A 68-year-old woman had been experiencing Raynaud symptom, palpitation of the heart, and short breath in walking stairs or slopes for 7 years. Recently, these symptoms had rapidly become worse. She admitted to our hospital. At that time, she was diagnosed with systemic scleroderma (limited scleroderma). Pulmonary hypertension was pointed out by echocardiography (estimated pulmonary artery pressure 35–43 mmHg), and she was suspected as having pulmonary artery hypertension associated with systemic scleroderma.

At the admission, laboratory data showed as follows: plasma d-dimer 0.2 μg/mL, IgM 419.3 mg/dL, antinuclear antibody ×640, anticentromere antibody 140.6 index (+), and anti–Scl-70 antibody 2.7(−). Respiratory function test showed vital capacity 1.26 L, percentage of vital capacity 59.7%, percentage of forced expiratory volume in one second 80.8%, and percentage of carbon monoxide diffusing capacity 45.1%.

Pulmonary perfusion scintigraphy revealed partial perfusion defects in both lungs. Pulmonary ventilation scintigraphy showed no defects.

Chest computed tomography (CT) images showed that diffuse low- and high-attenuation areas (mosaic perfusion pattern) were found on both of the lungs. On pulmonary perfusion single photon emission computed tomography images, perfusion defects were correlated with mosaic perfusion pattern (low attenuation areas) on chest CT. On lung pulmonary blood volume images using dual energy CT (SOMATOM Definition, Siemens), the decrease of perfusion was correlated with mosaic perfusion pattern of chest CT and perfusion defects on pulmonary perfusion single photon emission computed tomography images (Figures 1 and 2). Lung pulmonary blood volume images well depicted abnormalities of pulmonary perfusion (reduced blood flow because of
Systemic scleroderma is classified into localized scleroderma and scleroderma diffuse types. Delayed pulmonary hypertension occurs in 50% of localized scleroderma.\(^1\) In patients with systemic scleroderma, pulmonary hypertension can be caused by following a pulmonary artery thickening.\(^2\)

For the diagnosis of pulmonary embolism, the use of lung pulmonary blood volume has been reported.\(^3\) However, to our knowledge, this is first report that the correlation among lung pulmonary blood volume, lung perfusion single photon emission computed tomography, and chest CT images in a patient with primary pulmonary hypertension associated with localized scleroderma.

Figure 2. A and B. On lung pulmonary blood volume image using dual energy computed tomography (A), the decrease of perfusion was correlated with perfusion defects on pulmonary perfusion single photon emission computed tomography images (B; arrows).

Disclosures
None.

References
Pulmonary Artery Hypertension Associated With Systemic Scleroderma: Correlation Among Lung Pulmonary Blood Volume, Lung Perfusion Single Photon Emission Computed Tomography, and Chest Computed Tomography Images
Hirofumi Koike, Eijun Sueyoshi, Yasuo Kido, Hiroki Nagayama, Ichiro Sakamoto, Masataka Úetani, Takashi Kudo and Satoshi Ikeda

Circulation. 2013;127:141-142
doi: 10.1161/CIRCULATIONAHA.112.134957
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2013 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/127/1/141

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org/subscriptions/