Cytochrome P450 Subfamily 2J Polypeptide 2 Expression and Circulating Epoxyeicosatrienoic Metabolites in Preeclampsia

Florian Herse, PhD; Babbette LaMarca, PhD; Carl A. Hubel, PhD; Tea Kaartokallio, MSc; A. Inkeri Lokki, MSc; Eeva Ekholm, MD, PhD; Hannele Laivuori, MD, PhD; Martin Gauster, PhD; Berthold Huppertz, PhD; Meryam Sugulle, MD; Michael J. Ryan, PhD; Sarah Novotny, MD; Justin Brewer, MD; Joon-Keun Park, PhD; Michael Kacik, MD; Joachim Hoyer, MD; Stefan Verlohren, MD; Gerd Wallukat, PhD; Michael Rothe, PhD; Friedrich C. Luft, MD; Dominik N. Muller, PhD; Wolf-Hagen Schunck, PhD; Anne C. Staff, MD, PhD; Ralf Dechend, MD

Background—Preeclampsia is a multisystem disorder of pregnancy, originating in the placenta. Cytochrome P450 (CYP)-dependent eicosanoids regulate vascular function, inflammation, and angiogenesis, which are mechanistically important in preeclampsia.

Methods and Results—We performed microarray screening of placenta and decidua (maternal placenta) from 25 preeclamptic women and 23 control subjects. The CYP subfamily 2J polypeptide 2 (CYP2J2) was upregulated in preeclamptic placenta and decidua. Reverse-transcription polymerase chain reaction confirmed the upregulation, and immunohistochemistry localized CYP2J2 in trophoblastic villi and deciduas at 12 weeks and term. The CYP2J2 metabolites, 5,6-epoxyeicosatrienoic acid (EET), 14,15-EET, and the corresponding dihydroxyeicosatrienoic acids, were elevated in preeclamptic women compared with controls in the latter two thirds of pregnancy and after delivery. Stimulating a trophoblast-derived cell line with the preeclampsia-associated cytokine tumor necrosis factor-α enhanced CYP2J2 gene and protein expression. In 2 independent rat models of preeclampsia, reduced uterine-perfusion rat and the transgenic angiotensin II rat, we observed elevated EET, dihydroxyeicosatrienoic acid, and preeclamptic features that were ameliorated by the CYP epoxygenase inhibitor N-(methylsulfonyl)-2-(2-propynyloxy)benzenehexanamide (MsPPOH). Uterine arterial rings of these rats also dilated in response to MsPPOH. Furthermore, 5,6-EET could be metabolized to a thromboxane analog. In a bioassay, 5,6-EET increased the beating rate of neonatal cardiomyocytes. Blocking thromboxane synthesis reversed that finding and also normalized large-conductance calcium-activated potassium channel activity.

Conclusions—Our data implicate CYP2J2 in the pathogenesis of preeclampsia and as a potential candidate for the disturbed uteroplacental remodeling, leading to hypertension and endothelial dysfunction. (Circulation. 2012;126:2990-2999.)

Key words: hypertension ■ pregnancy ■ preeclampsia ■ cytochrome P450

Preeclampsia, hypertension, and proteinuria developing after the 20th gestational week affect 3% to 10% of pregnancies and causes >50 000 maternal deaths annually.1 Preeclamptic women have higher angiotensin II (Ang II) sensitivity than nonpreeclamptic women.2 Altered uteroplacental perfusion triggers events leading to endothelial and vascular smooth muscle cell dysfunction, increased vascular resistance, and increased blood pressure. The rat reduced...
uterine-perfusion pressure (RUPP) model mimics this state of affairs. Placental villous deterioration promotes the release of tumor necrosis factor-α (TNF-α) and reactive oxygen species. TNF-α promotes hypertension and proteinuria. Endothelial dysfunction, diminished nitric oxide, prostaclin, and altered hyperpolarizing relaxing factor pathways contribute, as do cytochrome P450 (CYP)-dependent metabolites.

Clinical Perspective on p 2999

Epoxyeicosatrienoic acids (EETs) occur as 4 different regio-isomers (5,6-, 8,9-, 11,12-, and 14,15-EET) and are produced by the CYP epoxygenases from arachidonic acid (AA). These epoxy compounds can be further metabolized by the soluble epoxide hydrolase to the corresponding dihydroxyeicosatrienoic acids (5,6-, 8,9-, 11,12-, and 14,15-DHET). 5,6-EET can be further metabolized to 5,6-epoxy-thromboxane (5,6-eTXA1) by cyclooxygenases and thromboxane synthase. Preeclampsia is associated with increased intrauterine expression of CYP epoxygenases and enhanced circulating EET levels. We used pharmacological inhibition of CYP epoxygenases to prove the pathophysiological significance of enhanced EET biosynthesis in rat models of preeclampsia.

Methods

Uteroplacental Biopsies

The study includes a biobank collection of patient samples at Oslo University Hospital, approved by the Eastern Norway Regional Committee of Medical Research Ethics. Informed written consent was obtained from each participant. Placental, fat, and muscle biopsies were obtained after cesarean sections from 25 preeclamptic women and 23 women with normotensive and uncomplicated pregnancies. Decidual tissue was collected through vacuum suctioning of the placental bed. The uncomplicated pregnancy group consisted of healthy, normotensive women undergoing cesarean section because of breech presentation or other reasons (online-only Data Supplement Table S1).

Longitudinal Study Population

Pregnant women were recruited between 1997 and 2001 as part of an ongoing investigation of preeclampsia at the University of Pittsburgh, Magee-Womens Research Institute, and Magee-Womens Hospital. The University of Pittsburgh Institutional Review Board approved the study, and written informed consent was obtained from all of the subjects. The study population consisted of 10 nulliparous women with uncomplicated normotensive control pregnancies and 10 nulliparous women who developed preeclampsia (online-only Data Supplement Table S2).

Single Nucleotide Polymorphism Analysis

Our single nucleotide polymorphism (SNP) analysis was done with samples of the Finnish Genetics of Preeclampsia Consortium (FINNPEEC) cohort after due approval. The sample consisted of 94 Finnish preeclamptic women and 95 frequency-matched (age, body mass index, and ethnicity) controls. The controls were nonpreeclamptic women (online-only Data Supplement Table S3).

mRNA Isolation, Reverse-Transcription Polymerase Chain Reaction, and Microarray Analysis

Total mRNA was isolated with a combined protocol of QIAzol lysis reagent and Qiagen RNaseasy mini kit (including the RNase-Free DNase set; Qiagen) according to the manufacturer’s protocol. RNA quantity and quality were confirmed by RNA 6000 Chip in the 2100 Bioanalyzer (Agilent Technologies) and NanaDrop UV/VIS Spectrometer (PeeLab). RNA was reverse transcribed into cDNA by using the Transcriptor First Strand cDNA synthesis kit from Roche Diagnostics and analyzed by real-time quantitative polymerase chain reaction on ABI 7500 Fast Sequence Detection System (PE Biosystems). Primers and probes were designed with PrimerExpress 3.0 (Applied Biosystems) and shown in the online-only Data Supplement Methods section.

