Saffron, Fennel seeds, Myrrh, Camphor among others and, unsurprisingly, quinine. In his letter to the Lancet, Maclean effusively praises the tincture, but he also emphasizes that its healing power was not just attributable to the known antipyretic quinine, and that it was the unique composition of various extracts that was responsible for its efficacy. In the 21st century, few physicians would prescribe such tinctures, which are plant or animal extracts. The idea of using such extracts that contain a large array of substances, some active and some inactive, goes against the tenets of modern medical practice, in which we strive to define and titrate every single therapeutic agent to optimize efficacy. There is, however, one notable exception to this practice in an emerging area of cardiovascular medicine: the use of bone marrow mononuclear cells.

An animal study in 1999 suggested that mononuclear cells extracted from the bone marrow and injected into the heart could be used to augment cardiac function after a myocardial infarction.2 These results were translated into the clinical setting at an astonishingly rapid pace, as evidenced by the publication of a small clinical study in 2002 showing that intracoronary infusion of bone marrow mononuclear cells (BM-MNCs) after an acute myocardial infarction (MI) could be performed safely without major complications and might even reduce infarct size and improve left ventricular function when compared with standard therapy for MI.3 These early findings caused a considerable amount of excitement in the field of cardiovascular regeneration because they demonstrated that stem cell therapies to augment cardiac function were not only feasible but even appeared to be efficacious, leading to multiple subsequent studies in patients who had either suffered an acute MI or had chronic ischemic heart disease. The enthusiasm was further buoyed by an animal study that suggested that hematopoietic stem cells from the bone marrow could differentiate into functional cardiomyocytes,4 and this was proposed as one conceivable mechanism by which the BM-MNCs were improving cardiac function. However, there was one key problem with the use of BM-MNCs, which may not have received the degree of attention that it ought to have. BM-MNCs are a rather heterogeneous combination of cell types, mostly consisting of lymphocytes, but they can also contain monocytes, endothelial cells, mesenchymal stem cells, pericytes, and mesenchymal lineage progenitors derived from the mesenchymal stem cells, such as preadipocytes or osteoblasts. In fact, hematopoietic stem cells represent only a tiny fraction (=1% or less) of the total BM-MNCs. Most clinical studies did not characterize the relative proportions and respective activity of the various cell fractions contained in each of the heterogeneous bone marrow extracts. They instead focused on standardizing the total number of infused or injected cells, hoping that one or more of the cell types in the BM-MNC extract would exert therapeutic benefits and that the individual differences in BM-MNC composition and activity would not confound the therapeutic efficacy. Thus, even though the BM-MNCs had not been extracted with ethanol (the classical way to make a tincture), the heterogeneity and lack of clear characterization of the various components of the bone marrow extracts was reminiscent of 19th century tinctures.

In hindsight, one may wonder why the use of BM-MNCs became so popular despite the prevailing knowledge that the majority of injected cells were lymphocytes and not stem or progenitor cells. The convenience of obtaining an autologous bone marrow extract from a patient and infusing it without clearly characterizing and separating its cellular components might have played a role. The fact that the expression “bone marrow” automatically conjures up images of stem cells, in light of the tremendous success of hematopoietic stem cell transplantation in hematology, may have also contributed to the popularity of using BM-MNCs in these early studies. If they had been correctly referred to as “Infusions of lymphocytes combined with multiple other cell types,” more questions might have been raised about whether they were indeed the most appropriate treatment to study regenerative therapies in cardiovascular disease.

Even though additional small clinical studies supported the use of BM-MNCs via intracoronary or intramyocardial injections, a 2006 study published in the New England Journal of
Medicine showed no evidence of improved cardiac function after BM-MNC infusion following an acute MI. Furthermore, one of the purported mechanisms of BM-MNC action, the differentiation of hematopoietic stem cells into cardiomyocytes, also became an issue of controversy when a subsequent study found no evidence of cardiomyocyte differentiation. This suggested that the observed benefits seen in the BM-MNC studies may not have been the direct result of hematopoietic stem cells differentiating into cardiac cells. In addition to these questions about the unclear mechanism of BM-MNC action, it became apparent that BM-MNCs did not exhibit long-term engraftment in the heart.

