Smoking Gun Theory
Angiographically Normal or Mild Coronary Plaque as a Cause of Myocardial Infarction

Jason C. Kovacic, MD, PhD; Valentin Fuster, MD, PhD

There are very few things in medicine that are simple. Birth and mortality are relatively straightforward to define...but after that the trouble begins. To the casual observer the pathogenesis of myocardial infarction (MI) is relatively obvious: prolonged myocardial ischemia. However, as Aldrovandi et al1 have taught us in this edition of Circulation, we still have a lot to learn about this disease. Indeed, earlier this year the updated Third Universal Definition of Myocardial Infarction were published.2 Of course, the tacit fact underlying this publication is that even the definition of an MI remains a major work in progress.

Nevertheless, we have certainly come a very long way in our knowledge of plaque biology and MI. In particular, the last 2 to 3 decades has seen a revolution in our understanding of this disease. Thanks to a series of pivotal observations, we now appreciate that MI rarely arises because of progressive vessel narrowing that culminates in a critical flow-limiting stenosis. Rather, it is now understood that an atherosclerotic plaque can become unstable, exposing lipid, debris, or other material to the blood and triggering an acute coronary artery thrombosis, which then leads to vessel occlusion and MI. As investigators, we were privileged to have played a small part in elucidating the pathology of the unstable plaque that causes MI, when in 1988 we showed with Ambrose et al3 that MI frequently develops from previously nonsevere lesions. In a retrospective study of 38 patients, progression of coronary stenoses between 2 cardiac catheterization procedures was compared among patients presenting with MI versus stable coronary occlusion at the time of second catheterization. In the group presenting with MI, the stenosis severity at the initial angiogram of the subsequent infarct-related artery was significantly less severe than culprit lesions in the other group of patients that later became the site of a new total occlusion. In other words, atherosclerotic lesions causing acute MI were less severe than those progressing to stable occlusion. Soon after this study, pathological examinations of sudden coronary death victims demonstrated that plaque rupture with associated thrombosis may be present in up to 73% of cases.4 Yet another major advance was an improved histopathologic characterization and microscopic understanding of the nonobstructive lesions that cause MI, which was summarized in 2000 by Virmani et al with their article, “Lessons From Sudden Coronary Death: A Comprehensive Morphological Classification Scheme for Atherosclerotic Lesions.”5 Here, Virmani et al5 described 7 categories of atherosclerotic lesions, intimal xanthoma, intimal thickening, pathological intimal thickening, fibrous cap atheroma, thin fibrous cap atheroma, calcified nodule, and fibrocalcific plaque. Of relevance, they also clarified that either rupture or erosion was the main mechanism of plaque disturbance that could culminate in arterial thrombosis and MI. More recently, plaque biology has moved to the cellular and subcellular level, progressively unraveling the complex inflammatory and molecular signaling pathways that govern atherosclerosis and vascular injury.

However, despite this impressive progress, as every cardiologist will attest, all too often we have been confronted with the diagnostic and management dilemma of a troponin-positive acute MI patient with angiographically “normal coronary arteries.” The magnitude of this problem is significant. Data pooled from 3 Thrombolysis In Myocardial Infarction (TIMI) trials on patients presenting with non–ST-segment elevation, acute coronary syndromes identified that 4% to 5% of patients had “normal coronary arteries”, whereas a similar proportion had mild or nonobstructive disease.6 Although some of these patients may ultimately be diagnosed with conditions such as demand ischemia, myocarditis or stress (takotsubo) cardiomyopathy, an unsatisfying number are ultimately discharged from hospital without a clear etiology for their MI-like presentation. Or, perhaps even more unsatisfactorily, patients with a classic atherosclerotic risk factor profile and typical MI presentation but angiographically “normal coronary arteries” may be ascribed with unusual diagnoses such as coronary artery embolism or regional myocarditis. Although these conditions certainly exist, our experience has been that these other diagnoses are evoked far more frequently than appears reasonable. In short, there has long been a population of “missing MI” patients with what appears to be clinically typical atherosclerotic MI but a remarkable absence of angiographic coronary artery lesions.