Cell Culture and Functional Assay

SGHPL-4 cells derived from primary human first trimester extravillous trophoblasts (EVT) transfected with the early region of SV40, known previously as MC418, were a kind gift from Judith E. Cartwright (St George’s University of London, London, United Kingdom). These cells show similar invasive capabilities to primary EVTs and retain features of normal EVTs. The effect of 72 hours of U-46619 (Cayman Europe) on epidermal growth factor (Sigma-Aldrich)–induced invasion and of 5,6-EET (Cayman Europe) on tube formation and first-trimester placental outgrowth were determined and are described in detail in the online-only Data Supplement Methods section.

Western Blot, Immunohistochemistry, and High-Performance Liquid Chromatography

Cells were processed for protein isolation by radioimmunoprecipitation assay buffer, and 40 μg of protein were boiled with Laemmli solution and processed for SDS-gel electrophoresis, followed by semidry blotting on membrane. The membranes were stained specifically for human CYP2J2 (Abnova) and β-actin (Cell Signaling). Five-microgram sections of HOPE-fixed, paraffin-embedded placental tissues were deparaffinized according to standard procedures. Nonspecific background was blocked by incubation with Ultra V Block (Laboratory Vision/Thermo Fisher Scientific) containing 10% human AB serum for 7 minutes. Primary antibodies were diluted in combination (1/200 for CYP2J2, Abnova; 1/2000 for CK7) in Antibody Diluent (Dako). Secondary antibodies (goat antimouse IgG Alexa Fluor 555 and goat antirabbit IgG Alexa Fluor 488, Invitrogen, Molecular Probes, Eugene, OR) were used (1/200 each). Nuclei were stained in term tissues with 4’,6-diamidino-2-phenylindole (Invitrogen, Molecular Probes), slides were mounted with ProLong Gold antifade reagent (Invitrogen, Molecular Probes), and fluorescence microscopy was performed using a Leica DM 6000B Microscope and an Olympus DP 72 camera. CYP-dependent eicosanoids (EETs and DHETs) were analyzed by high-performance liquid chromatography (Agilent 1200SL series) followed by triple quadruple tandem mass spectrometry as described previously. Briefly, 0.5 mL of plasma were hydrolyzed with sodium hydroxide. The solution was extracted with Varian Bond Elute Certify II solid-phase column. The analysis was done on an analytic column Zorbax Eclipse Plus-C18, 4.6 × 150 mm 1.8-μm column using gradient solvent system Acetoni-trile/0.01 mol/L of ammonium acetate. 5,6-Epoxy thromboxane was measured on AGILENT 6490/1290 (please see the online-only Data Supplement Methods section).

Cardiomyocyte Contraction and Patch-Clamp Experiments

The bioassay was described previously. Briefly, neonatal rat cardiomyocytes were dissociated from minced ventricles from 1- to 2-day-old Wistar rats and cultured as monolayers. Spontaneously beating cell clusters occurred after 5 to 7 days. The beating rates were determined for 6 to 8 individual clusters before and after the addition of substances. Whole cell patch-clamp electrophysiology
was carried out as described before in detail. Briefly, whole cell currents were recorded using an EPC-9 patch-clamp amplifier at voltage ramps between −100 and 100 mV. For the activation of Ca$^{2+}$-activated K$^+$ channels (K$_{Ca}$) the currents were dialyzed with CaCl$_2$ (0.5 µmol/L). The inhibitor TRAM-34 was applied in a concentration of 1 µmol/L to inactivate the K$_{Ca}$,3.1 channel. The selective inhibitor paxilline was used in a concentration of 1 µmol/L to identify the K$_{Ca}$,1.1. The 5,6-EETs were applied to cells in PBS medium. The measurements were carried after the third passage of cultured vascular smooth muscle cells (VSMCs). Data were analyzed using the software Pulse Fit (HEKA).

Animal Model and Isometric Contraction Measurements

Local regulatory committees approved all of the animal studies according to American Physiological Society standards. All of the animal studies were performed in timed pregnant Sprague-Dawley rats (Harlan Sprague Dawley Inc). We used the RUPP model, which relies on the application of a constrictive silver clip (0.203 mm) to the aorta superior to the iliac bifurcation performed while ovarian collateral circulation to the uterus is reduced with restrictive clips (0.100 mm) to the bilateral uterine arcades at the ovarian end. Rats were treated by MsPPOH (N-[methylsulfonyl]-2-[2-propynyloxy]-benzenethanamide; Cayman Chemicals) or SC58236 (Sigma Aldrich). We also processed the transgenic rat with preeclamptic phenotype (PE) described previously. Rats were treated with MsPPOH (Cayman Chemicals) as indicated. The isometric contraction measurements have been described previously. The bifurcation of the iliac artery into the main branch of the uterine artery was prepared from pregnant control rats (Sprague Dawley rats [SD]) and PE rats. Models and methods are described in detail in the online-only Data Supplement Methods section.

Statistical Analysis

Data are presented as mean±SEM when normally distributed or median with interquartile range when nonnormally distributed. Normal distribution was assessed by Kolmogorov-Smirnov tests. Groups were compared using the unpaired t test, Mann–Whitney U test, 1-way ANOVA, or Kruskal-Wallis test as appropriate; techniques for each analysis are specified in the Figure legends. Multigroup comparisons were followed by post hoc testing, including the Scheffe test, Dunnett T3, and Mann–Whitney U tests with a Bonferroni correction. Detailed information for or our SNP analysis are described in online-only Data Supplement Methods section.

Results

Uteroplacental and Circulating Dysregulation

We examined uteroplacental tissue of 25 preeclamptic women and 23 women with uneventful pregnancies in microarray studies. Of 58 CYP genes represented on Illumina chips, solely 7 genes in decidual tissue and 3 in placental tissue, respectively, were upregulated or downregulated >1.3-fold in the preeclamptic group as compared with the control group. Of these genes, only CYP2J2 was significantly upregulated in both tissues. We confirmed this finding by real-time reverse-transcription polymerase chain reaction (Figure 1A). The CYP2J2 mRNA was significantly upregulated by a factor of 3.90 ($P<0.0001$) in preeclamptic decidual tissue and 1.55 ($P<0.001$) in preeclamptic placenta. The expression level of CYP2J2, measured in different tissues collected by cesarian section of women with uneventful pregnancies, human umbilical vein cells, placenta, and trophoblasts, was the highest in placenta and trophoblasts. Muscle and fat tissues of preeclamptic women did not show statistically significant differential CYP2J2 expression compared with the control group (see online-only Data Supplement Figure S1). We then localized the CYP2J2 protein in placental villous and decidual tissue by immunohistochemistry (Figure 1B). In both placent al compartments, collected at term of gestation, we detected a strong colocalization of CYP2J2 to the trophoblast marker cytokeratin 7. The CYP2J2 staining was positive for cytotrophoblasts of the placental villous and extravillous trophoblasts of the decidua. The trophoblasts of placental villous and decidual tissue were also positive for CYP2J2 at week 12 of gestation (Figure 1B, bottom).

