Association of Mild to Moderate Chronic Kidney Disease With Venous Thromboembolism
Pooled Analysis of Five Prospective General Population Cohorts

Bakhtawar K. Mahmoodi, MD, PhD; Ron T. Gansevoort, MD, PhD; Inger Anne Næss, MD, PhD; Pamela L. Lutsey, PhD, MPH; Sigrid K. Braèkkan, PhD; Nic J.G.M. Veeger, PhD; Ellen E. Brodin, MD, PhD; Karina Meijer, MD, PhD; Yingying Sang, MSc; Kunihiro Matsushita, MD, PhD; Stein I. Hallan, MD, PhD; Jens Hammerstrøm, MD, PhD; Suzanne C. Cannegieter, MD, PhD; Brad C. Astor, PhD, MPH; Josef Coresh, MD, PhD; Aaron R. Folksom, MD, MPH; John-Bjarne Hansen, MD, PhD; Mary Cushman, MD, MSc

Background—Recent findings suggest that chronic kidney disease (CKD) may be associated with an increased risk of venous thromboembolism (VTE). Given the high prevalence of mild-to-moderate CKD in the general population, in depth analysis of this association is warranted.

Methods and Results—We pooled individual participant data from 5 community-based cohorts from Europe (second Nord-Trøndelag Health Study [HUNT2], Prevention of Renal and Vascular End-stage Disease [PREVEND], and the Tromsø study) and the United States (Atherosclerosis Risks in Communities [ARIC] and Cardiovascular Health Study [CHS]) to assess the association of estimated glomerular filtration rate (eGFR), albuminuria, and CKD with objectively verified VTE. To estimate adjusted hazard ratios for VTE, categorical and continuous spline models were fit by using Cox regression with shared-fruity or random-effect meta-analysis. A total of 1178 VTE events occurred over 599 453 person-years follow-up. Relative to eGFR 100 mL/min per 1.73 m², hazard ratios for VTE were 1.29 (95% confidence interval, 1.04–1.59) for eGFR 75, 1.31 (1.00–1.71) for eGFR 60, 1.82 (1.27–2.60) for eGFR 45, and 1.95 (1.26–3.01) for eGFR 30 mL/min per 1.73 m². In comparison with an albumin-to-creatinine ratio (ACR) of 5.0 mg/g, the hazard ratios for VTE were 1.34 (1.04–1.72) for ACR 30 mg/g, 1.60 (1.08–2.36) for ACR 300 mg/g, and 1.92 (1.19–3.09) for ACR 1000 mg/g. There was no interaction between clinical categories of eGFR and ACR (P=0.20). The adjusted hazard ratio for CKD, defined as eGFR <60 mL/min per 1.73 m² or albuminuria ≥30 mg/g, (versus no CKD) was 1.54 (95% confidence interval, 1.15–2.06). Associations were consistent in subgroups according to age, sex, and comorbidities, and for unprovoked versus provoked VTE, as well.

Conclusions—Both eGFR and ACR are independently associated with increased risk of VTE in the general population, even across the normal eGFR and ACR ranges. (Circulation. 2012;126:1964-1971.)

Key Words: albuminuria ▪ chronic kidney disease ▪ deep vein thrombosis ▪ epidemiology ▪ GFR ▪ pulmonary embolism ▪ thromboembolism

The overall incidence rate of venous thromboembolism (VTE) in developed countries is ~1.5 per 1000 person-years, varying from <0.05 in children to nearly 10.0 per 1000 person-years in the older adults.1-4 The 28-day case-fatality rate after a first VTE is as high as 11%.4 Because none of the known VTE risk factors are present in up to 50% of VTE cases,3 identifying novel risk factors for VTE is the focus of intensive research.

Editorial see p 1937
Clinical Perspective on p 1971
Nephrotic syndrome and overt proteinuria are well-known risk factors for VTE.5,6 Mild to moderate chronic kidney disease (CKD) is associated with a procoagulant profile7–12 and might therefore also be related to VTE risk. Two recent studies suggested that CKD may be associated with increased VTE risk, with some conflicting results.13–15 Of the 2 key CKD-defining kidney measures (ie, glomerular filtration rate [GFR] and albuminuria), in the Atherosclerosis Risks in Communities (ARIC) study, a significant association was found only between reduced GFR and VTE incidence,14 whereas, in the Prevention of Renal and Vascular End-stage Disease (PREVEND) study, an association was observed only for elevated albuminuria.13 Possible explanations for these inconsistent findings might be the limited statistical power of the individual studies and differences in study population characteristics or the selection of covariates.

Given the high prevalence of CKD (10%–16%) in the general adult population,16–19 in-depth analysis of the association of CKD with VTE incidence is warranted. Hence, we conducted an individual-level meta-analysis of 5 prospective general population–based cohorts with information on GFR, albuminuria, and incident VTE. This report explores the separate and combined associations of GFR and albuminuria with the risk of VTE.

