Editorial

A New Era for Treating Enterococcus faecalis Endocarditis

Ampicillin Plus Short-Course Gentamicin or Ampicillin Plus Ceftriaxone: That Is the Question!

Jose M. Miro, MD, PhD; Juan M. Pericas, MD; Ana del Rio, MD, PhD; on behalf of the Hospital Clinic Endocarditis Study Group*

Enterococci are the third most common etiologic agent of infective endocarditis worldwide after staphylococci and streptococci and cause 10% to 15% of cases.1 Enterococcal infections are increasingly relevant, especially among the elderly and patients with comorbid conditions in the healthcare setting.2-3 Approximately 90% of cases of enterococcal endocarditis are caused by Enterococcus faecalis, with <5% caused by E. faecium.2,3 The morbidity and mortality of enterococcal endocarditis are high. The percentage of patients requiring cardiac surgery (42%) and the 1-year mortality rate (29%) have remained almost unchanged for the last 30 years; recent data show that they may even be increasing.3

The opinions expressed in this article are not necessarily those of the editors or of the American Heart Association.

From the Infectious Diseases Service, Hospital Clinic–IDIBAPS, University of Barcelona, Barcelona, Spain.

*Members of the Hospital Clinic Endocarditis Study Group are listed in the Acknowledgments.

Correspondence to Jose M. Miro, MD, PhD, Infectious Diseases Service, Hospital Clinic, Helios-Villarroel Bldg, Desk No. 26, Villarroel 170, 08036 Barcelona, Spain. E-mail jmmiro@ub.edu

© 2013 American Heart Association, Inc.

Circulation is available at http://circ.ahajournals.org
DOI: 10.1161/CIRCULATIONAHA.113.002431

This worrying picture is worsened by the increase in resistance to classic antimicrobials, especially high-level aminoglycoside resistance (HLAR). However, American Heart Association guidelines4 have not modified their antibiotic recommendations on non-HLAR strains for almost 6 decades, and no randomized clinical trials support current evidence. Because the empirical use of ampicillin plus streptomycin has proven efficacious5 and synergistic (increased cell membrane permeability to aminoglycosides induced by β-lactams in vitro with enterococci),6 the efficacy of combining a β-lactam with an aminoglycoside is unquestionable. The latest AHA guidelines maintain penicillin or ampicillin (or vancomycin in case of allergy to β-lactams) plus gentamicin as the combination of choice for E. faecalis infective endocarditis (EFIE) caused by non-HLAR strains.7 Recommendations on length of treatment have also remained unchanged since the 1980s,7 namely 4 weeks for patients with uncomplicated native valve endocarditis and 6 weeks for patients with prosthetic valve endocarditis and patients with a >3-month history of symptoms before diagnosis.4 The gentamicin dose schedule (3 mg/kg per 24 hours IV or IM in 3 equally spaced doses) has also remained unchanged for 2 decades.