We were interested in the consequences of the uteroplacental CYP2J2 upregulation in preeclampsia on circulating metabolites in the maternal circulation. We therefore analyzed the metabolites of the CYP2J2 in plasma of a longitudinal study population, comparing preeclamptic women with women with uneventful pregnancies (Figure 1C). The 5,6-(EET+DHET) concentrations were increased in pregnancy and subsequently decreased after birth. Beginning with the first trimester of pregnancy, we detected higher levels of the 5,6- and 14,15-eicosanoids in the preeclamptic circulation. These increases were significant during the second and third trimesters. One day after delivery, the 5,6-(EET+DHET) levels were still significantly elevated in the preeclamptic samples as compared with controls. However, the levels of 14,15-(EET+DHET) were no longer statistically significant elevated. Because the level of 11,12- and 8, 9-EETs and -DHETs were not elevated in preeclamptic plasma compared with control plasma, the levels of total EET and DHET were not elevated. Circulating levels of total EETs and DHETs increased during pregnancy (data not shown) when the first and third trimesters were compared. The CYP hydroxylation metabolite 20-hydroxyeicosatetraenoic acid (20-HETE) levels were no longer statistically significant elevated. The 5,6- EET/DHET ratios were significantly lower in the second trimester in the preeclamptic group compared with the control group. In the third trimester and postdelivery the lowered ratios failed to show statistical significance. The ratios of all of the other metabolites were not statistically significantly changed (online-only Data Supplement Figure S2).

Regulation of CYP2J2

To elucidate the regulation of the CYP2J2, we screened for an obvious genetic influence and performed an SNP analysis, focusing on regulatory elements in CYP2J2. The genotypes of the SNPs located in the area upstream of the CYP2J2 gene were determined for the preeclamptic and control subjects by sequencing (Table). Altogether, 7 SNPs were found, including 1 previously unknown SNP. When Hardy-Weinberg equilibrium was tested in control subjects, the genotype frequencies for all except 1 SNP were in equilibrium. We tested for association between the SNPs and preeclampsia but found none. We could therefore not identify polymorphisms to account for the altered transcriptional expression level of the CYP2J2 gene in preeclampsia.

We next analyzed the regulation of CYP2J2 expression in trophoblast cells. The human first-trimester trophoblast–derived cell line SGHPL-4 was treated by different protocols, reflecting the preeclamptic situation. Ang II (10$^{-7}$ M) and
hypoxic conditions (3% oxygen) did not alter the expression of CYP2J2 at several time points (data not shown). However, TNF-α, which is elevated in preeclampsia,4,22 stimulated the upregulation of CYP2J2 expression in SGHPL-4 cells (Figure 2). On mRNA level, the expression was significantly upregulated dose (5–10 ng/mL) and time dependent (6–120 hours), reflecting an acute and a chronic inflammation. We confirmed this finding by Western blotting with 5 and 10 ng/mL of TNF-α for 48 hours (Figure 2B).

CYP2J2 Metabolite Function

CYP2J2 activity leads to metabolite formation, including the 5,6-EET.23 Exclusively, 5,6-EET can be further metabolized by the cyclooxygenase (COX) 1 and 2 and by thromboxane A synthase to an thromboxane analog, the 5,6-epoxy-thromboxane A1 (5,6-epTXA1)10 This thromboxane analog can induce signaling via the thromboxane receptor (Figure 3A). To study the functional capabilities of CYP2J2 metabolites, we used a cardiomyocyte contraction bioassay. The model stems from our original observation that agents in preeclampsia could be identified by this model.17,24 We found that the metabolites had a chronotropic influence on the neonatal cardiomyocyte beating rate (Figure 3B). The metabolite 5,6-EET (30 nmol/L) increased the spontaneous beating rate by 24 beats per minute (P<0.01) compared with control. This effect was abolished by furegrelate (0.1 nmol/L), a potent thromboxane synthase inhibitor, and the thromboxane receptor blocker SQ29548. The thromboxane analog U-46619 also induced a strong increase in the spontaneous beating rate, which was blocked by SQ29548. The Ang II type 1 receptor antagonist
Table. SNP Analysis

<table>
<thead>
<tr>
<th>SNP</th>
<th>Genomic Position</th>
<th>Major Allele</th>
<th>Minor Allele</th>
<th>MAF in Preclampsia</th>
<th>MAF in Controls</th>
<th>P</th>
<th>OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs890293</td>
<td>60392949</td>
<td>G</td>
<td>T</td>
<td>0.0479</td>
<td>0.0737</td>
<td>0.39</td>
<td>0.632 (0.267 to 1.50)</td>
</tr>
<tr>
<td>New SNP</td>
<td>60392601</td>
<td>C</td>
<td>G</td>
<td>0.0372</td>
<td>0.0474</td>
<td>0.80</td>
<td>0.778 (0.284 to 2.13)</td>
</tr>
<tr>
<td>rs11572188</td>
<td>60392970</td>
<td>C</td>
<td>G</td>
<td>0.0479</td>
<td>0.0737</td>
<td>0.39</td>
<td>0.632 (0.267 to 1.50)</td>
</tr>
<tr>
<td>rs10689162†</td>
<td>60393005</td>
<td>G</td>
<td>A</td>
<td>0.0851</td>
<td>0.0947</td>
<td>0.86</td>
<td>0.889 (0.439 to 1.80)</td>
</tr>
<tr>
<td>rs753359</td>
<td>60393416</td>
<td>A</td>
<td>G</td>
<td>0.3670</td>
<td>0.3740</td>
<td>0.92</td>
<td>0.972 (0.640 to 1.48)</td>
</tr>
<tr>
<td>rs11572185</td>
<td>60393720</td>
<td>A</td>
<td>C</td>
<td>0.0000</td>
<td>0.0052</td>
<td>1.00</td>
<td>0.000 (0 to NA)</td>
</tr>
<tr>
<td>rs11572182</td>
<td>60393849</td>
<td>T</td>
<td>G</td>
<td>0.1490</td>
<td>0.1370</td>
<td>0.77</td>
<td>1.10 (0.620 to 1.97)</td>
</tr>
</tbody>
</table>

Shown are known SNPs of CYP2J2 promoter region from n=94 preeclamptic women and n=95 women with uneventful pregnancies. By sequencing, 1 new SNP was detected and analyzed. SNP indicates single nucleotide polymorphism; MAF, minor allele frequency; OR, odds ratio; CI, confidence interval; and NA, not available.