Methods

Study Selection Criteria
To select eligible studies, we used criteria similar to those of the CKD Prognosis Consortium.20,21 Eligible studies had to be community-based cohort studies with both baseline estimated glomerular filtration rate (eGFR) and urine albumin measurements. A PubMed search was performed on March 2, 2010 with the use of the following combination of terms: (eGFR OR GFR OR "glomerular filtration rate" OR "kidney function" OR "renal function") AND (albuminuria OR "albumin to creatinine ratio" OR ACR OR "uria albumin concentration" OR UAC) AND ("venous thrombosis" OR "venous thromboembolism" OR "pulmonary embolism" OR "deep vein thrombosis" OR DVT) AND (adult [MeSH] AND (humans [MeSH]) AND (subjects [MeSH]) AND (English [linje] AND (humans [MeSH]) AND (adult [MeSH]) AND (adult [MeSH]) AND (adult [MeSH]) AND (adult [MeSH]))). Two investigators (B.K.M. and R.T.G.) performed the search independently. No language or publication period restrictions were applied. Subsequently, we searched general population studies, with albumin-to-creatinine ratio (ACR) ascertainment, that participated in the CKD Prognosis Consortium22 in PubMed for availability of VTE outcomes. Finally, additional eligible cohorts were sought during scientific meetings and via personal contacts. The ethical review committee of the University Medical Center of Groningen approved the project to receive and analyze the data. Review committees of each participating cohort approved sharing of the deidentified individual-level data and the conducted analyses presented in this article.

Baseline Study Variables

GFR was estimated with the use of the CKD Epidemiology Collaboration equation that takes into account serum creatinine, age, sex, and race.22 In 3 studies, serum creatinine was not standardized to isotope dilution mass spectrometry, hence we reduced the creatinine levels by 5%, the calibration factor used to adjust nonstandardized isotope dilution mass spectrometry.23 In a sensitivity analysis, GFR was modified of Diet in Renal Disease Study samples to isotope levels by 5%, the calibration factor used to adjust nonstandardized isotope dilution mass spectrometry, hence we reduced the creatinine levels by 5%, the calibration factor used to adjust nonstandardized isotope dilution mass spectrometry.23 In a sensitivity analysis, GFR was estimated with the use of the Modification of Diet in Renal Disease equation.24 Albuminuria was quantified by the ratio of urinary albumin to urinary creatinine excretion in a spot or 24-hour urine sample.25–26 CKD was defined as eGFR <60 mL/min per 1.73 m2 or ACR ≥30 mg/g, according to prevailing guidelines.27 History of cardiovascular disease was defined as history of self-reported myocardial infarction or stroke at study baseline. Hypertension was defined as systolic blood pressure ≥140 mm Hg, diastolic blood pressure ≥90 mm Hg, or the use of antihypertensive medication. Diabetes mellitus was defined as a fasting glucose concentration of ≥7.0 mmol/L (≥126 mg/dL), a nonfasting glucose concentration of ≥11.1 mmol/L (≥200 mg/dL), or the use of glucose-lowering drugs or self-reported diabetes mellitus. Smoking was dichotomized to current smokers versus former or nonsmokers. Hypercholesterolemia was defined as a total cholesterol concentration of ≥5.0 mmol/L (193 mg/dL) in patients with a history of myocardial infarction or stroke and as ≥6.0 mmol/L (232 mg/dL) in patients without a history of myocardial infarction and stroke. Body mass index (BMI) was calculated as measured body weight in kilograms divided by height in meters squared.

Venous Thromboembolism

Only objectively verified symptomatic VTEs were considered in all cohorts. Deep vein thrombosis was confirmed by compression ultrasonography, venography, and pulmonary embolism was confirmed by ventilation/perfusion lung scanning, angiography, spiral computed tomography, or at autopsy. Major trauma, surgery, significant immobilization, or active cancer in the preceding 3 months were the main determinants for classifying VTE as provoked.4,13,27,28 Three of the 5 cohorts included additional risk factors in the definitions of provoked VTE, such as the use of oral contraceptives or hormone therapy, pregnancy, long-distance travel, active infectious disease, acute myocardial infarction, paroxysmal atrial fibrillation, and heart failure.13,27,28 In the absence of the aforementioned risk factors, VTE was classified as unprovoked.

Statistical Analysis

Individual participant data from the cohorts were pooled. Cox proportional hazards models with shared frailty (ie, random effects) were used to estimate adjusted hazard ratios (HRs) of VTE associated with eGFR, albuminuria, and their combination. Individual cohort was considered as the shared frailty variable to account for between-study differences. As sensitivity analysis, continuous eGFR and ACR associations with VTE were also modeled by using stratified (ie, fixed effects) Cox proportional hazards regression.

