The first mechanical heart valve prosthesis, designed by Dr Charles Hufnagel, was implanted to the descending aorta of a 30-year-old woman with severe aortic regurgitation in 1952. Eight years after the initial successful prosthetic aorta of a 30-year-old woman with severe aortic regurgitation was successfully remedied the aortic valve disease, mechanical prosthesis required lifelong anticoagulation, resulting in high rates of bleeding and thrombosis complications.

In the 1960s, valves with leaflets that were made from animal tissue were developed as an alternative without an anticoagulation requirement. Indeed, they were superior to mechanical prosthesis in that regard, but they did not last nearly as long. In randomized trials of bioprosthetic or mechanical valves, which started enrollment in 1970s, primary valve failure and reoperation rates were higher in patients receiving bioprosthetic valves, especially in patients aged <65 years. Since these initial reports, several important advancements have been made in design and tissue processing to improve valve hemodynamics and durability. With these improvements, the age cutoff to use bioprosthetic valves was gradually lowered to avoid lifelong anticoagulation. Large studies with prospectively collected data and long-term follow-up are not yet available to determine the clinical impact of such a trend.

Until recently, reoperation was the only choice for symptomatic patients with degenerated aortic bioprosthesis. Advanced age and multiple comorbidities put some patients at a higher risk for a repeat open heart surgery, and for many this risk is so prohibitive that there is no other treatment option. Advancements in transcatheter aortic valve replacement (TAVR), and the first successful reported case of VIV (valve in valve) in 2007, brought a new hope for these patients. The study by Dvir et al published in this issue of Circulation provides us a reality check. On the one hand, it provides a rigid boundary for the new valve that is placed inside the native AS, including high transvalvular gradients, coronary occlusions, and valve malpositioning.

The bioprosthesis, unlike the native aortic annulus, provides a rigid boundary for the new valve that is placed inside it. Accordingly, the size of the surgically placed valve has a paramount importance in the planning and outcome of the VIV procedure. Determining the true internal diameter of a given valve is not an easy task. The sizes that are given by the manufacturers frequently correspond to the sewing ring diameter but do not represent the actual internal diameters. The magnitude of discrepancy between the manufacturer’s size and the actual measurements vary among the different valves. In the Global VIV Registry reported by Dvir and colleagues, >75% of the bioprosthesis were <23 mm. There is a large variation in internal diameter of bioprosthetic valves, ranging from 17 mm to 20 mm for a 21-mm and 15 mm to 19 mm for a 19-mm valve, based on intraoperative measurements. The measurements not only depend on the valve type, but also on whether the bioprosthetic valve is

Valve in Valve

Another Milestone for Transcatheter Valve Therapy

E. Murat Tuzcu, MD; Samir R. Kapadia, MD; Lars G. Svensson, MD, PhD

The opinions expressed in this article are not necessarily those of the editors or of the American Heart Association.

From the Departments of Cardiovascular Medicine (E.M.T., S.R.K.) and Cardiothoracic Surgery (L.G.S.), Cleveland Clinic, Cleveland, OH.

Correspondence to E. Murat Tuzcu, MD, Department of Cardiovascular Medicine, J-2-3, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44194. E-mail tuzcuem@ccf.org

(Circulation. 2012;126:2280-2282.)

© 2012 American Heart Association, Inc.

Circulation is available at http://circ.ahajournals.org

DOI: 10.1161/CIRCULATIONAHA.112.133777

2280
placed supra- or intra-annularly and whether valve pledgets are placed above or below the annulus. Understanding the complexity of the dimensions and knowing the true internal diameter of the prosthetic valve are critical in the planning of VIV procedure.

The opening that will accommodate the new prosthesis is also determined, albeit to a lesser extent, by presence and severity of pannus formation, bulky nature of the degenerated and calcified prosthetic valve leaflets, and the severity of stenosis. The issue of internal diameter size of the diseased valve is more important for the Edwards Sapien valve because of its intra-annular positioning, than for the CoreValve which has functioning leaflets above the minimum internal diameter.