*Data show genome build 37.1.
†Data were not in Hardy-Weinberg equilibrium.

losartan could not block the positive chronotropic effect of 5,6-EET, although a synergistic effect was observable by costimulation with Ang II. For further electrophysiological characterization of the large-conductance KCa1.1 in cultured VSMCs, we performed whole-cell voltage-clamp experiments (Figure 3C). The activation of the KCa1.1 current in the whole-cell mode was carried out with 0.5 μmol/L of Ca2+. In VSMCs, the KCa1.1 channel showed a calcium-sensitive and voltage-dependent outward current with a maximal current of 32.4 pA/pF at a holding potential of 100 mV (n=24). We examined the influence of 5,6-EETs on the activity of the KCa1.1 channel. The direct application of 1 μmol/L of 5,6-EET to the bath solution led to a downregulation of the KCa1.1 channel activity by >70% compared with the control current (n=15). The pharmacological characterization of this macroscopic current was performed with the selective KCa1.1 inhibitor paxilline. Paxilline led to a 74% inhibition of the potassium current at a concentration of 1 μmol/L (data not shown). Importantly, the inhibitory effect of 5,6-EET on KCa1.1 channel activity was completely prevented by preincubating the VSMCs with the thromboxane synthase inhibitor furegrelate (Figure 3C). We further investigated the tube formation of the trophoblast-derived cell line SGHPL-4 in a Matrigel assay. The process of tube formation was enhanced by 5,6-EET. Migration of trophoblasts from first-trimester villous explants was unaffected by 5,6-EET (online-only Data Supplement Figure S3). In a fibrin gel invasion assay, the invasive process was strongly induced by epidermal growth factor, and this effect was reduced by costimulation with the thromboxane analog U-46619 (online-only Data Supplement Figure S4).

We next used the RUPP model to test the role of CYP epoxygenases in preeclampsia development under in vivo conditions.19 The CYP epoxygenase inhibitor MsPPOH ameliorated the preeclamptic syndrome in the RUPP rats. The mean arterial pressure (MAP) measured on day 18 of pregnancies was normalized by MsPPOH administration from 126 mm Hg in RUPP to 111 mm Hg in the MsPPOH-RUPP group (Figure 4A). Similar to Zhou et al,25 we observed that MsPPOH treatment in normal pregnant rats elevated MAP. Normal pregnant rats had an MAP of 101 mm Hg, and MsPPOH treatment increased MAP to 110 mm Hg. MsPPOH also improved the RUPP-related pregnancy outcomes. We found that the pup weight was partially restored by the treatment, compared with controls (Figure 4A). The COX inhibitor SC58236 also improved the preeclamptic features in RUPP rats. The MAP was lowered to 115 mm Hg, and the pup weight increased to 2 g in the RUPP+SC58236 group. The 5,6-(EET+DHET) levels were enhanced in RUPP rats compared with controls and were decreased to control levels after MsPPOH administration (P<0.01; Figure 4B). All of the other metabolites [8,9-, 11,12- and 14,15-EETs+DHETs] were not statistically significant elevated in RUPP rats, although a trend toward elevation was observable. However, levels of 11,12- and 14,15-(EET+DHET) significantly decreased after MsPPOH treatment. The RUPP procedure and the MsPPOH treatment did not statistically significantly affect the CYP hydroxylase metabolite 20-HETE, the...
linoleic acid epoxymetabolites 9,10- and 12,13-(EpOME/H11001/1100) and the EET/DHET ratios (online-only Data Supplement Figures S5 and S6).

We then performed experiments in a transgenic PE rat model that we developed earlier, which features hypertension and albuminuria from day 13 of pregnancy onward.20,21 In this model, 5,6-(EET/H11001/DHET) levels were elevated compared with normal pregnant SD rats, whereas other metabolites (8,9-, 11,12-, and 14,15- EETs/DHETs) and EET/DHET ratios were not statistically significant dysregulated (online-only Data Supplement Figure S7). MsPPOH treatment in these rats lowered the MAP and the albuminuria significantly (Figure 4C and 4D). As we reported in our earlier study,21 uterine artery rings from these hypertensive dams showed a pronounced relaxation to low doses of acetylcholine (1×10⁻⁶ to 1×10⁻⁴ mol/L) and a paradoxical contractile response to higher doses (3×10⁻⁶ to 1×10⁻⁵ mol/L), compared with rings from SD rats. This effect of paradoxical contractile response was diminished when the thromboxane receptor antagonist SQ29548 and the COX inhibitor indomethacin were applied. Here we found that MsPPOH also abolished the contractile response to acetylcholine with doses above 3×10⁻⁴ mol/L in both the PE and the SD groups (Figure 4E). Expressions of thromboxane A synthase 1, COX1, and COX2 were also upregulated in placenta of PE
rats. In addition, we detected the 5,6-epoxy-thromboxane with 2 characteristic transitions of 385.2—229.2 and 385.2—167 (online-only Data Supplement Figure S9).

Discussion

Our results suggest a novel link between CYP eicosanoids and preeclampsia. We found that CYP2J2 expression was significantly upregulated in the uteroplacental unit of preeclamptic women compared with women with uncomplicated pregnancies. The CYP2J2 protein was specifically localized to the trophoblasts in these uteroplacental tissues. Our liquid chromatography tandem mass spectrometry analysis revealed that the development of preeclampsia is associated with increased circulating levels of these metabolites and of 5,6-EET/H11001DHET in particular, even before clinical onset of the syndrome. In trophoblasts, we identified the proinflammatory cytokine/H9019/H9013F as a potent stimulator of CYP2J2. We next explored the activity of the CYP2J2 product 5,6-EET in a preeclampsia relevant bioassay. 5,6-EET increased the spontaneous neonatal cardiomyocyte contraction rate, which was blocked completely with either a thromboxane receptor blocker or furegrelate, a potent thromboxane synthase inhibitor. The positive chronotropic effect of 5,6-EET was synergistic with Ang II. Furthermore, 5,6-EET led to a
downregulation of the KCa1.1 channel activity, which could be blocked by inhibiting the thromboxane synthase. In the RUPP preeclampsia rat model, in which TNF-α has been shown to play a prominent role, pharmacological inhibition of CYP epoxygenases or COX reduced hypertension and increased pup weight, indicating that enhanced EET biosynthesis and COX conversion play a detrimental role in the development of preeclampsia. Results could be confirmed in a second, transgenic, rat model with preeclamptic phenotype. Hypertension and albuminuria were lowered by CYP inhibition.