Based on previous literature on risk factors for VTE and correlates of eGFR and ACR, age, sex, BMI, history of cardiovascular disease, hypertension, diabetes mellitus, total cholesterol, and current smoking were included in models as potential confounders.13,14,29 Because only 2 of the 5 studies also enrolled black participants, ethnicity-specific results were presented for those 2 studies rather than including race as a covariate in the main model. In addition, all eGFR models were adjusted for log-ACR, and all ACR models were adjusted for eGFR splines. To assess the shape of the relationship of eGFR and ACR with the risk of VTE, we modeled eGFR and ACR by using linear splines with knots at 45, 60, 75, 90, and 105 mL/min per 1.73 m2 for eGFR, and 10, 30, 300, and 1000 mg/g (to convert to milligrams per millimole, multiply by 0.113) for ACR, respectively. eGFR of 100 mL/min per 1.73 m2 and ACR of 5 mg/g were selected as reference points. HRs of eGFR association with VTE were estimated per 1 mL/min per 1.73 m2 increment of eGFR from 15 to 120 mL/min per 1.73 m2. HRs for the association of ACR with VTE were estimated per 8% increments of ACR from 2.5 to 1000 mg/g. Adjustment for prevalent baseline traditional VTE risk factors (ie, major trauma, surgery, significant immobilization, or active cancer) was not performed because these were not uniformly available; however, given the temporary nature of these risk factors, baseline prevalence of these risk factors is unlikely to influence long-term VTE risk. To quantify short-term influence of these risk factors on the association of eGFR and albuminuria with VTE, we performed stratified analysis for provoked versus unprovoked VTE, where the definition of provoked VTE incorporated the presence of the traditional VTE risk factors.

Joint effects of eGFR and ACR on VTE were investigated by using cross-tabulation of eGFR and ACR categories. The interaction between eGFR and ACR was assessed by likelihood ratio tests between the models with eGFR and measured ACR with and without
their product terms. This methodology was also used to assess interactions of CKD with sex, race, age, hypertension, diabetes mellitus, smoking, hypercholesterolemia, history of cardiovascular disease, and BMI. Moreover, for dichotomous CKD VTE risk association, pooled estimates of the HRs and 95% confidence intervals (CIs) of individual studies were obtained from random-effects meta-analysis. Heterogeneity among studies was estimated by I^2 test and the H^2 statistic. Potential sources of heterogeneity were explored by meta-regression analysis.

Because ACR was measured in only a subset of the second Nord-Trøndelag Health Study (HUNT2) cohort, we adjusted the eGFR-VTE associations for log-ACR values based on multiple imputation. To achieve maximum accuracy for the imputed log-ACR, we created 20 complete data sets by the use of Stata ice command. Subsequently the micombine command with Cox regression was used to obtain HRs and correct 95% CIs. Age, sex, hypertension, diabetes mellitus, a history of cardiovascular disease, VTE and log-transformed follow-up time were used to impute log-ACR values. To avoid potential bias due to multiple imputation, analyses of the ACR-VTE risk association were based on measured ACR values only. Statistical significance was considered as a 2-tailed P < 0.05. All statistical analyses were performed by the use of Stata software version 11.2 (StataCorp LP).

Results

Figure 1 shows the flow diagram of the identified studies. Investigators of one of the eligible studies could not provide data. Characteristics of the included studies are presented in Table 1. Overall, 95,154 participants (46.7% males, 96.6% whites) were included with 599,453 person-years of follow-up. During follow-up, 1178 VTEs occurred, 45% were classified as unprovoked, and 39% were pulmonary embolism alone or in combination with deep vein thrombosis. In all cohorts combined, 94,882 (99.7%) participants had measured eGFR data and 39,524 (41.5%) had ACR data (in HUNT2 only, 15% of participants had ACR measured; n = 9737). All other variables presented in Table 1 had <0.8% missing values in the pooled data set, with the exception of current smoking (4.4% missing).