None of the clinical studies using BM-MNCs in acute MI or ischemic heart disease were powered to detect end points such as mortality, and most enrolled only 10 to 100 patients and used indicators of left ventricular (LV) function as end points. A comprehensive meta-analysis of 50 BM-MNC randomized, controlled trials and cohort studies (with a combined enrolment of 2625 patients) was conducted in 2012 and found that BM-MNC therapy resulted in a statistically significant, but rather modest LV ejection fraction improvement of 3.96%, and similar benefits in other indicators of left ventricular function.

Soon after the publication of this meta-analysis, the results of the randomized controlled TIME trial were released, which enrolled 120 patients with an anterior ST-elevation myocardial infarction (STEMI) and assigned them to either early (3 days after STEMI and reperfusion) or late intracoronary BM-MNC infusions (7 days after STEMI reperfusion), or the respective placebo infusion groups. The TIME trial found no significant benefit of either early or late BM-MNC infusions, as assessed by cardiac MRI at 6 months post cell therapy. The TIME trial once again highlighted the inconsistent efficacy of BM-MNCs, which had also been observed in the meta-analysis, but its results were also criticized. One key criticism leveled at the TIME trial was that the TIME investigators used an automated method to extract the BM-MNCs instead of the more traditional gradient centrifugation method used by previous trials, which had shown benefits of BM-MNCs. A second criticism was that the isolation method of the TIME investigators had exposed the BM-MNCs to the anticoagulant heparin, which might have impaired the activity of the infused BM-MNCs.

The results of the SWISS-AMI trial published in this issue of Circulation by Sürder et al may be able to address these concerns. The SWISS-AMI trial enrolled 200 patients with an STEMI after they had undergone reperfusion therapy (primary PCI in most cases): (1) Control group, which consisted of optimal medical therapy, (2) Early BM-MNC therapy group, which received an intracoronary BM-MNC infusion within 5 to 7 days after the initial STEMI reperfusion in addition to optimal medical therapy, and (3) Late BM-MNC therapy group, which received an intracoronary BM-MNC infusion 3 to 4 weeks after the initial STEMI reperfusion in addition to optimal medical therapy. The investigators assessed LV function using cardiac MRI at baseline and at 4 months for all enrolled patients. Their results show that there was no statistically significant difference in the LV ejection fraction between the three groups. The investigators used the traditional centrifugation method to isolate the BM-MNCs instead of the newer automated method used by the TIME investigators. The SWISS-AMI investigators used heparin during the bone marrow aspiration procedure to avoid clotting of the sample, but they avoided directly adding heparin to the isolated BM-MNC cell product, thus allaying concerns that the lack of efficacy was due to heparin treatment of BM-MNCs.

The SWISS-AMI trial has a number of key strengths, such as the randomized design, performing state-of-the-art cardiac MRI to assess LV function on all patients at baseline and at a 4-month follow-up, using traditional BM-MNC isolation procedures, and the enrolment of 200 patients, which makes it one of the largest randomized BM-MNC trials in STEMI patients to date. The investigators also assessed the composition of the infused BM-MNCs, showing that roughly only 1% of the infused BM-MNCs were hematopoietic stem cells, whereas 46% of the cells were lymphocytes and 8% were monocytes, again underscoring that the majority of BM-MNCs are not stem cells.

It is important to note that the SWISS-AMI trial also has key limitations. The LV ejection fraction is only a surrogate measure for clinically meaningful end points, such as mortality, hospitalization for heart failure, or need for revascularization, and the trial was not powered to detect these more important end points. The majority of patients in all 3 groups were in NYHA class I and CCS class I at the follow-up, thus indicating that the studied population had limited prevalence of heart failure and angina. Patients with more severe symptoms might have derived greater benefits from BM-MNC therapies. The study only followed the patients for 4 months, and longer follow-up might have revealed some statistically significant benefits. Lastly, the study only assessed the fractions of lymphocytes, monocytes, and hematopoietic stem cells in the BM-MNCs, but not the proportion of mesenchymal stem cells, which have also been shown to exert a therapeutic benefit on LV function.