Most of these novel findings may come as a surprise when compared with previous studies demonstrating exclusively beneficial roles of EETs in the regulation of cardiovascular and renal function. EETs mediate vasodilatation and are generally considered as antihypertensive metabolites. Normal pregnancy results in enhanced EET formation, and pharmacological inhibition of CYP epoxygenases causes hypertension and renal failure in pregnant rats. Moreover, EETs exert anti-inflammatory and antiapoptotic effects that contribute to tissue protection under hypoxic conditions. Prominent examples include EET-mediated protection against ischemia-reperfusion injury in the heart and brain. Exogenous EET administration and CYP2J2 overexpression also prevent cytokine-induced activation, as well as hypoxia-induced damage of endothelial cells. Thus, the current paradigm of EET action would have predicted CYP2J2/EET upregulation as part of a compensatory mechanism suitable to ameliorate the preeclamptic syndrome. However, our findings are apparently contradictory to this notion. Indicating that the role of EETs has to be specifically defined for the given pathophysiological condition, we found that pharmacological CYP-epoxygenase inhibition indeed raises blood pressure in normal rat pregnancy but exerts the opposite effect in the RUPP model and the transgenic model of preeclampsia. Furthermore, our study shows that trophoblasts are an additional site of EET production and the major site of the uteroplacental unit, where the EET-producing CYP2J2 is upregulated during preeclampsia.

A major difference between normal and preeclamptic pregnancy concerns the sites and mechanisms of enhanced EET biosynthesis. In normal pregnancy, increased EET biosynthesis occurs in the kidney and vasculature, where EETs promote antihypertensive and anti-inflammatory mechanisms. In contrast, our study shows that uteroplacental trophoblasts are the major site of EET-producing CYP2J2, which is upregulated during preeclampsia. Although limited in scale, our genetic analysis indicates that common polymorphisms in the CYP2J2 promoter do not contribute to preeclampsia susceptibility. However, we found that CYP2J2 is highly inducible by TNF-α in cultured trophoblasts. This finding suggests that CYP2J2 upregulation results in an increased release of EETs, which are cleaved during preeclampsia. Although limited in scale, our genetic analysis indicates that common polymorphisms in the CYP2J2 promoter do not contribute to preeclampsia susceptibility. However, we found that CYP2J2 is highly inducible by TNF-α in cultured trophoblasts. This finding suggests that CYP2J2 overexpression results in secondary to enhanced TNF-α release in response to placental ischemia. Trophoblasts are key players in spiral artery remodeling; a failure in this process may cause preeclampsia. Trophoblast invasion is triggered by hypoxia but is surprisingly repressed after activation of the hypoxia-inducible factor-1α. Providing a possible link between CYP2J2/EET expression and trophoblast invasion, EETs activate hypoxia-inducible factor-1α as shown in other cell types.

In preeclampsia, endothelial dysfunction or inappropriate cell activation, as well as alterations in endothelium-dependent vascular contractile properties, is a part of the maternal syndrome. In an earlier study, we had shown that the vasorelaxatory response is reduced in the uterine artery of our PE rats. Uterine artery rings from PE rats relaxed at a lower acetylcholine doses, whereas higher doses increase the resistance. Our data suggested that a COX-dependent, thromboxane-like metabolite is responsible. Now we could further show that the paradoxical acetylcholine response is also prevented by MsPPOH. This finding indicates that a CYP epoxygenase-dependent metabolite serves as a precursor of the thromboxane-like activity. This observation is in line with observations in humans. In vitro studies on isolated microvessels from patients with preeclampsia showed an absence of acetylcholine-mediated vasodilatation in omental microvessels. Thus, our data direct attention to possibly similar mechanisms in preeclampsia.

Ang II is a strong vasoactive peptide. During normal pregnancies, the Ang II responsiveness is reduced compared with the nonpregnant state. However, in preeclampsia, the Ang II sensitivity is elevated. In recent studies, we described an elevated Ang II sensitivity mediated by agonistic autoantibodies to the Ang II receptor type 1. Here, we demonstrated that 5,6-EET also has a synergistic effect on the contractility of cardiomocytes and could, therefore, be a potent facilitator of the Ang II sensitivity in preeclampsia.

KCa channels modulate the membrane potential and regulate Ca2+-dependent contraction and are therefore important mediators of the syndrome.
in the control of vascular tone and blood pressure. They induce membrane hyperpolarization in response to increased intracellular Ca2+ and thereby counteract smooth muscle contractility. KCa1.1 channels, also known as the BK channels, are the predominantly expressed Ca2+ channels in contractile VSMCs and are the presumed targets of CYP-generated AA metabolites.5,45,50 KCa1.1-deficient mice with targeted disruption of \(\alpha\)- and \(\beta\)-subunit genes show a phenotype consisting of hypertension and endothelial dysfunction. The relevance of KCa1.1 for blood pressure and cardiovascular disease has been also demonstrated by SNP analysis.44 We showed that 5,6-EET led to a down regulation of KCa1.1 channel activity, which was blocked by inhibiting the thromboxane synthase. These results suggest that the effects of EET are mediated by a thromboxane analog, such as the 5,6-epiTXA1. Our data agree with the idea that blockade of KCa1.1 channels, also known as the BK channel, inhibits the activity of EET, which are converted to metabolites that could aggravate hypertensive blood pressure.

We propose that uteroplacental CYP2J2 overexpression contributes to preeclampsia. Our data are consistent with the 2-stage theory.46 In stage 1 (placental dysfunction), placental villous deterioration triggers enhanced TNF-\(\alpha\)-production that, in turn, induces trophoblastic CYP2J2/EET expression. The consequences might contribute to the reduced trophoblast invasion, insufficient spiral artery remodeling, and eventually impaired placental blood flow. In stage 2 (the clinical maternal disease), enhanced intrauterine CYP2J2 activity may result in increased circulating 5,6-EET levels. Under maternal proinflammatory conditions, 5,6-EET is further converted to metabolites that could aggravate hypertension and target-organ damage via thromboxane-like effects. Future studies should elucidate which CYP2J2-dependent metabolites gain access to the maternal systemic circulation.

Acknowledgments

We thank Kathrin Saar and Sabine Schmidt for performing microarray analysis.

Sources of Funding

The FINNPEC study was supported by Jane and Aatos Erkko Foundation, Päiviikki and Sakari Sohlberg Foundation, Academy of Finland, Research Funds of the University of Helsinki, and Government special state subsidy for health science research (erityisvaltionosuus, EVO funding) at the Hospital District of Helsinki and Uusimaa. Magee-Womens Research Institute (to Dr Hubel) is supported by National Institutes of Health grant P01HD30367 and Magee-Womens’ Hospital Clinical and Translational Research Center grant 5M01RR00056. Dr Gauster is supported by the Austrian Science Fund grant P23859. The Deutsche Forschungsgemeinschaft supported Drs Herse (HE6249/1-1) and Dechend.

Disclosures

None.