In this issue of Circulation, Dahl et al8 report on the efficacy and safety of ampicillin plus short-course gentamicin for treating non-HLAR EFIE in Denmark.8 The rationale of the study relies on the good results reported in 2002 in Sweden by Olaison and Schadewitz,9 who performed a 5-year prospective study including 93 cases of EFIE. Clinical cure was achieved in 75 episodes (81%) that had been treated with a median 2-week course of aminoglycosides. Mortality was 16%, and the relapse rate 3%, although neither was associated with the shortened course of therapy. These results led to a change in the Danish Society of Cardiology guidelines in 2007,10 when the course of gentamicin was reduced from 4 to 6 weeks to 2 weeks to reduce nephrotoxicity caused by prolonged treatment with aminoglycosides. However, the study by Olaison and Schadewitz is limited by the lack of microbiological data (ie, percentage of HLAR), the omission of the type of aminoglycosides used, the low percentage of patients with symptoms for >3 months (only 5%), the short follow-up (53% at 3 months), and the fact that no analysis of antimicrobial-associated adverse events was provided. The study by Dahl et al8 overcame these limitations. Hypothesizing that outcomes would not differ between short- and standard-course gentamicin in EFIE, the authors performed a pilot prospective cohort study with a historical control group (Table). Furthermore, given that almost all patients had been treated with a short course of gentamicin since the national guidelines were modified in 2007, the authors were able to compare 41 cases of left-sided non-HLAR EFIE treated during the 5 years before and 43 cases treated during the 5 years after the modifications. Baseline characteristics (including Charlson comorbidity index, duration of symptoms, and rates of prosthetic valve endocarditis) were similar in both groups. Mean duration of treatment with gentamicin was 28 and 14 days, respectively. Notably, renal function, expressed as glomerular filtration rate, was also similar in both groups before initiation of treatment. All patients received gentamicin 3 mg/kg; trough levels were monitored in all cases; and the dose schedule did not differ significantly between the 2 groups (daily in 82% and 93%, respectively). No statistically significant differences were detected in the primary end point, event-free 1-year survival (66% versus 69%; P=0.75), even after stratification by prosthetic valve endocarditis. No differences were found in heart failure, stroke or other embolisms, in-hospital surgery, in-hospital mortality, or relapses. Nonetheless, loss of renal function was less frequent in the group receiving short-course gentamicin (P=0.008). No analysis of other adverse events secondary to antimicrobial treatment was performed.
This study provides novel data on non-HLAR EFIE and aminoglycoside use. First, it demonstrates that 2 weeks of gentamicin was as efficacious as and less nephrotoxic than 4 to 6 weeks. Remarkably, short-course gentamicin was also safe and efficacious for *E. faecalis* prosthetic valve endocarditis. Second, it shows that daily gentamicin was clinically efficacious. AHA guidelines recommend a schedule comprising 3 equally spaced doses of gentamicin, and European Society of Cardiology (ESC) guidelines (based on experimental data) recommend a twice- or thrice-daily regimen. However, these findings are open to debate. The study by Hessen et al showed that the postantibiotic effect of QD gentamicin did not achieve bactericidal concentrations in vegetations of rats with EFIE treated with penicillin and gentamicin; the authors suggested shortening the dosing interval to maintain antibiotic levels over the minimum inhibitory concentration. Subsequent results are consistent with these findings. However, using a human-like pharmacokinetic model, Gavaldà et al found that the therapeutic efficacy of ampicillin plus gentamicin was not significantly affected by the gentamicin dosing interval, with once-daily dosing similar to thrice-daily dosing. The study by Dahl et al is the first to provide data from a large number of patients treated with a daily gentamicin schedule. Seventy-two of the 84 patients (86%) received a daily regimen, only 10 received a thrice-daily regimen, and 2 received a twice-daily regimen, with no association between poor outcome and dosing interval. Third, the authors provide evidence that nephrotoxicity was limited.

Table. Main Clinical Characteristics and Outcomes of the Studies by Dahl et al and Fernández-Hidalgo et al

