Latency of ECG Displays of Hospital Telemetry Systems
A Science Advisory From the American Heart Association

Endorsed by the American College of Cardiology Foundation and Heart Rhythm Society

Mintu P. Turakhia, MD, MAS, Chair; N.A. Mark Estes III, MD, FAHA; Barbara J. Drew, RN, PhD, FAHA;
Christopher B. Granger, MD, FAHA; Paul J. Wang, MD; Bradley P. Knight, MD;
Richard L. Page, MD, FAHA; on behalf of the Electrocardiography and Arrhythmias Committee of the American Heart Association Council on Clinical Cardiology and Council on Cardiovascular Nursing

Recent observations indicate that some hospital telemetry systems used for monitoring of patient heart rhythm have clinically significant latency, or delay between the real-time status of the patient and the ECG information displayed on the patient monitor. If these systems are used for clinical care that requires instantaneous monitoring, then patient safety may be compromised. The purpose of this advisory is to inform healthcare providers about this potential problem, clarify the intended use of the systems, detail measures to reduce risk, and recommend steps to manufacturers and stakeholders to minimize this problem in current and future telemetry systems.

Background

Wireless telemetry electrocardiographic monitoring is a cornerstone of hospital management for patients with cardiovascular conditions or at risk for cardiovascular conditions. Since the first transmission of an ECG by telephone wire by Willem Einthoven was reported in 1906, advances in signal processing and communications have led to rapid innovation in wireless communication for telemetry systems in acute care settings. The first wireless systems introduced in the 1970s were fairly simple in design. They transmitted analog telemetry signals using 1 dedicated frequency channel for each patient. In the 1980s, networked telemetry systems led to the creation of centralized telemetry viewing stations in intensive and acute care units. Starting in the 1990s, digital telemetry systems allowed for computerized signal recording, storage, and retrieval. As computing power increased, the networking capability of these systems increased, allowing for monitoring of electrocardiographic, hemodynamic, and other clinical data from multiple patients on a single networked system. By 2000, wireless communication in the hospital extended beyond telemetry systems, and the US Federal Communications Commission established a protected range of frequencies for wireless medical devices to minimize electromagnetic interference from other in-band radiofrequency sources. Today, networked wireless telemetry systems are widely used in United States acute care hospitals, and international use continues to rise.

Telemetry Delay

Recent observations by healthcare providers indicate that some hospital telemetry systems used for monitoring of patients’ heart rhythm, hemodynamic parameters, and oxygen saturation may exhibit clinically significant latency, or delay between the real-time status of the patient and the information displayed on the patient monitor. The problem has been reported with wireless networked systems. Unlike older hard-wired systems, wireless networked systems do not transmit directly from the patient’s ECG leads to the viewing screen in the patient’s room. These digital systems wirelessly transmit data from the patient telemetry transmitter to a central monitor station or network server. The data are then processed on the server and sent back to the

The American Heart Association makes every effort to avoid any actual or potential conflicts of interest that may arise as a result of an outside relationship or a personal, professional, or business interest of a member of the writing panel. Specifically, all members of the writing group are required to complete and submit a Disclosure Questionnaire showing all such relationships that might be perceived as real or potential conflicts of interest.

This statement was approved by the American Heart Association Science Advisory and Coordinating Committee on May 11, 2012. A copy of the document is available at http://my.americanheart.org/statements by selecting either the “By Topic” link or the “By Publication Date” link. To purchase additional reprints, call 843-216-2533 or e-mail kelle.ramsay@wolterskluwer.com.

Expert peer review of AHA Scientific Statements is conducted by the AHA Office of Science Operations. For more on AHA statements and guidelines development, visit http://my.americanheart.org/statements and select the “Policies and Development” link.

Permissions: Multiple copies, modification, alteration, enhancement, and/or distribution of this document are not permitted without the express permission of the American Heart Association. Instructions for obtaining permission are located at http://www.heart.org/HEARTORG/General/Copyright-Permission-Guidelines_UCM_300404_Article.jsp. A link to the “Copyright Permissions Request Form” appears on the right side of the page.

(Circulation. 2012;126:1665-1669.)

© 2012 American Heart Association, Inc.

Circulation is available at http://circ.ahajournals.org

DOI: 10.1161/CIR.0b013e31826ae459
monitor or display at the patient’s bedside via a wired network (Figure 1).

Delays of up to 5 seconds of continuous ECG data have been reported.11 For pulse oximetry waveforms, delays of 8 seconds and loss of synchronization to the displayed ECG waveform have been reported.12 Although this may appear to be clinically insignificant, there are circumstances when several seconds from the time the rhythm is experienced by the patient to the time the rhythm is displayed on the bedside monitor may have important clinical consequences (Table 1). Healthcare providers may not be aware of these delays. Specific situations are described below.