References

Preeclampsia remains the greatest cause of perinatal maternal and fetal morbidity with long-term cardiovascular ramifications for mother and child. New mechanistic insights are desperately needed for improved preventative and therapeutic strategies. We used microarray expression to screen placenta (fetal tissue) and decidua (maternal tissue) from preeclamptic women and controls. We identified upregulation of the cytochrome P450 (CYP) epoxygenase, CYP2J2, and located the protein in trophoblasts, placental cells that invade into the decidua. We next screened maternal plasma for circulating factors. Because 5,6 EET can be metabolized to thromboxane, our data also provide a molecular mechanism linking thromboxane metabolism with preeclampsia. We believe that this complex series of findings may permit various treatment avenues that could conceivably be extended to patients.

CLINICAL PERSPECTIVE

Preeclampsia remains the greatest cause of perinatal maternal and fetal morbidity with long-term cardiovascular ramifications for mother and child. New mechanistic insights are desperately needed for improved preventative and therapeutic strategies. We used microarray expression to screen placenta (fetal tissue) and decidua (maternal tissue) from preeclamptic women and controls. We identified upregulation of the cytochrome P450 (CYP) epoxygenase, CYP2J2, and located the protein in trophoblasts, placental cells that invade into the decidua. We next screened maternal plasma for circulating factors. Because 5,6 EET can be metabolized to thromboxane, our data also provide a molecular mechanism linking thromboxane metabolism with preeclampsia. We believe that this complex series of findings may permit various treatment avenues that could conceivably be extended to patients.
Cytochrome P450 Subfamily 2J Polypeptide 2 Expression and Circulating Epoxyeicosatrienoic Metabolites in Preeclampsia

Florian Herse, Babbette LaMarca, Carl A. Hubel, Tea Kaartokallio, A. Inkeri Lokki, Eeva Ekholm, Hannele Laivuori, Martin Gauster, Berthold Huppertz, Meryam Sugulle, Michael J. Ryan, Sarah Novotny, Justin Brewer, Joon-Keun Park, Michael Kacik, Joachim Hoyer, Stefan Verlohren, Gerd Wallukat, Michael Rothe, Friedrich C. Luft, Dominik N. Muller, Wolf-Hagen Schunck, Anne C. Staff and Ralf Dechend

Circulation. 2012;126:2990-2999; originally published online November 15, 2012;
doi: 10.1161/CIRCULATIONAHA.112.127340

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2012 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/126/25/2990

Data Supplement (unedited) at:
http://circ.ahajournals.org/content/suppl/2012/11/14/CIRCULATIONAHA.112.127340.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation_ is online at:
http://circ.ahajournals.org/subscriptions/
Supplemental Methods

Single nucleotide polymorphism (SNP) –analysis

DNA was extracted from EDTA whole blood using the chemagic Magnetic Separation Module I –machine (Chemagen) or the phenol-chloroform extraction method. The DNA fragment of 1500 bp upstream of the CYP2J2 gene was amplified by PCR. The amplification was carried out by using three pairs of primers which were as follows: 1. forward GCCTAATAGAGCAAAACCAGCA and reverse AGGAGAGTCCGAGGATGGAC, 2. forward AGGTGGGCAGATCACCTATG and reverse AACAAATAATCCACCCTTCTGA, 3. forward GGTTCCTCATGCTGCCATTAT and reverse GGCTGGAGTTCAGCTCCTAG. PCR reaction of 32 cycles was performed with the Amplitaq Gold enzyme (Applied Biosystems). PCR products were purified from excess primers and dNTPs using the ExoSAP-IT enzyme mix (USB) in 37°C for 15 minutes preceding inactivation of 15 minutes at 80°C. Purified samples were sequenced using the Big Dye 3.1 terminator kit (Applied Biosystems). Samples were prepared for sequencing according to the manufacturer’s protocol. Sequenced samples were purified with the Performa DTR v3 filter plates (Edge BioSystems) and electrophoresis was performed with ABI3730xl DNA Analyzer (Applied Biosystems). The purification and the electrophoresis were carried out in FIMM (Institute for Molecular Medicine Finland) Technology Center SeqLab. Base calling was performed using the Sequence Analysis 5.2 software (Applied Biosystems). The results were analysed by the Sequencher 4.1.4 software (Gene Codes, USA) and the Variant Reporter v1.0 software (Applied Biosystems).
Primer and Probes

Primer and probes were designed with PrimerExpress 3.0 (Applied Biosystems): human CYP2J2 (Accession-number NG_007931): 5’ AGAGCTTAGAGGAACGATTCACTGCAG 3’ (forward), 5’ GGTCAAAAGGCTGTCCGTTCT 3’ (reverse), 5’ FAM-AGGCCAACACCTCAGTAAAGTAC TAMRA 3’ (probe); rat COX1 (Accession-number BC081816.1): 5’ GGATCTGGGAGTGGGTGTAATGC 3’ (forward), 5’ TGGACCGCAACCGGTGAGTC 3’ (reverse), 5’ FAM-ACCTTCATCGAAGATCTCATGCGCC-TAMRA 3’ (probe); rat COX-2 (Accession-number AF233596.1) 5’ TCGACTTTTCCAGGATGGA 3’ (forward), 5’ GAGTGTCTTGTGACTGTGGGAGAT 3’ (reverse), 5’ FAM-TTGAAATATCAGGTCATCGTGGAGGTGGA-TAMRA 3’ (probe); rat TBXAS-1 (Accession-number NM_012687.1) 5’ TTGGCCCTCCTGAATGGTA 3’ (forward), 5’ GGGTGTCTGATGCCCAACTT 3’ (reverse), 5’ FAM-TCCACATCGCTTCTCAAGACTG-TAMRA 3’ (probe) and the endogenous-control Eukaryotic 18S rRNA (GenBank accession number: X03205) (PE Biosystems).

Cell culture and functional assay

Invasion assay was processed with SGHPL-4 cells in 0.5% serum-reduced medium in fibrin gel as previously described protocol. For this purpose, the cells were stained by CellTracker Green CMFDA (Invitrogen) and grown on gelatin coated microcarrier beads (Sigma-Aldrich). Tubeformation was done in growth factor–reduced Matrigel (BD Bioscience) in µ-slides (Ibidi, Germany) (10µl per well). SGHPL-4 cells in serum-free media were seeded onto the Matrigel-coated wells (10,000 cells per well) and were treated as indicated. After 8 hours incubation (37°C), tube formation was assessed through an inverted phase-contrast microscope at ×5 (Zeiss, Germany). Quantification was done with the WimTube Software (Wimasis, Germany). Placental explant experiments were approved by
the ethics committee of the Medical University of Graz. First trimester placental villous tissue was obtained from pregnancy terminations for psychosocial reasons with informed consent from all patients between gestational weeks 7 and 8. Placental villous tissue was rinsed in culture medium DMEM/F12K (GIBCO) and dissected in small pieces of approximately 10mg moist mass. Placental explants were placed in the centre of each well of 96-well plates, which had been coated with collagen I solution (Sigma) one day before experiment start. Explants were incubated in 100µl per well DMEM/F12K supplemented with 10% FCS, penicillin/streptomycin, amphotericin B, L-glutamine and non essential amino acids in presence of indicated concentrations of 5,6 EET (Cayman Chemical) or ethanol as solvent control in a hypoxic workstation (BioSpherix) under 2.5% oxygen and 37°C for 5 days. After incubation placental explants were gently removed and remaining outgrown cells fixed in 4% paraformaldehyde. The frequency and cellular number of extravillous trophoblast outgrowth was determined by staining cells with a specific anti-HLA-G antibody (1µg/ml, clone 4H84, BD Pharmingen) using the Ultra Vision LP detection system (Thermo Scientific, Fremont, USA) according to the manufacturer’s instructions. Well plates were photographed with a cell imaging system (Cell-IQ, chipman tech) and microphotographs were automatically stitched into images covering total areas of each well. Experiments were performed with five placentas and 24 replicates per condition and placenta.