Despite these limitations, the SWISS-AMI trial once again casts doubt on the idea that BM-MNC therapies are beneficial for MI patients. Even the comprehensive meta-analysis had shown only very modest benefits, but in light of the newer negative TIME and SWISS-AMI data, cardiovascular researchers and physicians need to reconsider whether BM-MNC therapies should be pursued. One of the most likely explanations for the wide disparity and heterogeneity observed in the BM-MNC trials is the fact that each bone marrow extract contains varying proportions of cell types. Even though there is minimal evidence for adult BM-MNCs differentiating into functional cardiomyocytes, beneficial cell types in the bone marrow may release growth factors that prevent cardiomyocyte death or fibrosis, stimulate angiogenesis, or activate resident regenerative cells contained within the heart. The large percentage of leukocytes in the BM-MNC might also result in the release of harmful proinflammatory factors, as has been observed in monocyte-derived early endothelial progenitor cells. Whether a BM-MNC infusion turns out to be beneficial, inert, or harmful for any given patient probably depends on the relative proportions of the various BM-MNC cell types in that individual’s bone marrow.

There are calls for a large-scale BM-MNC trial, such as the planned BAMI trial (NCT01569178), which intends to recruit 3000 patients and demonstrate that a single intracoronary infusion of autologous BM-MNCs reduces all-cause mortality in
MI patients, hoping that it would definitively resolve the issue of whether or not BM-MNCs are efficacious. However, one needs to ask the question whether conducting such a large-scale BM-MNC trial in light of the recent negative results and newer scientific advances in the field of cardiovascular regeneration is even appropriate. When the first BM-MNC trials were conducted more than a decade ago, they were based on the scientific data that were available at that time. The use of a heterogeneous bone marrow gemisch in the hope that some cell type contained in the bone marrow extract would improve cardiac function might have been appropriate 1 decade ago. However, now we know about the lack of long-term engraftment of BM-MNCs, and we know that there are many other, better characterized and defined cell types that may be more effective at promoting cardiovascular regeneration.

Cardiac stem or progenitor cells can be obtained from a cardiac biopsy, appear to exhibit a true cardiomyogenic phenotype, and have been safely used in early human trials.\(^{3,16}\) Mesenchymal stem cells are a well-characterized subset of the BM-MNC fraction, and clinical studies not only indicate safety but also some degree of efficacy.\(^{13}\) Each of these cell types requires a more cumbersome isolation and culture procedure than the conventional, but the use of these newer, defined cell types has a stronger scientific footing than the use of BM-MNCs. Even if a large-scale BM-MNC trial were to succeed and were to show a statistically significant modest benefit of BM-MNC infusions (as one might expect, based on the meta-analyses), we might still have difficulties explaining the underlying scientific mechanisms when using such poorly defined, heterogeneous BM-MNC extracts. The recent Trial to Assess Chelation Therapy (TACT) is one example of a study with a statistically significant benefit, but with an unclear underlying scientific mechanism, and it makes it very difficult to interpret its results.\(^{17}\) For regenerative therapies to succeed, we need to ensure that large-scale cell therapy trials are based on the latest and best scientific data and methodology available. We owe this to the study subjects, future patients, and the scientific integrity of the field.

Sources of Funding

Dr Rehman is supported in part by National Institutes of Health grant R01-GM094220.

Disclosures

Dr Rehman is a coinventor on US Patent 8,067,234 which describes the use of adipose tissue derived mesenchymal stem cells or stromal cells for cardiovascular therapies.

References

Key Words: Editorials ■ angiogenesis ■ coronary artery disease ■ mesenchymal stromal cells ■ myocardial infarction ■ stem cells ■ tissue therapy
Bone Marrow Tinctures for Cardiovascular Disease: Lost in Translation
Jalees Rehman

Circulation. 2013;127:1935-1937; originally published online April 17, 2013;
doi: 10.1161/CIRCULATIONAHA.113.002775

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://circ.ahajournals.org/content/127/19/1935

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published
in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial
Office. Once the online version of the published article for which permission is being requested is located,
click Request Permissions in the middle column of the Web page under Services. Further information about
this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org/subscriptions/