Systems Affected

Any telemetry system that relies on wireless transmission and a data network is potentially vulnerable to these delays, because transmission errors are inherent to wireless or network communication. The amount of delay observed in a patient or across the system may vary depending on wireless interference, network load, and server processing time or an interaction of these factors. Even if a telemetry device is within its design specification, external factors such as network traffic could result in latency. The performance of the same system could be different in different locations or wards. Delays can therefore be unpredictable in timing, frequency, and duration. Moreover, there has been no systematic evaluation of approved or commercially available wireless monitoring systems with respect to telemetry delays. Newer wireless modalities and network architectures for personal and wide-area network ECG transmission may also exhibit these delays.13

Intended Use and Clinical Consequences

Wireless hospital telemetry systems are used for continuous ward monitoring of cardiac arrhythmias in appropriate patients. They are designed to monitor physiological parameters over a distance and transmit information and alerts to a

Table 1. Clinical Situations in Which Instantaneous Monitoring is Recommended

<table>
<thead>
<tr>
<th>Emergency situations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resuscitation</td>
</tr>
<tr>
<td>Hospital “codes”</td>
</tr>
<tr>
<td>Defibrillation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assessment of pacemaker function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interrogation or reprogramming of implantable pacemakers, defibrillators, and cardiac resynchronization devices</td>
</tr>
<tr>
<td>Assessment or reprogramming of temporary pacing devices</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Termination or cardioversion of arrhythmias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical cardioversion</td>
</tr>
<tr>
<td>Administration of intravenous adenosine or other short-acting antiarrhythmic drugs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bedside procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion of central venous or pulmonary artery catheters from jugular or subclavian approach</td>
</tr>
<tr>
<td>Insertion of transvenous pacemakers</td>
</tr>
<tr>
<td>Carotid sinus massage</td>
</tr>
</tbody>
</table>
central monitoring station in near real-time (“near-time”). These systems were neither designed nor intended for instantaneous (“real-time”) assessment of rhythm disturbances. When they are used for instantaneous monitoring, the delay that can occur between the patient’s real-time status and the ECG or rhythm displayed on monitor could result in an incorrect patient assessment, which could lead to an inappropriate treatment. For example, in 1 case of electric cardioversion reported to the Food and Drug Administration, a physician prepared to apply an unnecessary second cardioversion shock to a patient after the first shock appeared to fail to cardiovert atrial flutter. After delivering the first synchronized shock, the physician observed continued atrial flutter on the wireless telemetry display. The physician therefore concluded that the shock failed to convert the rhythm and prepared to deliver a second shock. Approximately 5 seconds after the first shock, the bedside telemetry monitor displayed the shock artifact and conversion to sinus rhythm from the original shock. Although no harm was caused, the situation could have been avoided if a hard-wired ECG monitor on the external defibrillator was used by the clinician to confirm the rhythm, rather than the bedside telemetry monitor.

Other situations in which wireless telemetry systems may not be suitable and may result in harm to the patient include pacemaker or defibrillator testing, insertion of temporary pacing electrodes, cardiac resuscitation, and acute treatment of hemodynamically significant or unstable arrhythmias (Table 1). In these situations, failure to instantaneously ascertain the rhythm could result in inappropriate therapies or adverse patient outcomes such as syncope. For example, a patient with no underlying rhythm and a functioning pacemaker could experience prolonged asystole or syncope during pacemaker threshold testing if there is a significant delay in the display and recognition of loss of capture.

Recommendations for Hospitals and Care Facilities

Medical facilities with wireless telemetry systems should contact the manufacturers of their telemetry systems to determine the extent, if any, and severity of delays and to obtain product-specific recommendations. Facilities should educate clinical personnel with patient care responsibility (nurses, physicians, allied health professionals, trainees) about these delays. They should be instructed to avoid reliance on these systems for instantaneous rhythm assessment. Protocols or guidelines for appropriate use of hard-wired real-time monitoring may improve adherence to these recommendations. A warning label affixed to the telemetry monitor that describes the problem and outlines recommendations should be clearly understood by purchasers or healthcare providers. In addition, for cardioversion or defibrillation, it is advisable to connect separate monitoring leads directly to the monitor of the external defibrillator to ensure instantaneous assessment. When doing so, disconnection from the wireless telemetry system is not required as long as the hard-wired monitor is used for clinical assessment and care. For pacemaker or defibrillator testing or reprogramming, ECG leads should be connected directly to a monitor that displays the rhythm without delay, such as a pacemaker/defibrillator programmer. These same considerations apply to insertion of temporary pacing electrodes and central venous catheters, because arrhythmias can be provoked by cardiac instrumentation.