High-performance liquid chromatography (HPLC)

For preparing 5,6-epTXB1 and the corresponding 5,6-diol from TXB2 we followed a described procedure. The 5,6-epTXB1 measurement was performed with an Triplequad LC-MS-MS instrument Agilent 6490/1290 (Agilent Technologies, Waldbronn, Germany) equipped with a Phenomenex Kinetex Column (150 mm x 2.1 mm, 2.6 µm, Phenomenex, Aschaffenburg, Germany). Chromatography was achieved under gradient conditions with
acetonitrile /10 mM ammonium acetate in water as the mobile phase, a flow rate of 0.4 mL/min and a run time of 12 min. The injection volume was 5 µL.

After optimization the following MS-MS-conditions were used: electrospray ionization (ESI) in negative mode, capillary voltage 3500 V, nozzle voltage 0 V, drying gas 150 °C/14 L/min, sheath gas 350 °C/11 L/min and nebulizer pressure 30 psi. For multiple reaction monitoring (MRM) the following transitions (collision energy) were used: 385-229 (14 V), 385-167 (21 V).

Animal models

Clips for reduce uterine perfusion pressure (RUPP) model are implanted on day 14 of gestation, while on day 18 of gestation carotid arterial catheters were inserted for blood pressure measurements. The catheters inserted are V3 tubing (SCI) which is tunneled to the back of the neck and exteriorized. On day 19 of gestation arterial blood pressure was analyzed (Cobe III Transducer CDX Sema) and recorded continuously after a one hour stabilization period. Following blood pressure monitoring, blood and tissues were collected and pup and placenta weights determined. MsPPOH (Cayman) was dissolved in 45% cyclodextrin solution (Sigma) by vortexing and 3 cycles of sonication. On day 14 of gestation, at the time of RUPP surgical manipulation, jugular catheters were inserted under anesthesia in MsPPOH treated controls and RUPP rats. Beginning on day 15, MsPPOH (20mg/kg/day) was administered i.v. through gestation day 19, when the animals were sacrificed. We also processed the transgenic rat with preeclamptic phenotype (PE) described previously. Female Rats, harboring the human Angiotensinogen gene were mated by male rats, harboring the human renin gene. On day 11-12 of pregnancy, the blood pressure of these rats raised, measured by telemetric blood pressure measurements. PE rats were treated by 20 mg/kg/day MsPPOH (Cayman Chemicals) from day 12 on as indicated.
Isometric contraction measurements

The isometric contraction measurements were proceed on uterine arteries rings of Sprague-Dawley rats, transgenic for the human angiotensinogen (hAogen) gene, were crossed with male rats transgenic for the human renin (hRen) gene. During pregnancy, this model produces preeclampsia in the dams. Uterine arteries were excised and dissected into 2-mm rings. Each ring was dispensed between 2 stainless-steel wires and connected to a force transducer (Small Vessel Myograph, DMT 610 mol/l, Danish Myo Technology). A standard pretension was applied to the vessels after equilibration using the software Power-Lab Chart5 (ADInstruments). After equilibration, the arteries were exposed to isomolar 60 mmol/L of KCl-containing solution. Rings were stepwise preconstricted with 10 nM –10 µM Phenylephrine (Phe), exposed to MsPPOH (50µM) and endothelial function was assessed with increasing doses (10 nM –10 µM) of Acetylcholine (ACh).

Statistical analysis

For SNP-analysis, the evaluation of the Hardy-Weinberg equilibrium (HWE) was performed using an exact test in the PLINK software (MS-DOS –version v1.07). Association of the SNPs with preeclampsia was tested using Fisher's exact test in the PLINK software. For each SNP, p-value of the test and estimated odds ratio for minor allele are reported. Haploblocks (data not shown) were determined using Haploview software. In all studies, a value of p<0.05 was considered to be significant.
Supplemental Tables

Supplemental Table 1. Clinical characteristics of expression studies subjects.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Normotensive Controls (n=23)</th>
<th>Preeclampsia (n=25)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maternal age (years)</td>
<td>32.5 ± 4.8</td>
<td>30.4 ± 5.4</td>
<td>0.10</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>28.2 (22.8-37.5)</td>
<td>30.8 (24.0-49.6)</td>
<td>0.04</td>
</tr>
<tr>
<td>Gestational weeks at delivery</td>
<td>38.7 (37.0-41.7)</td>
<td>32.7 (25.3-39.3)</td>
<td><0.001</td>
</tr>
<tr>
<td>Blood pressure Systolic (mm Hg)</td>
<td>122 ± 13.0</td>
<td>170.0 ± 21.0</td>
<td><.001</td>
</tr>
<tr>
<td>Blood pressure Diastolic (mm Hg)</td>
<td>74.0 ± 11.0</td>
<td>102.0 ± 8.0</td>
<td><.001</td>
</tr>
<tr>
<td>Birth weight (g)</td>
<td>3572.0 ± 415.0</td>
<td>2061.0 ± 1138.0</td>
<td><.001</td>
</tr>
</tbody>
</table>

Clinical characteristics of the preeclamptic cases and controls from the Oslo study population. Data are presented as mean ± standard deviation, BMI and Gestational weeks at delivery are presented as median (interquartile range). BMI: body mass index.