In this issue of Circulation, Aldrovandi et al7 have eloquently closed the loop on a proportion of these “missing MI” patients. In a simple but effective study, they evaluated the presence and morphological characteristics of coronary le-
implicated in the no reflow phenomenon. Indeed, the embolization of debris is a factor in acute MI and is size that distal embolization of plaque-derived lipid, debris, occlusion (with thrombus resolution) remains a likely mechanism to explain their observations. However, we hypothesize that distal embolization of plaque-derived lipid, debris, and other material may also be involved. It is known that embolization of debris is a factor in acute MI and is implicated in the no reflow phenomenon. Indeed, the embolization of plaque contents into the distal microcirculation is the principal substrate causing the majority of MIs. Taking this body of evidence into account, until proven otherwise we concur with Aldrovandi et al that transitory thrombotic occlusion (with thrombus resolution) remains a likely mechanism to explain their observations. However, we hypothesize that distal embolization of plaque-derived lipid, debris, and other material may also be involved. It is known that embolization of debris is a factor in acute MI and is implicated in the no reflow phenomenon. Indeed, the embolization of plaque contents into the distal microcirculation might not only explain the MI presentation but may also account for the fact that there was minimal encroachment of the (remaining) plaque on the vessel lumen, because much of plaque may have embolized downstream (Figure). This would be akin to the situation in pulmonary embolism when no thrombus can be found in the lower limbs because it has already embolized from the leg veins and traveled to the lungs.

An additional mechanism that may be involved is coronary artery spasm (Figure). Although the precise anatomic site of spasm within a vessel may differ somewhat from that of an atherosclerotic plaque, recent research has demonstrated that spasm and atherosclerotic disease often coexist and that coronary spasm is responsible for a small but definite proportion of MIs. Multiple factors are thought to contribute to coronary spasm, including altered environmental, genetic, inflammatory, rheological, and vascular aspects (see Figure).

An important additional message remains in this study. Of the original 71 patients who presented with typical clinical features of acute MI with <50% angiographic stenosis and who underwent MRI scanning, only 50 had evidence of MI (late enhancement). Therefore, in 30% of patients (21 of 71) the investigators were unable to confirm MI, let alone explain etiology. Furthermore, in 8 of the final 50 patients with MRI-confirmed acute MI, CTCA demonstrated no coronary plaques whatsoever. Therefore, there remain a small but not insignificant number of patients in whom we have no firm explanation for their MI-like presentation. Although spasm may be implicated in a proportion of these, further innovative research is required to investigate this interesting subgroup and define the exact pathology and mechanism of their MI-like state.

Moving back to the bedside, there are clear therapeutic implications from this data. Foremost, atherosclerosis is likely to be a major factor in patients presenting with acute MI and angiographically mild coronary artery disease. Although late gadolinium enhancement cardiac MRI and CTCA are not practical or necessary in all cases, these patients require risk factor assessment, lifestyle modification, and appropriate medical therapy. We suggest that, in the absence of contraindications, aspirin and statin therapy might be considered as the minimum therapy, but there should also be...
a low threshold for adding an angiotensin-converting enzyme inhibitor or \-blocker in appropriate patients. Furthermore, current guidelines give a class I recommendation for the additional use of clopidogrel or ticagrelor for ≤12 months in MI patients in whom an initial conservative (ie, noninvasive) strategy is selected. \footnote{11} Nevertheless, although these considerations are critical, in the absence of direct evidence that is specific to the situation of MI with angiographically nonobstructive disease, the management of these patients should revolve around balanced and patient-specific assessment and sound clinical judgment.

In conclusion, this editorial presents us with a timely opportunity to revisit a statement that originated from our institution over 2 decades ago. In 1988, Ambrose et al made the comment that, “disruption of a mild or moderate atherosclerotic plaque with resultant thrombosis formation and total or subtotal occlusion probably explained (the) MI.”\footnote{10} On the basis of the work by Aldrovandi et al\footnote{1} and other research cited here we now suggest a revision of this comment: “disruption of a mild, moderate, or angiographically insignificant atherosclerotic plaque with resultant thrombosis formation and total or subtotal occlusion, with or without spasm or embolization, probably explains most cases of MI.”

Sources of Funding

Dr Kovacic is supported by National Institutes of Health grant 5K08HL111330.

Disclosures

None.

References

Smoking Gun Theory: Angiographically Normal or Mild Coronary Plaque as a Cause of Myocardial Infarction

Jason C. Kovacic and Valentin Fuster

Circulation. 2012;126:2918-2920; originally published online November 20, 2012; doi: 10.1161/CIRCULATIONAHA.112.150425

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2012 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/126/25/2918

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation_ is online at:
http://circ.ahajournals.org/subscriptions/