From Concept to Reality
A Decade of Progress in Regional ST-Elevation Myocardial Infarction Systems

Timothy D. Henry, MD

Perseverance is not a long race: it is many short races one after another.
—Walter Elliott, 19th Century spiritual writer

The treatment and outcome of patients with ST-segment elevation myocardial infarction (STEMI) has improved dramatically over the 30 years since I graduated from medical school. In 1982, bed rest, treatment of complications such as ventricular arrhythmias or mural thrombus and prayer (for those so inclined) were the standard of care. In the first decade, pharmacological therapy was developed, and the open artery hypothesis was confirmed. The Second International Study of Infarct Survival (ISIS-2) trial demonstrated the benefit of not only aspirin, but also the combination of aspirin and streptokinase1 leading to a series of randomized clinical trials to determine the preferred fibrinolytic and adjunctive medications. The second decade was filled with trials that compared fibrinolytic therapy with primary percutaneous coronary intervention (PCI), which ultimately confirmed primary PCI as the preferred method of reperfusion if performed in a timely manner in high-volume centers.2 European trials extended the benefits of PCI to STEMI patients who presented to non-PCI centers requiring transfer for primary PCI.3,4 In particular, the Danish Multicenter Randomized Study on Thrombolytic Therapy versus Acute Coronary Angioplasty in Acute Myocardial Infarction (DANAMI-2), a well-designed, multicenter, randomized trial including 24 referral hospitals and 5 PCI centers in Denmark, was stopped early when it demonstrated a significant reduction in the primary end point of death, reinfarction, and stroke at 30 days (8% for primary PCI versus 13.7% for fibrinolysis, P<0.001).5

These randomized clinical trials stimulated interest in regional STEMI systems in the United States, but many believed it would be challenging to replicate the results seen in a small European country with short-duration transfers (mean, 34 miles) and an organized national emergency medical system (EMS).6 In 2002, we modeled the Minnesota Heart Institute’s Level 1 Regional STEMI system after the successful regional trauma systems in the United States and the preliminary results from DANAMI-2.6,7 After a presentation of our early results, Henning R. Anderson, MD, the principal investigator of DANAMI-2, wrote an encouraging letter, with this statement: “When I present the DANAMI-2 experience to a US audience, the most frequent comment is that in the US system it is very, very difficult to implement such a strategy.”

The early skepticism and resistance to the development of US regional STEMI systems were indeed challenging at times, but were surpassed by the tangible benefits that were evident daily in our patients. Benefits that we now know extend beyond the reduction in death, reinfarction, and stroke confirmed by randomized clinical trials.7-9

Regional Approach to Cardiovascular Emergencies-RACE

Expanding on their initial project of 65 hospitals (10 PCI and 55 non-PCI),10 in this issue of Circulation, the Regional Approach to Cardiovascular Emergencies (RACE) investigators report the results of a statewide STEMI system including all 119 hospitals in North Carolina.11 The results are based on 6841 STEMI patients enrolled over an 18-month period, including 3907 who presented directly to 21 PCI hospitals and 2933 patients who were transferred from 98 non-PCI hospitals. This is a remarkable accomplishment and even more impressive when you consider the results represent an enhancement to an excellent existing statewide STEMI system.10

Benefits of a Statewide STEMI System

A number of noteworthy achievements in North Carolina illustrate the benefits of establishing a regional STEMI system.

Eligible But Untreated

The eligible but untreated segment of the STEMI population has been reported to be 25% to 35%,12 but represented only 4% in the RACE registry. The number of ineligible patients should also decrease in any well-designed STEMI system. We should expect the number of STEMI patients receiving reperfusion therapy to be >90%. Only patients for whom the therapy would be inappropriate (those with advanced dementia or metastatic cancer) and the rare patient who presents too late (12 or 24 hours after onset) would not undergo reperfusion therapy.

Time to Treatment

Consistent with national trends, door-to-device times for patients presenting directly to PCI hospitals continued to improve,
achieving the excellent median of 59 minutes.13 More importantly, the time from first door-to-device for patients transferred from a non-PCI for PCI improved to 103 minutes with 39% of patients treated within 90 minutes. As expected, the time from first door to device was related to distance.

Primary PCI Reperfusion

The number of patients receiving primary PCI as their primary reperfusion method increased from 52% to 66%. Still, 31% of eligible patients were treated with fibrinolytics before transfer. It is unclear how many of these patients subsequently underwent cardiac catheterization and PCI (or the timing if they did). Results of recent randomized clinical trials and regional STEMI systems indicate that a pharmacoinvasive strategy has the potential to provide a PCI-based reperfusion strategy to almost the entire US population.9,14

Data

A major challenge to improving the care of STEMI patients in the United States has been the lack of accurate and comprehensive data. Data from the Joint Commission, Medicare, or registries such as National Cardiovascular Data Registry or National Registry for Myocardial Infarction are highly selective and do not include all STEMI patients.15 Incomplete data make it difficult to understand where improvements need to be made. The availability of complete STEMI results for an entire state is a tremendous accomplishment for RACE. This was made possible by the fact that all 119 hospitals voluntarily agreed to participate in Acute Coronary Treatment and Intervention Outcomes Network Registry – Get With The Guidelines (AR-G), which will continue to be a challenge nationally.