Creating a relatively small effective orifice area and consequently high transvalvular gradients will frequently lead to patient–prosthesis mismatch. Whether this less than optimal orifice translates into higher long-term mortality or functional impairment remains to be seen. Available data in the surgical literature suggest that there may be a price to pay for larger residual gradients. With that said, for patients with no surgical option as a result of multiple comorbidities, expectations may be different. For the time being, VIV for a no-option patient with severely dysfunctional 19-mm or 21-mm prosthesis may not be a perfect solution, but it may offer an acceptable result with improvement in symptoms, particularly with a supra-annular valve.15

Coronary Occlusion

The data in the registry highlight another critical procedural problem and point to the importance of careful patient selection and procedure planning. Coronary artery occlusion with attendant 57% mortality occurred more frequently in the stentless valves and valves with leaflet mounted on the outside of the frames (Figure). It is not clear whether or not there is an interaction between the diseased prosthesis and the type of TAVR used, although there was no difference in the frequency of the coronary occlusion between the 2 types of transcatheter valve. To prevent this frequently lethal complication, we need to examine the relationships between the coronary artery ostia, the bioprosthetic valve sewing ring, the leaflets, the sinotubular junction, and Sinuses of Valsalva. For the time being we should either avoid or use extreme caution in using the VIV technique in the particular prosthesis mentioned above that leaves little space between the prosthetic leaflets and coronary ostia.

Malpositioned Valve

The malpositioning rate of 15.3% and the need for a second TAVR valve in 8.4% of patients are surprisingly high. The valve that moves cranially during deployment up the aorta can often be managed via catheter techniques, but if it moves in toward the left ventricle open-heart surgery may be necessary. These complications can potentially be prevented by clear understanding of the anatomy of different valves, preprocedural planning with CT scan, and use of guiding intraprocedural radioscopic software for positioning.13

Long-Term Outcome

There appears to be no loss of improved valve function in a small number of patients who had 1-year echocardiograms. Follow-up is too short and very limited to draw comfort for durability of the VIV technique. The longer term follow-up from larger TAVR cohorts cannot be readily used for VIV procedures. For the time being, the impact of the frequently constrained conditions of the functioning VIV, interaction between 2 different prosthetic surfaces on the durability of the transcatheter valve, is not clear.

Bioprosthesis Now, TAVR Later?

The question at hand is as follows: does TAVR offer a reasonable solution to the difficult problem of the severely...
symptomatic patient with malfunctioning aortic prosthesis who is not a surgical candidate or at very high risk for surgical mortality and morbidity? The answer is a qualified yes; not all surgical prostheses are suitable, and much improvement in technology and procedural technique is needed.

The question for the future is as follows: Should we take the option of VIV-TAVR technique into consideration when deciding the surgical valve type for aortic valve disease patients of all ages? The answer is a cautious maybe. In the future, availability of new versions of TAVR devices specifically for VIV will make this approach more feasible as long as the durability issue is addressed. But the size of the surgically implanted valve will continue to be the most important determinant of the success of the VIV procedure. Accordingly, surgeons who envision a prospective TAVR procedure if a valve bioprosthesis fails should make sure a large valve is implanted during the first surgery. This may require wider use of the root enlargement procedures.

Valve in valve is another milestone in the advance of transcatheter valve therapies. Dvir et al should be congratulated for reporting the initial global experience. They show us the promise and the pitfalls of the new technique and point to the hard work ahead to overcome the challenges.

Disclosures

Dr Tuzcu is an unpaid member of the executive committee and investigator of the Placement of Aortic Transcatheter Valve (PARTNER) trial. Dr Kapadia is an unpaid member of the steering committee and investigator of the PARTNER trial. Dr Svensson is an unpaid member of the executive committee and investigator of the PARTNER trial. The other authors report no conflicts.

References

Key Words: Editorials ■ aortic valve stenosis ■ transcatheter valves