Recommendations for Industry

Although telemetry system manufacturers recognize the problems of latency and data dropout, these issues may not be clearly understood by purchasers or healthcare providers. In the above reported clinical example, the manufacturer responded by referring the reporting clinician to a page in the
system’s technical instruction manual (Richard L. Page, MD, personal email communication, 2011). We recommend that manufacturers communicate transparently and educate healthcare personnel about the delays that may be observed in their monitoring systems. Manufacturers should make it clear in all promotional materials and product specifications that use of these systems may result in latency. Although some manufacturers do appropriately differentiate real-time or instantaneous telemetry from near-time or near real-time use, the clinical implications of these differences should also be articulated during training and in-servicing. We also recommend that the regulatory standards of delay in display of the patient’s cardiac rhythm and other hemodynamic and physiological parameters be reconsidered by industry and regulatory bodies, with guidance from clinicians, in an effort to reduce these delays to as short a time as is technically feasible. Specifically, regulatory standards should not only address individual component delays but also articulate the total acceptable delay from the time the rhythm occurs to the time it is displayed, based on intended use. We also recommend that a consistent regulatory definition of near-time and real-time be used.

Conclusions

Wireless hospital telemetry systems may exhibit clinically significant delays in displaying continuous ECG or telemetry data on the bedside patient monitor. If these systems are used in situations in which instantaneous monitoring is preferable or necessary, then patient safety may be compromised. We recommend that care providers use hard-wired telemetry systems in these clinical situations. We also recommend that hospitals and care systems make an effort to inform care providers and consider implementation of guidelines or protocols for hard-wired or instantaneous monitoring. Manufacturers should clearly declare latency, clarify intended use of their technology and options for real-time monitoring, and collaborate with regulatory agencies and clinicians to reduce these delays in the interest of patient safety.

Acknowledgments

We thank the members of the Center for Devices and Radiological Health at the Food and Drug Administration for their technical assistance. The contents of the article do not necessarily reflect the policies, practices, positions, or opinions of the Center for Devices and Radiological Health at the Food and Drug Administration. We thank Donald Hoang for his assistance in manuscript preparation.
Reviewers' Disclosures

<table>
<thead>
<tr>
<th>Reviewer</th>
<th>Employment</th>
<th>Research Grant</th>
<th>Other Research Support</th>
<th>Speakers' Bureau/ Honoraria</th>
<th>Expert Witness</th>
<th>Ownership Interest</th>
<th>Consultant/ Advisory Board</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cesar Alberte-Lista</td>
<td>Northwest Permanent</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Thomas Deering</td>
<td>Peds Heart Institute</td>
<td>Biosense*; Medtronic*; Sorin*; St. Jude Medical*; Zoll*</td>
<td>None</td>
<td>Medtronic*; St. Jude Medical*</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Andrew E. Epstein</td>
<td>University of Pennsylvania, Philadelphia, VA Medical Center</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Paul Kligfield</td>
<td>Cornell University</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Richard Lange</td>
<td>University of Texas</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Mark H. Schoenfeld</td>
<td>Yale University, Hospital of Saint Raphael</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>William G. Stevenson</td>
<td>Brigham and Women's Hospital</td>
<td>None</td>
<td>None</td>
<td>Mortara Instrument*; GE Healthcare*; Cardiac Science*</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

This table represents the relationships of reviewers that may be perceived as actual or reasonably perceived conflicts of interest as reported on the Disclosure Questionnaire, which all reviewers are required to complete and submit. A relationship is considered to be “significant” if (1) the person receives $10,000 or more during any 12-month period, or 5% or more of the person’s gross income; or (2) the person owns 5% or more of the voting stock or share of the entity, or owns $10,000 or more of the fair market value of the entity. A relationship is considered to be “modest” if it is less than “significant” under the preceding definition. *Modest.

References

KEY WORDS: AHA Scientific Statements ❚ cardiac monitor ❚ hospital network ❚ latency ❚ science advisory ❚ telemetry ❚ wireless telemetry
Latency of ECG Displays of Hospital Telemetry Systems: A Science Advisory From the American Heart Association
Mintu P. Turakhia, N.A. Mark Estes III, Barbara J. Drew, Christopher B. Granger, Paul J. Wang, Bradley P. Knight and Richard L. Page

Circulation. 2012;126:1665-1669; originally published online August 27, 2012; doi: 10.1161/CIR.0b013e31826ae459
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2012 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/126/13/1665

An erratum has been published regarding this article. Please see the attached page for:
/content/126/13/e214.full.pdf

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Circulation* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Circulation* is online at:
http://circ.ahajournals.org//subscriptions/
In the article by Turakhia et al, “Latency of ECG Displays of Hospital Telemetry Systems: A Science Advisory From the American Heart Association,” which published ahead of print on August 27, 2012, and appeared in the September 25, 2012, issue of the journal (Circulation. 2012;126:1665–1669), a correction was needed:

On page 1665, the endorsement line read, “Endorsed by the American College of Cardiology Foundation.” It has been changed to read, “Endorsed by the American College of Cardiology Foundation and Heart Rhythm Society.”

This correction has been made to the current online version of the article, which is available at http://circ.ahajournals.org/content/126/13/1665.