Limitations and Challenges

One important lesson learned from RACE is that a mixed strategy, in which providers could choose PCI or fibrinolysis, may not be the ideal approach. A mixed strategy was used in 15 hospitals and resulted in substantially longer first door-to-device times, although times did improve from 195 to 138 minutes. It appears preferable to choose a strategy and have a backup plan. A pharmacoinvasive, PCI-based strategy would theoretically solve this problem.7,9,14 Following the initial RACE publication, questions were raised regarding the lack of clear mortality benefits. Although the authors address this issue in this article, it is worth remembering that the proven benefit of primary PCI over fibrinolysis was demonstrated in randomized clinical trials. Therefore, our goal continues to be expanding access to primary PCI. The improvements in RACE were made on top of a preexisting system in which primary PCI had already been used for appropriate patients for many years.

The RACE investigators should be congratulated for not only the first successful statewide network and outstanding results, but also for successfully obtaining the funding to complete this monumental task. This remains a major challenge for most regions of the United States. The EMS, in particular, is underfunded. Data collection, although invaluable, is also expensive and duplicative in many hospitals. Is it realistic to believe entire statewide systems can be developed throughout the United States?

Growth in Regional STEMI Networks

A Mission: Lifeline survey found that in 2010 there were 381 unique STEMI systems including 899 PCI hospitals in 47 states.16 These findings are encouraging and likely underestimate the true extent of growth and development of regional STEMI systems. The survey indicated that the funding was provided by the primary PCI hospital (84%) or cardiology practice (23%) in the majority of cases. The most common barriers to implementation of regional STEMI systems were self-reported to be the hospital administration (37%), cardiology group competition (21%), and emergency medical services (EMS, transport, and finances) (26%). The American Heart Association Mission: Lifeline program was designed to increase timely access to PCI for STEMI patients17 and was recently expanded to include patients without of hospital cardiac arrest. Ideally, STEMI systems of care will be expanded regionally to include all cardiovascular emergencies.18

Lessons Learned From a Decade Developing Regional STEMI Systems

Major advances in health care occur not from results of randomized clinical trials or real-world registries, but from the application of those results to complex healthcare systems, which requires the successful interaction of healthcare workers with their patients. The growth and success of regional STEMI systems over the past decade represents such an advance.

Specific lessons learned watching this remarkable achievement are worth noting. The development of a system is based on the use of standardized protocols and order sets designed by use of guideline-based therapies. Yet, the same system needs to allow flexibility to address the individual needs of patients and physicians. The system requires prearranged and individualized reperfusion and transfer plans for each community/hospital, which necessitates close coordination and communication between EMS, non-PCI centers, and PCI centers. Teamwork is essential. Every member of the team is critical, and the improvements require input and leadership at every level. The need for education, training, and retraining cannot be underestimated because of the large number of people involved and ongoing changes in both personnel and new data. Feedback is a key component including the transporting paramedics observing the angiogram, the interventional cardiologist calling the emergency department physician immediately following the procedure, and communication the following day between the STEMI coordinator and EMS/emergency department managers, and the primary cardiologist with the primary care physician, as well. Monthly, quarterly, and yearly quality reports provide ongoing and systemwide quality improvement. Financial and moral support from hospital administration are essential and, if missing, can create a major stumbling block. Perhaps the most important link in the chain is a passionate leader at every level.

The growth of regional STEMI systems in the United States over the past decade has clearly exceeded our expectations. Seven years ago, we published an article raising the
question whether it was time for a national policy concerning the treatment of STEMI patients.\(^7\) Today, we are no closer to that policy, and I am no longer certain it is either necessary or if it would be helpful. Certainly state and national legislation to support our financially strapped EMS would be welcome, including a 12-lead ECG in each ambulance, automated external defibrillator in all public places, and support for both EMS training and data collection, as well. Public policy changes to provide financial incentives for more rational use of resources to support regional STEMI systems rather than building more catheterization laboratories would also be helpful.\(^{19,20}\) The driving force behind this remarkable improvement in US STEMI care has been passionate individuals dedicated to improving the quality of care for their communities. Individual paramedics, STEMI nurse coordinators, hospital administrations, and emergency department and interventional physicians all are doing their part to improve the entire system.

Ideally, the entire US population will have locally designed regional systems not only to provide timely access to PCI for all STEMI patients, but also to care for all acute cardiovascular emergencies. This lofty goal is not only possible, but within our grasp in the next decade.

Disclosures

None.

References

Key Words: Editorials • ST elevation myocardial infarction
From Concept to Reality: A Decade of Progress in Regional ST-Elevation Myocardial Infarction Systems
Timothy D. Henry

Circulation. 2012;126:166-168; originally published online June 4, 2012;
doi: 10.1161/CIRCULATIONAHA.112.114140
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2012 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/126/2/166

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/