Table 1. Study Characteristics per Cohort

<table>
<thead>
<tr>
<th>Country of Origin</th>
<th>ARIC* USA</th>
<th>CHS* USA</th>
<th>HUNT2 Norway</th>
<th>PREVEND Netherlands</th>
<th>Tromsø Norway</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Participants, n</td>
<td>11,513</td>
<td>3,450</td>
<td>64,793</td>
<td>8,573</td>
<td>68,25</td>
</tr>
<tr>
<td>Male, %</td>
<td>44.1</td>
<td>39.7</td>
<td>46.9</td>
<td>50.0</td>
<td>49.2</td>
</tr>
<tr>
<td>Mean age, y</td>
<td>62.8</td>
<td>78.1</td>
<td>50.2</td>
<td>49.0</td>
<td>60.2</td>
</tr>
<tr>
<td>Black, %</td>
<td>22.5</td>
<td>16.6</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Hypertension, %</td>
<td>47.7</td>
<td>72.5</td>
<td>45.1</td>
<td>34.1</td>
<td>50.2</td>
</tr>
<tr>
<td>Diabetes, %</td>
<td>16.8</td>
<td>22.2</td>
<td>3.0</td>
<td>4.4</td>
<td>3.4</td>
</tr>
<tr>
<td>Hypercholesterolemia, %</td>
<td>21.2</td>
<td>27.3</td>
<td>46.6</td>
<td>37.9</td>
<td>70.8</td>
</tr>
<tr>
<td>Current smoking, %</td>
<td>14.8</td>
<td>7.6</td>
<td>29.8</td>
<td>34.2</td>
<td>31.8</td>
</tr>
<tr>
<td>History of MI or stroke, %</td>
<td>10.1</td>
<td>16.5</td>
<td>4.9</td>
<td>4.5</td>
<td>8.5</td>
</tr>
<tr>
<td>Mean body mass index, kg/m²</td>
<td>28.8</td>
<td>26.9</td>
<td>26.3</td>
<td>26.1</td>
<td>26.0</td>
</tr>
<tr>
<td>Mean total cholesterol, mg/dL</td>
<td>200</td>
<td>203</td>
<td>228</td>
<td>218</td>
<td>259</td>
</tr>
<tr>
<td>Mean eGFR, mL/min per 1.73 m²</td>
<td>84.3</td>
<td>67.6</td>
<td>97.9</td>
<td>88.8</td>
<td>92.8</td>
</tr>
<tr>
<td>Median ACR, mg/g</td>
<td>3.7</td>
<td>10.2</td>
<td>7.7</td>
<td>7.0</td>
<td>5.4</td>
</tr>
<tr>
<td>Mean follow-up, y</td>
<td>8.0</td>
<td>4.5</td>
<td>5.2</td>
<td>9.3</td>
<td>10.8</td>
</tr>
<tr>
<td>Venous thromboembolism, n</td>
<td>260</td>
<td>61</td>
<td>509</td>
<td>122</td>
<td>226</td>
</tr>
</tbody>
</table>

eGFR was estimated by the CKD-EPI equation. To convert total cholesterol to millimoles per liter, multiply by 0.0259. To convert ACR to milligrams per millimole, multiply by 0.113. MI indicates myocardial infarction; ACR, albumin-to-creatinine ratio; eGFR, estimated glomerular filtration rate; CKD, chronic kidney disease; CKD-EPI, CKD Epidemiology Collaboration; and BMI, body mass index.

*Because albuminuria was measured at visit 4 in ARIC and the year 7 in CHS, we treated these visits as the baseline for ARIC and CHS.

†In subjects with measured ACR in the HUNT2 study, mean BMI was 28 kg/m² as depicted in online-only Data Supplement Figure IV.
Estimates of adjusted HRs for VTE according to eGFR and ACR levels are presented in Figure 2. Risk of VTE started to be significantly increased at eGFR 88 mL/min per 1.73 m². Relative to eGFR 100 mL/min per 1.73 m², HRs for VTE were 1.29 (95% CI, 1.04–1.59) for eGFR 75, 1.31 (1.00–1.71) for 60, 1.82 (1.27–2.60) for 45, and 1.95 (1.26–3.01) for 30 mL/min per 1.73 m². Similar findings were observed in analyses with the use of the Modification of Diet in Renal Disease equation-based eGFR (online-only Data Supplement Figure I). The interpretation of results did not change in models comparing ACR as a covariate with and without the use of imputed ACR from the HUNT2 study, indicating the validity of the multiple imputation (online-only Data Supplement Figure II). The association of ACR splines and VTE risk was largely linear on the log-log scale, with significantly increased risk observed at ACR 14 mg/g and higher. In comparison with an ACR of 5.0 mg/g, the HRs for VTE were 1.34 (1.04–1.72) for 30 mg/g, 1.60 (1.08–2.36) for 300 mg/g, and 1.92 (1.19–3.09) for 1000 mg/g (Figure 2B). Results of fixed-effect Cox proportional hazards models were identical to the random-effect models (online-only Data Supplement Figure III).

Table 2 shows the adjusted HR of VTE in clinical categories of eGFR and ACR based on Kidney Disease Outcomes Quality Initiative (K/DOQI) staging.²³ The corresponding number of VTEs and total number of participants according to these categories are presented in online-only Data Supplement Table I. In general, the association of ACR with VTE risk was evident across most eGFR categories. The association between reduced eGFR and VTE risk was more obvious in those with noalbuminuria (ie, ACR <30 mg/g). The risk increase was not clearly multiplicative with lower eGFR and higher ACR categories; tests for interaction of the separate categories (P>0.14) and overall (P=0.20) were not significant. The interaction of continuous eGFR with spline terms and linear log-ACR was not significant (P=0.10).

When we compared individuals with CKD versus no-CKD, the pooled HR for overall VTE associated with CKD was 1.54 (95% CI, 1.15–2.06) (Figure 3). In Figure 4, the impact of CKD on overall VTE incidence was consistent across the subgroups tested, with the exception of a trend for BMI categories showing weaker association of CKD with VTE in the lowest BMI category.