<table>
<thead>
<tr>
<th>Country (n sites)</th>
<th>Dahl et al</th>
<th>Fernández-Hidalgo et al</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibiotic regimen</td>
<td>Ampicillin plus gentamicin*</td>
<td>Ampicillin plus short-course gentamicin*</td>
</tr>
<tr>
<td>Patients, n</td>
<td>28 (18–42)</td>
<td>14 (7–15)</td>
</tr>
<tr>
<td>Age, median (IQR), y</td>
<td>27 (63)</td>
<td>ND</td>
</tr>
<tr>
<td>Male sex, n (%)</td>
<td>50 (93)</td>
<td>40 (95)</td>
</tr>
<tr>
<td>Charlson comorbidity score, median (IQR)</td>
<td>8 (19)</td>
<td>2 (3)</td>
</tr>
<tr>
<td>Chronic renal impairment, n (%)</td>
<td>53 (33)</td>
<td>14 (16)</td>
</tr>
<tr>
<td>Hemodialysis, n (%)</td>
<td>37 (43)</td>
<td>Excluded</td>
</tr>
<tr>
<td>Duration of symptoms, median (IQR), d</td>
<td>41 (36–44)</td>
<td>ND</td>
</tr>
<tr>
<td>Type of valve, n (%)</td>
<td>98 (62)</td>
<td>57 (66)</td>
</tr>
<tr>
<td>Native valve</td>
<td>27 (66)</td>
<td>27 (63)</td>
</tr>
<tr>
<td>Prosthetic valve</td>
<td>14 (34)</td>
<td>16 (37)</td>
</tr>
<tr>
<td>Pacemaker</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Perivalvular abscess, n (%)</td>
<td>8 (19)</td>
<td>36 (23)</td>
</tr>
<tr>
<td>HLAR EFIE, n (%)</td>
<td>51 (32)</td>
<td>Excluded</td>
</tr>
<tr>
<td>Duration of antimicrobial treatment (in survivors), median (IQR), d</td>
<td>42 (39–46)</td>
<td>42 (35–44)</td>
</tr>
<tr>
<td>Duration of gentamicin, median (IQR), d</td>
<td>28 (18–42)</td>
<td>14 (7–15)</td>
</tr>
<tr>
<td>Gentamicin once daily, n (%)</td>
<td>32 (80)</td>
<td>40 (93)</td>
</tr>
<tr>
<td>Duration of hospital stay, median (IQR), d</td>
<td>42 (35–51)</td>
<td>41 (36–44)</td>
</tr>
<tr>
<td>Adverse events leading to treatment discontinuation, n (%)</td>
<td>20 (23)</td>
<td>2 (2)</td>
</tr>
<tr>
<td>Renal failure</td>
<td>2 (5)</td>
<td>ND</td>
</tr>
<tr>
<td>Other§</td>
<td>ND</td>
<td>2 (1)</td>
</tr>
<tr>
<td>In-hospital surgery, n (%)</td>
<td>15 (37)</td>
<td>14 (33)</td>
</tr>
<tr>
<td>In-hospital mortality, n (%)</td>
<td>4 (10)</td>
<td>2 (5)</td>
</tr>
<tr>
<td>Relapses (in survivors), n (%)</td>
<td>3/37 (8)</td>
<td>2/41 (5)</td>
</tr>
</tbody>
</table>

EFIE indicates *Enterococcus faecalis* infective endocarditis; **HLAR**, high-level aminoglycoside-resistant; **IQR**, interquartile range; **NA**, not applicable; and **ND**, no data. All patients were treated with gentamicin 3 mg/kg (up to 240 mg/d) administered intravenously 1 to 3 times daily at the discretion of the treating physician and adjusted according to renal function when necessary.

Ceftriaxone was given at 2 g/12 h IV with ampicillin 2 g/4h IV (adjusted according to renal function when necessary) for 6 weeks.†

Mean (SD).‡

Rash/fever and leukopenia in 1 case each in the ampicillin plus ceftriaxone group; vestibular toxicity in 2 cases in the ampicillin plus gentamicin group.§
associated with the duration of gentamicin therapy because at 2 weeks the decrease in glomerular filtration rate was very small and similar in both cohorts (P=0.65). However, at discharge, patients who received the standard gentamicin course had a significantly greater decrease in glomerular filtration rate (11 versus 1 mL/min; P=0.008). Therefore, this finding is especially relevant because the typical EFIE patient is older with high rates of chronic renal failure and a high risk of rapid renal impairment. The use of glomerular filtration rate as a measure of renal function is a wise choice because it accurately reflects the impact of treatment on kidney integrity, unlike the widely used creatinine value, which can be easily misinterpreted depending on age, muscle mass, and other factors. Moreover, avoiding the bias of selecting the duration of the course of gentamicin according to individual baseline renal function yielded more robust results and led to clear conclusions, namely that the course of gentamicin in non-HLAR EFIE should be shortened to avoid nephrotoxicity, especially in elderly patients with chronic renal failure, who are the main target when treating EFIE and the most susceptible to developing aminoglycoside-induced toxicity. On the other hand, this new antibiotic regimen cannot be extended to EFIE caused by HLAR strains, which have a current prevalence of 22% in North America and 38% in the rest of the world.1

