Ca²⁺ Entry Through TRP-C Channels Regulates Fibroblast Biology in Chronic Atrial Fibrillation

Robert A. Rose, PhD; Darrell D. Belke, PhD; Mary M. Maleckar, PhD; Wayne R. Giles, PhD

In this issue of Circulation, Harada et al provide fundamental new insights into the cellular mechanism(s) for initiation and maintenance of chronic atrial fibrillation in the human heart. The authors, taking what most might still consider to be an unconventional approach to understanding this proarrhythmic substrate, have identified the atrial fibroblast as an important player. More specifically, this international group of investigators concludes that a particular member of the transient receptor potential or TRP family, a relatively new pyrazole-based compound. This particular TRPC3 current during the proliferative phase in cultured human atrial fibroblasts. Knockdown of TRPC3 is able to suppress atrial fibroblast proliferation, and similar results were obtained with the pharmacological inhibitor PYR3, a relatively new pyrazole-based compound. This particular TRP channel exhibits significant calcium permeability. This calcium influx contributes to ERK phosphorylation, which is involved in mediating atrial fibroblast proliferation. A very interesting observation is that TRPC expression is markedly reduced and can even disappear when the proliferating fibroblasts eventually adopt a myofibroblast phenotype.

Previously, we have shown that members of the TRPC family are importantly involved in the electrophysiological mechanisms that underlie some of the effects of natriuretic peptides (acting through the natriuretic peptide C receptor) in rat ventricle. In this case (although calcium entry and subsequent intracellular calcium waves and altered gene transcription are likely consequences), the electrogentic current through TRP channels is sufficient that connexin-mediated electrotonic cell–cell communication from the fibroblast or myofibroblast to the myocyte is altered. This intercellular current flow can change the resting potential, the action potential waveform, or both.

We have explored some of these TRP channel–mediated effects using mathematical models of the human atrial myocyte in the presence or absence of electrotonic interaction with a selected number of fibroblasts, . This in silico approach can provide useful insights into the consequences of data sets such as those in the Harada et al study. Panel A of the Figure consists of 2 schematics that show the chosen model components. Panel B is a current–voltage (I–V) relationship. It shows the major background potassium current and voltage activated potassium current. These two conductances produce changes in resting membrane potential and promote electrotonic repolarization in the human atrial fibroblast. Panel C of the Figure combines this information. It is based on the results of a computation done using 1 human myocyte coupled with 1 fibroblast through an intercellular resistance that is similar to that which has been measured experimentally (c.f. refs 10, 11). The calculated depolarization of the resting potential draws attention to the possibility that activation of a TRPC3 conductance in the fibroblast when scaled to match the current density in Harada et al may have a significant influence on the resting potential of atrial myocytes. Even a small depolarization in the atrium would reduce excitability and thus could alter the atrial tissue substrate even if only 1 fibroblast (on average) were coupled to each myocyte, as this computation assumes.

In the section of this article that addresses the molecular mechanisms that regulate TRPC3 expression during the development of atrial fibrillation, an important role for the microRNA species, denoted 26a/b, is identified. The motivation for this set of experiments is based in part on previous work that demonstrated strong modulation of cardiac fibrosis by selected microRNA entities. Specifically, MicroRNA-26 is shown to negatively regulate the expression of TRPC3 as judged by results from gain- and loss-of-function experiments. Furthermore, an important role for NFATc3 (but not NFATc4) that is localized to the nucleus in mediating the repression of miRNA-26 is identified. In summary, the intracellular signaling data provided by Hirada et al demonstrates...
strate that downregulation of miRNA-26 results in selective increase in the expression of TRPC3, and this is followed by enhanced fibroblast proliferation.

The finding that NFATc3 is involved in mediating fibroblast proliferation is interesting and potentially very important. It is now known that this transcription factor can mediate ventricular hypertrophy. The hypertrophic phenotype includes fibroblast proliferation and altered conduction patterns. The translocation of NFATc3 within the nucleus, which apparently is essential for fibroblast proliferation, has recently been shown to be dependent on protein O-GlcNAc modification. Interestingly, increased propensity for protein O-GlcNAcylation is a hallmark of diabetes mellitus. This biochemical modulation has also been demonstrated to occur in the heart as a result of aging. Diabetes mellitus and the aging process are both associated with an increased incidence of atrial rhythm disturbances, including atrial fibrillation.

In summary, Harada et al have provided a fundamental advance in understanding the cell physiology and intracellular signaling mechanisms involved in fibrosis during atrial fibrillation. Their findings draw attention to a strong link between fibroblast ion channels and the proarrhythmic substrate in the atrium. As presented, these findings suggest that calcium entry through the TRPC3 channels is critically important for triggering calcium-dependent intracellular signaling mechanisms that can regulate fibroblast proliferation.
and perhaps also modulate the transition to the myofibroblast phenotype. However, these results need to be considered in the context of quite complex calcium homeostasis in both the normal and the compromised human atrial myocyte (see Grandi et al17).

A recent study that reveals the expression of cardiac sodium channels in myofibroblasts from human atrium18 also provides an important perspective when the clinical significance of the findings in Harada et al1 are being considered. If the myocyte-fibroblast-myofibroblast syncytium that contributes to the characteristic substrate found in chronic atrial fibrillation includes the possibility that the myofibroblast could support a sodium current–mediated regenerative response, virtually all present concepts for pharmacological management of atrial rhythm disturbances need to be reconsidered.10,17,19 The possibility that transformed fibroblasts could correspond to excitable tissue also needs to be considered when so-called biological therapies for cardiac rhythm disturbances are being refined and further developed.20 This opportunity and significant challenge also needs to be factored into the rapidly emerging field that focuses on heart repair by reprogramming fibroblasts. This approach is based on a cocktail of transcription factors being introduced into uniform, sometimes autologous, populations of cardiac tissue–specific fibroblasts to bring about repair which are then placed in the myocardium.21–23

Disclosures

Work in the authors' laboratories is sponsored by the Canadian Institutes of Health Research, the Heart and Stroke foundation of Canada and Alberta Innovates - Health Solutions.

References

Key Words: Editorials | atrial fibrillation | calcium | cardiac fibroblast | TRP channels
Ca2+ Entry Through TRP-C Channels Regulates Fibroblast Biology in Chronic Atrial Fibrillation
Robert A. Rose, Darrell D. Belke, Mary M. Maleckar and Wayne R. Giles

Circulation. 2012;126:2039-2041
doi: 10.1161/CIRCULATIONAHA.112.138065

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/126/17/2039

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/