Table 2. Pooled Estimates of Adjusted Hazard Ratios (95% Confidence Intervals) for Venous Thromboembolism According to Clinical Categories of eGFR and ACR

<table>
<thead>
<tr>
<th>ACR</th>
<th>eGFR</th>
<th>HR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>≥90 mL/min per 1.73 m²</td>
<td>1.66 (1.11–2.48)</td>
</tr>
<tr>
<td></td>
<td>60–89 mL/min per 1.73 m²</td>
<td>1.15 (0.96–1.38)</td>
</tr>
<tr>
<td></td>
<td>45–59 mL/min per 1.73 m²</td>
<td>1.23 (0.87–1.74)</td>
</tr>
<tr>
<td></td>
<td>30–44 mL/min per 1.73 m²</td>
<td>2.13 (1.26–3.62)</td>
</tr>
<tr>
<td>≥3 mg/mmol</td>
<td>(3.4–33.8 mg/mmol)</td>
<td>(3.4–33.8 mg/mmol)</td>
</tr>
<tr>
<td>>300 mg/g</td>
<td>(33.9 mg/mmol)</td>
<td>(33.9 mg/mmol)</td>
</tr>
</tbody>
</table>

From the HUNT2 study, only subjects with measured ACR contributed to this analysis. eGFR was estimated by the CKD-EPI equation.²² Given the low numbers of individuals with eGFR <30 (see online-only Data Supplement Table I), these individuals were excluded from this analysis. eGFR indicates estimated glomerular filtration rate; ACR, albumin-to-creatinine ratio; CKD, chronic kidney disease; and CKD-EPI, CKD Epidemiology Collaboration.
subjects with BMI ≥25 versus <25 kg/m² (P for interaction=0.06). Similarly, the significant heterogeneity observed for overall VTE among studies appeared to be due to differences in BMI across studies (β=-0.23, P=0.054) (online-only Data Supplement Figure IV).

The HRs of VTE with CKD in comparison with no CKD were similar for unprovoked and provoked VTE (Figure 3). Analyses for continuous eGFR and ACR are presented in the online-only Data Supplement Figure V. Similarly, the HRs of pulmonary embolism and deep vein thrombosis with CKD were similar (online-only Data Supplement Figure VI). Finally, of the covariates, only BMI and age showed significant strong association with VTE in all models of eGFR and ACR (data not shown).

Discussion

In this individual participant meta-analysis including 95 154 participants from prospective observational studies followed for an average of 6.3 years, both eGFR and elevated albuminuria were associated with increased risk of VTE independently of each other and traditional cardiovascular risk factors including BMI. For both eGFR and ACR, there was a dose–response relationship with increased risk of VTE starting in the non-CKD range of eGFR (ie, ≥60 mL/min per 1.73 m²) and the normal range of ACR (ie, <30 mg/g). There was no significant interaction between eGFR and ACR. CKD, defined by eGFR <60 mL/min per 1.73 m² or ACR ≥30 mg/g, was similarly associated with both provoked and unprovoked VTE and with both pulmonary embolism and deep-vein thrombosis.

In this comprehensive analysis of large prospective general population–based cohorts, a clear association of eGFR and albuminuria with risk of VTE clarifies the previous inconsistent published findings of the ARIC and PREVEND studies. In addition to ARIC and PREVEND cohorts, this analysis included previously unpublished data from 3 additional cohorts. The association of CKD with VTE was largely consistent in the presence versus the absence of various traditional cardiovascular risk factors, with the exception of a trend for relatively stronger association of CKD with VTE in subjects with BMI <25 kg/m² in comparison with BMI ≥25 kg/m² (P=0.06). Difference in mean BMI among studies also explained most of the variability of the CKD-VTE risk association across studies. This finding is in line with several observational studies that reported an antagonistic interaction between BMI and CKD on mortality.34

The observation that risks do not fully multiply when both eGFR is low and ACR is high might be secondary to competing risk for mortality in low eGFR and high ACR categories, and to limited power in the low-eGFR and high-albuminuria categories, as well (online-only Data Supplement Table I). However, a significant interaction between eGFR and ACR categories in relation to mortality was not observed in a recent meta-analysis.21

CKD is associated with a broad range of diseases requiring hospitalization. This may have resulted in the association between CKD and provoked VTE. However, the association of eGFR and albuminuria with unprovoked VTE gives credence to a direct association of CKD with VTE. The high risk of VTE in individuals diagnosed with nephrotic-range proteinuria is assumed to be secondary to the loss of antico-
The high prevalence of CKD in the general population (10%-16%) suggests that, on the population level, CKD may explain a much larger proportion of VTE risk than most of the established rare hereditary VTE risk factors, such as antithrombin, protein C, and protein S deficiencies. Assuming a CKD prevalence of 10% in the general population, the observed HR of 1.54 in our study corresponds to a population-attributable risk of 5.1%, if the relationship is causal. In contrast to most established VTE risk factors, CKD, in particular, albuminuria, is modifiable with medications (eg, renin-angiotensin system inhibitors). In fact, losartan use in patients with overt proteinuria >2.0 g/d ameliorates the hypercoagulable state in proteinuric patients. Taken together with our findings, studies evaluating the effect of albuminuria-lowering drugs on the risk of VTE in patients with mild to moderate CKD are warranted. Furthermore, because CKD is common, based on the current findings, it would be useful to assess whether CKD might be associated with the risk of recurrent VTE.