In a study carried out in Spain and Italy, Fernández-Hidalgo et al14 investigated the efficacy and safety of ampicillin plus ceftriaxone to treat EFIE. This study was inspired by the revealing finding that a double β-lactam combination was synergistic in vitro through partial saturation of penicillin-binding proteins 4 and 5 by amoxicillin and total saturation of penicillin-binding proteins 2 and 3 by cefotaxime.15 The results prompted animal models that demonstrated synergy of ampicillin plus ceftriaxone in experimental EFIE for both HLAR strains16 and non-HLAR strains.17 Shortly afterwards, Gavaldà et al18 proved the preliminary efficacy of the combination in a multicenter, open-label study that evaluated 43 patients with EFIE (49% with HLAR strains and 51% non-HLAR strains) treated with ampicillin (2 g/4 h) and ceftriaxone (2 g/12 h).19 Clinical cure rates were 71% and 73%, respectively, with 5% relapses. The study by Fernández-Hidalgo et al14 was an observational, non-randomized, comparative, multicenter cohort study including 159 patients treated with ampicillin plus ceftriaxone (32% HLAR strains) and 87 patients treated with ampicillin plus gentamicin (all non-HLAR strains; Table). Gentamicin was administered for as long as ampicillin in 31 patients (36%); it was stopped after a median of 23 days (interquartile range, 14–34 days) in 34 patients with no adverse events. In 20 of the 22 patients in whom gentamicin was withdrawn because of adverse events (20 patients experienced renal failure), the median length of treatment was 14 to 15 days. The gentamicin schedule was 1, 2, or 3 times daily or was unknown in 43%, 7%, 43%, and 7%, respectively. Overall, no differences were found between the 2 groups in terms of treatment failure, mortality during treatment or at 3 months of follow-up, and relapses. However, a higher proportion of patients receiving ampicillin plus gentamicin switched or stopped gentamicin owing to renal failure (0% versus 23%; P<0.001). At baseline, more patients in the ampicillin plus ceftriaxone group had chronic renal failure (P=0.004), and although an outcome analysis based on the presence of HLAR was not performed, ampicillin plus ceftriaxone proved effective in both strains and was globally safer than ampicillin plus gentamicin for 4 to 6 weeks. AHA4 and ESC11 guidelines consider ampicillin plus ceftriaxone administered for at least 8 weeks a potential antibiotic therapy for EFIE with HLAR to both streptomycin and gentamicin; however, neither the AHA nor the ESC considers this combination the treatment of choice for non-HLAR EFIE.

We believe the study by Fernández-Hidalgo et al confirms that this combination given for a median of 6 weeks is an effective therapy for both HLAR and non-HLAR EFIE and that it was safer than 4 to 6 weeks of ampicillin plus gentamicin, although we do not know if the rate of discontinuation of gentamicin would have been the same with only 2 weeks of gentamicin therapy, especially considering that the median length of therapy with gentamicin in those patients who developed renal failure was 2 weeks. This study does not clarify whether 4 weeks of ampicillin plus ceftriaxone would be effective against uncomplicated native valve EFIE.

Both studies are subject to limitations. The most important limitation is the fact that they are not randomized, controlled trials. The study by Dahl et al18 is also limited by the small sample size of both cohorts and insufficient power; therefore, the results need to be interpreted with caution. In the study by Fernández-Hidalgo et al,14 most cases were retrospectively collected, with the consequent potential biases in the choice of treatment combination, which depends on the existence of baseline chronic renal failure, and in when antibiotic therapy was stopped and switched in those patients on gentamicin who developed renal failure. In 10 patients, gentamicin was switched to ceftriaxone after a median length of 15 days (interquartile range, 7–17 days). In addition, the gentamicin schedule was not the same for all patients, and renal impairment was not assessed with glomerular filtration rate. In the study by Dahl et al, the exclusion of 5 patients undergoing hemodialysis could represent another bias because this is a classic risk factor for EFIE, and no adverse events other than renal failure secondary to aminoglycoside treatment were assessed. Both studies are affected by referral bias, which is remarkable in the study by Fernández-Hidalgo et al, with an initial indication for cardiac surgery in 60% of cases. In addition, low numbers of patients with >3 months of symptoms might also be considered a limitation, although this might only reflect a higher clinical suspicion of IE, resulting in an earlier diagnosis. Finally, the potential risk of colonization or superinfection by drug-resistant bacteria was not assessed. It is well known that prolonged therapy with cephalosporin is a risk factor for infection by vancomycin-resistant enterococci or Clostridium difficile.19