Supplemental Table 2. Clinical characteristics of Longitudinal subjects

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Normotensive Controls (n=10)</th>
<th>Preeclampsia (n=10)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maternal age (years)</td>
<td>23.2 ± 4.2</td>
<td>24.4 ± 4.8</td>
<td>0.57</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>25.8 ± 6.5</td>
<td>22.0 ± 3.0</td>
<td>0.10</td>
</tr>
<tr>
<td>Gestational weeks at delivery</td>
<td>40.6(40.3– 41.0)</td>
<td>38.7 (37.1 – 39.6)</td>
<td><0.01</td>
</tr>
<tr>
<td>Blood pressure Systolic (mm Hg)</td>
<td>122.0 ± 10.0</td>
<td>141.0 ± 16.0</td>
<td><.001</td>
</tr>
<tr>
<td>Blood pressure Diastolic (mm Hg)</td>
<td>75.0 ± 7.0</td>
<td>90.0 ± 5.0</td>
<td><.001</td>
</tr>
<tr>
<td>Birth weight (g)</td>
<td>3491.0 ± 437.0</td>
<td>2581.0 ± 823.0</td>
<td><.001</td>
</tr>
<tr>
<td>Uric acid (mg/dL)</td>
<td>N.M.</td>
<td>6.4 ± 0.7</td>
<td></td>
</tr>
</tbody>
</table>

Clinical characteristics of the preeclamptic cases and controls from the Pittsburgh study population. Normally distributed data are presented as mean ± standard deviation and groups were compared
using unpaired t-test. Gestational weeks at delivery did not follow a normal distribution; these data are presented as median (interquartile range) and were compared using Mann-Whitney U test. BMI: body mass index. N.M.: not measured

Supplemental Table 3. Clinical characteristics of genotyped subjects (SNP-analysis)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Normotensive Controls (N=95)</th>
<th>Preeclampsia (N=94)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maternal age (years)</td>
<td>30.6 ± 5.1</td>
<td>30.7 ± 5.0</td>
<td>0.86</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>23.4 (20.9/25.8)</td>
<td>23.6 (21.5/28.0)</td>
<td>0.26</td>
</tr>
<tr>
<td>Gestational weeks at delivery</td>
<td>40.0 (39.0/41.0)</td>
<td>38.0 (36.0/39.0)</td>
<td><0.001</td>
</tr>
<tr>
<td>Blood pressure Systolic (mmHg)</td>
<td>123.1 ± 11.0</td>
<td>165.8 ± 15.0</td>
<td><0.001</td>
</tr>
<tr>
<td>Blood pressure Diastolic (mmHg)</td>
<td>82.1 ± 7.6</td>
<td>109.4 ± 8.6</td>
<td><0.001</td>
</tr>
<tr>
<td>Birth weight (g)</td>
<td>3676.0 (3320.0/3960.0)</td>
<td>3008.0 (2405.0/3504.0)</td>
<td><0.001</td>
</tr>
<tr>
<td>Proteinuria (g/24h)</td>
<td>-</td>
<td>1.9 (1.0/4.7)</td>
<td></td>
</tr>
</tbody>
</table>

Clinical characteristics of the preeclamptic cases and controls from the FINNPEC study cohort. Data are presented as mean ± standard deviation for the normally distributed data (maternal age, blood pressure) or as median (interquartile range) for the non-normally distributed data (BMI, gestational weeks, birth weight and proteinuria). Variables were compared using an unpaired t-test for normally distributed data or Mann-Whitney U test for non-normally distributed data. BMI: body mass index.
Supplemental figure S1: CYP2J2 expression in different tissues. A) shows CYP2J2 expression in tissues collected from women with uneventful pregnancies during caesarian section, HUVECs and trophoblast cells. The highest CYP2J2 expression was detected in trophoblasts and placenta (mean ± SEM). C) CYP2J2 expression is shown for fat- and muscle tissue collected from preeclamptic and control women during caesarian section. No statistically significant differences were detected (mean ± SEM).
Supplemental figure S2: Metabolites in maternal plasma of the longitudinal study population. A) 20-HETE level are shown. No statistically significant differences between both groups were detected (median ± IQR). B) EET/DHET ratios are shown. (n=10 each group; * p<0.05; Mann-Whitney U test; median ± IQR)
Supplemental Figure S3: Tubeformation of trophoblast derived cell line and migration from explants. A) Shown are representing pictures of tubeformation (upper panel) and quantification (lower panel) of unstimulated and 5,6 EET stimulated SGH-PL4 cells (n=16-18; * p<0.01; † p<0.0001; unpaired t-test; mean ± SEM). B) Trophoblast outgrowth from first trimester villous explants is shown after indicated stimulation (n=3 individual experiments; mean ± SEM).
Suplemental Figure S4: Invasion of trophoblast derived cell line. Shown are representing pictures of invasion (upper panel) and quantification of n=35 beats (lower panel). Epidermal growth factor (EGF) stimulates the invasive process of the trophoblast derived cell line SGH-PL4. This process was diminished by the thromboxane analog U-46619 (* p<0.0001; ANOVA with Scheffe post-Hoc test; mean ± SEM).
Supplemental figure S5: Cytochrome P450 inhibition in RUPP preeclampsia rat model.

A) 20-HETE level are shown. Levels do not statistically significant differ between normal pregnant (NP) and RUPP-rats and are unaffected by MsPPOH treatment (mean ± SEM).

B) EET/DHET ratios are shown in RUPP-rats vs. NP-rats (n=5-9; * p<0.05; ANOVA with Tukey post hoc test; mean ± SEM).
Supplemental figure S6: Cytochrome P450 inhibition in RUPP preeclampsia rat model. Linoleic acid metabolites are shown in serum of NP, RUPP and RUPP rats after MSPPOH treatment. No statistically significant changes were detected after MSPPOH treatment (ANOVA with Tukey post hoc test; mean ± SEM).
Supplemental figure S7: Cytochrome P450 metabolites in transgenic preeclampsia rat model. A) EET+DHET level are shown. 5,6 EET+DHET level are elevated in preeclamptic model (PE) compared to control rats (SD) (n=10; * p<0.05; unpaired t-test; mean ± SEM). B) EET/DHET ratios are shown. No statistically significant changes were detected in SD vs. PE (unpaired t-test; mean ± SEM).
Supplemental figure S8: Myograph studies in uterine artery rings of transgenic preeclamptic rat model. Expression of the thromboxane A synthase 1 (TBXAS1), cyclooxygenase 1 (COX1) and cyclooxygenase 2 (COX2) in uterine arteries of control rats (SD) and the transgenic rat model for preeclampsia (PE) are shown (*p<0.05; n=6; Mann-Whitney U test; median ± IQR).
Supplemental figure S9: 5,6-epTXB1 conversion in placenta of transgenic preeclamptic rat model. A) Expression of the thromboxane A synthase 1 (TBXAS1), cyclooxygenase1 (COX1) and cyclooxygenase 2 (COX2) in placenta of control rats (SD) and the transgenic rat model for preeclampsia (PE) are shown (*p<0.05; n=7; unpaired t-test; mean ± SEM). B) 5,6-epTXB1/µg protein in placenta of SD- and PE-rats are shown. 5,6-epTXB1 was not detectable (n.d.) in SD-rats (n=3). C) Characteristic mass spectrum and transition chromatogram is shown for 5,6-epTXB1.
Supplemental References

6. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC. PLINK: a tool set for whole-genome association and population-based linkage analyses. *Am J Hum Genet.* 2007;81:559-575.