We acknowledge that this study has limitations. First, the measurement of creatinine, albuminuria, and potential confounders was not standardized among all studies. For instance, some studies measured albumin and creatinine in fresh urine samples, whereas other studies used frozen samples, and there was no centralized laboratory for all studies together. Care was taken, however, to use the same definitions for exposure variables and covariates across studies. Second, whereas we accounted for cardiovascular risk factors and potential confounders that are strongly associated with CKD and possibly associated with VTE, residual confounding may still remain. Although we were not able to account for hereditary thrombophilic defects, these are not known to be associated with mild to moderate CKD. In fact, 1 recent study reported a renoprotective effect of factor V Leiden. The high prevalence of CKD in the general population (10%-16%) suggests that, on the population level, CKD may explain a much larger proportion of VTE risk than most of the established rare hereditary VTE risk factors, such as antithrombin, protein C, and protein S deficiencies. Assuming a CKD prevalence of 10% in the general population, the observed HR of 1.54 in our study corresponds to a population-attributable risk of 5.1%, if the relationship is causal. In contrast to most established VTE risk factors, CKD, in particular, albuminuria, is modifiable with medications (eg, renin-angiotensin system inhibitors). In fact, losartan use in patients with overt proteinuria >2.0 g/d ameliorates the hypercoagulable state in proteinuric patients. Taken together with our findings, studies evaluating the effect of albuminuria-lowering drugs on the risk of VTE in patients with mild to moderate CKD are warranted. Furthermore, because CKD is common, based on the current findings, it would be useful to assess whether CKD might be associated with the risk of recurrent VTE.

We acknowledge that this study has limitations. First, the measurement of creatinine, albuminuria, and potential confounders was not standardized among all studies. For instance, some studies measured albumin and creatinine in fresh urine samples, whereas other studies used frozen samples, and there was no centralized laboratory for all studies together. Care was taken, however, to use the same definitions for exposure variables and covariates across studies. Second, whereas we accounted for cardiovascular risk factors and potential confounders that are strongly associated with CKD and possibly associated with VTE, residual confounding may still remain. Although we were not able to account for hereditary thrombophilic defects, these are not known to be associated with mild to moderate CKD. In fact, 1 recent study reported a renoprotective effect of factor V Leiden. Third, event ascertainment across studies was comparable, but the definitions of unprovoked and provoked VTE were slightly different. However, we observed largely consistent findings for the association of CKD with overall, unprovoked, and provoked VTE. Fourth, we are unable to account for anticoagulant medication use. However, given that CKD is associated with cardiovascular disease, ignoring anticoagulant medication use would have resulted in underestimated...
ACKNOWLEDGMENTS

The authors thank the staff and participants of the included studies for their important contributions.

Sources of Funding

Dr. Mahmoodi’s fellowship at Johns Hopkins Bloomberg School of Public Health is supported by grants of Netherlands Organization for Scientific Research and the Dutch Kidney Foundation. Drs. Coresh and Matsushita and Y. Sang are supported in part by the US National Kidney Foundation. No external support was required for the current analysis. Sponsors for individual studies are as follows: Atherosclerosis Risk in Communities Study (ARIC): The Atherosclerosis Risk in Communities Study is carried out as a collaborative study supported by National Heart, Lung, and Blood Institute (HHSN2682010100005C, HHSN2682010100006C, HHSN2682010100007C, HHSN2682010100008C, HHSN2682010100009C, HHSN2682010100010C, HHSN2682010100011C, and HHSN2682010100012C). Additional support was from the National Heart, Lung, and Blood Institute grant R01 HL59367. Cardiovascular Health Study (CHS): The CHS was supported by contracts N01-HC-85239, N01-HC-85079 through N01-HC-85086, N01-HC-35129, N01 HC-15103, N01-HC-55222, N01-HC-75150, N01-HC-45133, and grant HL080295 from the National Heart, Lung, and Blood Institute (NHLBI), with additional contribution from the National Institute of Neurological Disorders and Stroke (NINDS). Additional support was provided through AG-023629, AG-15928, AG-20098, and AG-027058 from the National Institute on Aging (NIA). A full list of principal CHS investigators and institutions can be found at http://www.chs-nhlbi.org/pi.htm. Additional support was from the National Heart, Lung, and Blood Institute grant R01 HL59367. The second Nord-Trøndelag Health Study (HUNT2): HUNT2 was funded by joint efforts of a large number of partners. Main contributions came from The Ministry of Health, through the National Institute of Public Health screening service (SHUS). The Nord-Trøndelag County Council, The Norwegian University of Science and Technology (NTNU) and The Norwegian Research Council also provided essential funding. The linked study of venous thrombosis (the TROL study) was a collaboration between NTNU, Trondheim, Norway and Leiden University Medical Center, Leiden, the Netherlands, respectively supported by the Research Council of Norway (grant 148037) and the Netherlands Heart Foundation (grant 2008B185). Prevention of Renal and Vascular End-stage Disease (PREVEND): The PREVEND study is supported by several grants from the Dutch Kidney Foundation, and grants from the Dutch Heart Foundation, the Dutch Government (NWO), the US National Institutes of Health (NIH) and the University Medical Center Groningen (UMCG). Tromso Study: The Tromso Study is funded by the University of Tromso and supported by grants from the Northern Norwegian Regional Health Authority.