In conclusion, both publications make an enormous contribution to improving the efficacy and safety of treatment of EFIE. In patients with EFIE that is highly resistant to both streptomycin and gentamicin, ampicillin plus ceftriaxone for 6 weeks should be the regimen of choice. In patients with non-HLAR EFIE, there are 2 options: If treatment with ampicillin plus gentamicin is chosen, gentamicin can be shortened to 2 weeks and simplified to once-daily dosing to avoid nephrotoxicity; conversely, ampicillin plus ceftriaxone is also very safe and effective. Unfortunately, efforts to perform a multinational, randomized, controlled trial comparing
ampicillin plus short-course gentamicin with ampicillin plus ceftriaxone in Europe through different 7th Framework Program (FP7)-HEALTH-2011/2012 calls (AMPICEF, OCEPEE, and TOTEM proposals) have failed 3 times (Pierre Tattevin, personal communication, April 2013). Maybe it is time for American physicians to address this problem and resolve the dilemma: short-course gentamicin or ceftriaxone?

Acknowledgments

Members of the Hospital Clinic Endocarditis Study Group, Hospital Clinic–IDIBAPS, University of Barcelona School of Medicine, Barcelona, Spain; José M. Miró, Ana del Río, Asuncion Moreno, Juan M. Pericas, Ximena Castañeda, Carlos Cervera, Jose M. Gatell (Infectious Diseases Service); Cristina García de la María, Yolanda Armero, (Experimental Endocarditis Laboratory); Manel Almela, Francesc Marco, Jordi Vila, (Microbiology Service); Carlos A. Mestres, Juan C. Paré, Carlos Falces, Ramón Caraffà, Salvador Ninot, Manel Azqueta, Marta Sitges, Magda Heras, José L. Pomar (Cardiovascular Institute); Jose Ramírez, Teresa Ribalta (Pathology Department); Guillermina Fita, Irene Rovira (Anesthesiology Service); Merce Brunet (Toxicology Service); Dolors Soy (Pharmacy Service); and Jaume Llopis (Statistician). We thank Dr Pierre Tattevin (Rennes University Hospital, France) for the information provided regarding the clinical trials in Europe. Dr Tattevin was the Principal Investigator of the AMPICEF ('Optimizing the treatment of Enterococcus faecalis endocarditis in Europe'), OCEPEE ('Optimizing Care of Elderly Patients with Enterococcus faecalis Endocarditis'), and TOTEM ('To Optimize the Treatment of Enterococcal bacteremia, and Minimize the emergence of antimicrobial drug resistance').

Sources of Funding

This work was supported in part by the Ministerio de Sanidad y Consumo, Instituto de Salud Carlos III (Madrid, Spain), the Spanish Society of Cardiology, the Grupo de Investigación Centenaria de la CIRUGÍA, and Fundación Máximo Soriano Jiménez (Barcelona, Spain).

Disclosures

None.

References

Key Words: Editorial ■ ampicillin ■ ceftriaxone ■ infective endocarditis ■ Enterococcus faecalis ■ gentamicin
A New Era for Treating *Enterococcus faecalis* Endocarditis: Ampicillin Plus Short-Course Gentamicin or Ampicillin Plus Ceftriaxone: That Is the Question!

Jose M. Miro, Juan M. Pericas and Ana del Rio

on behalf of the Hospital Clinic Endocarditis Study Group

Circulation. 2013;127:1763-1766; originally published online March 29, 2013;
doi: 10.1161/CIRCULATIONAHA.113.002431

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2013 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:

http://circ.ahajournals.org/content/127/17/1763

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Circulation* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Circulation* is online at:
http://circ.ahajournals.org/subscriptions/