Disclosures

None.

References

16. Chadban SJ, Briganti EM, Kerr PG, Dunstan DW, Welborn TA, Zimmet PZ, Atkins RC. Thromboembolic complications in the nephrotic syndrome, even in the non-CKD range of eGFR and the normal range of ACR.

CLINICAL PERSPECTIVE

Chronic kidney disease (CKD) is a major health problem that affects 10% to 16% of the general adult population. Whereas associations of CKD with arterial thromboembolism and mortality are well known, the association of CKD with venous thromboembolism (VTE) is uncertain. In the present study, we assessed the association of CKD with venous thrombosis in 5 general population cohorts. The key CKD measures (ie, decreased estimated glomerular filtration rate and elevated albumin-to-creatinine ratio) were both associated with an increased risk of VTE, even for values in the normal ranges. Subjects with CKD (ie, estimated glomerular filtration rate <60 mL/min per 1.73 m² or albumin-to-creatinine ratio ≥30 mg/g) had a 54% higher risk of VTE in comparison with subjects without CKD. The associations were similar for unprovoked and provoked VTE, and for pulmonary embolism and deep-vein thrombosis, as well. CKD measures showed largely similar associations with VTE across subgroups of traditional cardiovascular risk factors, such as hypertension, diabetes, age, and sex. Given the effect size of the association, individual-level implications may be limited. Nevertheless, because of the high prevalence of CKD, population-level VTE burden owing to CKD is estimated to be high, especially in populations with high CKD prevalence such as those with diabetes mellitus and hypertension. Future studies are warranted to assess whether CKD is also associated with recurrent VTE. If confirmed, these findings may have implications for the duration of anticoagulant treatment for first VTE.
Association of Mild to Moderate Chronic Kidney Disease With Venous Thromboembolism: Pooled Analysis of Five Prospective General Population Cohorts

Circulation. 2012;126:1964-1971; originally published online September 13, 2012; doi: 10.1161/CIRCULATIONAHA.112.113944

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2012 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/126/16/1964

Data Supplement (unedited) at:
http://circ.ahajournals.org/content/suppl/2012/09/10/CIRCULATIONAHA.112.113944.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation_ is online at:
http://circ.ahajournals.org//subscriptions/
SUPPLEMENTAL MATERIAL

Supplement to: Association of Mild to Moderate Chronic Kidney Disease with Venous Thromboembolism: Pooled Analysis of Five Prospective General Population Cohorts.
Table of Contents

Supplemental Table 1. Number of VTE and total number of participants according to clinical categories of eGFR and ACR. ..3

Supplemental Figure 1. Pooled hazard ratios and 95% CIs for venous thromboembolism according to spline estimated glomerular filtration rate (eGFR) by CKD-EPI equation versus MDRD equation. ..4

Supplemental Figure 2. Ratio of the hazard ratios for venous thromboembolism according to spline estimated glomerular filtration rate (eGFR) in the sample with measured albumin to creatinine ratio (ACR) versus the total sample with imputed log-ACR in the HUNT2 study ..5

Supplemental Figure 3. Pooled hazard ratios and 95% CIs for venous thromboembolism according to spline estimated glomerular filtration rate (eGFR) and albumin-to-creatinine ratio (ACR). ..6

Supplemental Figure 4. Meta-regression of adjusted hazard ratios for venous thromboembolism in subjects with chronic kidney disease versus subjects without chronic kidney disease on mean body mass index (BMI). ..7

Supplemental Figure 5. Pooled hazard ratios and 95% CIs for idiopathic versus provoked venous thromboembolism (VTE) according to spline estimated glomerular filtration rate (eGFR) and albumin-to-creatinine ratio (ACR). ..8

Supplemental Figure 6. Overall and study-specific hazard ratios for pulmonary embolism, and deep-vein thrombosis in CKD subjects as compared with subjects without CKD..9
Supplemental Table 1. Number of VTE and total number of participants according to clinical categories of eGFR and ACR.

<table>
<thead>
<tr>
<th>ACR</th>
<th>30-300 mg/g</th>
<th>>300 mg/g</th>
</tr>
</thead>
<tbody>
<tr>
<td><30 mg/g</td>
<td>27/1,060</td>
<td>3/110</td>
</tr>
<tr>
<td>(<3.3 mg/mmol)</td>
<td>235/16,058</td>
<td>27/1,060</td>
</tr>
<tr>
<td>30-300 mg/g</td>
<td>52/1,824</td>
<td>17/247</td>
</tr>
<tr>
<td>(3.4-33.8 mg/mmol)</td>
<td>368/16,764</td>
<td>52/1,824</td>
</tr>
<tr>
<td>>300 mg/g</td>
<td>12/452</td>
<td>3/114</td>
</tr>
<tr>
<td>(≥33.9 mg/mmol)</td>
<td>44/1,783</td>
<td>12/452</td>
</tr>
<tr>
<td>N VTE/Participants</td>
<td>N VTE/Participants</td>
<td>N VTE/Participants</td>
</tr>
</tbody>
</table>

eGFR denotes estimated glomerular filtration rate, ACR, albumin to creatinine ratio; N VTE, number of venous thromboembolism and N total, total number of participants. From the HUNT2 study only the sample with measured ACR was included.
Supplemental Figure 1. Pooled hazard ratios and 95% CIs for venous thromboembolism according to spline estimated glomerular filtration rate (eGFR) by CKD-EPI equation versus MDRD equation.

Hazard ratios and 95% CIs according to CKD-EPI equation based eGFR (black line with cyan shaded area) and MDRD equation based eGFR (redline with error bars). Hazard ratios are adjusted for age, sex, body mass index, history of cardiovascular disease, hypertension, diabetes, smoking, total cholesterol and log-ACR. The reference (diamond) was eGFR 100 mL/min/1.73 m². The black and red circles denote statistical significance of the hazard ratios according to CKD-EPI and MDRD equations based eGFR, respectively.
Supplemental Figure 2. Ratio of the hazard ratios for venous thromboembolism according to spline estimated glomerular filtration rate (eGFR) in the sample with measured albumin to creatinine ratio (ACR) versus the total sample with imputed log-ACR in the HUNT2 study.

To evaluate the effect of imputed log-ACR on the eGFR-VTE risk association versus the impact of measured log-ACR, eGFR associated hazard ratios of model 1 were divided by the eGFR related hazard ratios of model 2 in the measured ACR sample (cyan line) and the total sample with imputed log-ACR (gray dashed line) in the HUNT2 study.

Model 1: eGFR splines, age, sex, body mass index, history of cardiovascular disease, hypertension, diabetes, smoking and total cholesterol.
Model 2: variables from model 1+log-ACR.
Supplemental Figure 3. Pooled hazard ratios and 95% CIs for venous thromboembolism according to spline estimated glomerular filtration rate (eGFR) and albumin-to-creatinine ratio (ACR).

Results are from fixed-effect (strata) Cox proportional hazard regression. Results of random-effect (shared frailty) Cox proportional hazard regression are presented in Figure 2 in the main paper. Hazard ratios and 95% CIs (error bars) according to eGFR (A) and ACR (B) adjusted for each other, age, sex, body mass index, history of cardiovascular disease, hypertension, diabetes, smoking, and total cholesterol. The reference (diamond) was eGFR 100 mL/min/1.73 m² and ACR 5 mg/g (0.6 mg/mmol), respectively. Red dots denote statistical significance. To convert ACR to mg/mmol multiply by 0.113.
Supplemental Figure 4. Meta-regression of adjusted hazard ratios for venous thromboembolism in subjects with chronic kidney disease versus subjects without chronic kidney disease on mean body mass index (BMI).

Hazard ratios are adjusted for age, sex, body mass index, history of cardiovascular disease, hypertension, diabetes, smoking and total cholesterol.
Supplemental Figure 5. Pooled hazard ratios and 95% CIs for idiopathic versus provoked venous thromboembolism (VTE) according to spline estimated glomerular filtration rate (eGFR) and albumin-to-creatinine ratio (ACR).

Hazard ratios and 95% CIs according to eGFR (A) and ACR (B) adjusted for each other, age, sex, body mass index, history of cardiovascular disease, hypertension, diabetes, smoking, and total cholesterol. Hazard ratios for provoked and idiopathic VTE are depicted by black line with cyan-shaded area and redline with error bars, respectively. The reference (diamond) was eGFR 100 mL/min/1.73 m² and ACR 5 mg/g (0.6 mg/mmol), respectively. The black and red circles denote statistical significance for provoked and unprovoked VTE, respectively. To convert ACR in mg/g to mg/mmol multiply by 0.113.
Supplemental Figure 6. Overall and study-specific hazard ratios for pulmonary embolism, and deep-vein thrombosis in CKD subjects as compared with subjects without CKD.

Hazard ratios are adjusted for age, sex, body mass index, history of cardiovascular disease, hypertension, diabetes, smoking, and total cholesterol.