Exercise Physiology

Cardiovascular Risk of High- Versus Moderate-Intensity Aerobic Exercise in Coronary Heart Disease Patients

Øivind Rognmo, PhD; Trine Moholdt, PhD; Hilde Bakken, BSc; Torstein Hole, MD, PhD; Per Mølstad, MD, PhD; Nils Erling Myhr, BSc; Jostein Grimsmo, MD, PhD; Ulrik Wisløff, PhD

Background—Exercise performed at higher relative intensities has been found to elicit a greater increase in aerobic capacity and greater cardioprotective effects than exercise at moderate intensities. An inverse association has also been detected between the relative intensity of physical activity and the risk of developing coronary heart disease, independent of the total volume of physical activity. Despite that higher levels of physical activity are effective in reducing cardiovascular events, it is also advocated that vigorous exercise could acutely and transiently increase the risk of sudden cardiac death and myocardial infarction in susceptible persons. This issue may affect cardiac rehabilitation.

Methods and Results—We examined the risk of cardiovascular events during organized high-intensity interval exercise training and moderate-intensity training among 4846 patients with coronary heart disease in 3 Norwegian cardiac rehabilitation centers. In a total of 175 820 exercise training hours during which all patients performed both types of training, we found 1 fatal cardiac arrest during moderate-intensity exercise (129 456 exercise hours) and 2 nonfatal cardiac arrests during high-intensity interval exercise (46 364 exercise hours). There were no myocardial infarctions in the data material. Because the number of high-intensity training hours was 36% of the number of moderate-intensity hours, the rates of complications to the number of patient-exercise hours were 1 per 129 456 hours of moderate-intensity exercise and 1 per 23 182 hours of high-intensity exercise.

Conclusions—The results of the current study indicate that the risk of a cardiovascular event is low after both high-intensity exercise and moderate-intensity exercise in a cardiovascular rehabilitation setting. Considering the significant cardiovascular adaptations associated with high-intensity exercise, such exercise should be considered among patients with coronary heart disease. (Circulation. 2012;126:1436-1440.)

Key Words: coronary disease ■ death ■ sudden ■ exercise ■ heart arrest

High levels of physical activity and aerobic capacity are associated with low risk of cardiovascular disease and mortality.1–3 Aerobic exercise is therefore strongly recommended both for healthy individuals and for patients with cardiovascular disease to improve cardiovascular health and reduce risk of premature mortality.4,5 If the total energy expenditure of exercise is held constant, exercise performed at higher relative intensities has been found to elicit a greater increase in aerobic capacity6 and greater cardioprotective effects than exercise at moderate intensities.7,8 An inverse association has also been detected between the relative intensity of physical activity and the risk of developing coronary heart disease, independent of the total volume of physical activity.9,10 Indeed, when exercise is performed at high intensity, as little as a single weekly bout of exercise seems to be sufficient for reducing the risk of cardiovascular death in a large unselected population,11 and in subjects with coronary heart disease (CHD), as well.12

Received March 20, 2012; accepted July 6, 2012.

From the K.G. Jebsen Center of Exercise In Medicine, Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim (ØR., T.M., U.W.); Røros Rehabilitation Center, Røros (H.B.); Medical Department, Ålesund Hospital, Ålesund (T.H.); and Feiring Heart Clinic, Feiring, Norway (P.M., N.E.M., J.G.).

Correspondence to Øivind Rognmo, PhD, Det Medisinske Fakultet, NTNU, Institutt for Sirkulasjon og Bildediagnostikk, Postboks 8905, Medisinsk Teknisk Forskningscenter, 7491 Trondheim, Norway. E-mail oivind.rognmo@ntnu.no

© 2012 American Heart Association, Inc.

Circulation is available at http://circ.ahajournals.org DOI: 10.1161/CIRCULATIONAHA.112.123117
training programs should be evaluated, however, before it is used in large, unselected groups of CHD patients. The aim of this study was therefore to assess if there is an increased risk of cardiovascular events or death during, or immediately after, exercising with high in comparison with moderate intensity in a large group of CHD patients undergoing cardiac rehabilitation.

Methods

Subjects
We included 4846 patients (male, 70%; female, 30%) who were referred to an exercise-based cardiac rehabilitation program at 3 different rehabilitation units in Norway between 2004 and 2011. Mean age was 57.8 years. All CHD patients taking part in this survey were enrolled at the rehabilitation units, and the total number of high- and moderate-intensity exercise sessions was registered. The patients were referred to the rehabilitation units by their general practitioner or hospital cardiologist, and their main admission diagnoses included myocardial infarction (7%), angioplasty (40%), coronary surgery (35%), valve surgery (11%), and heart failure (7%).

Exercise Prescription
Since 2004, we have published several randomized controlled trials with a focus on improving physical capacity after high- versus moderate-intensity exercise in different groups of CHD patients and in individuals at high risk of developing CHD.17–21 The high-intensity interval training model from these studies has been adopted by several Norwegian cardiac rehabilitation centers and is now a part of their standard rehabilitation procedure. In the current survey, all high-intensity exercise training sessions were performed as interval training with the aim to reach an intensity of 85% to 95% of HRpeak because this mix of work and rest periods allows for more intense exercise to be tolerated before exhaustion. The moderate-intensity exercise sessions were performed at ~60% to 70% of HRpeak, and were the typically used intensity involving cardiac patients.22 All exercise sessions lasted ~1 hour.

Organization of Exercise of at the Rehabilitation Units
The 3 Norwegian rehabilitation units taking part in this survey were located at Ålesund Hospital, Feiring Heart Clinic, and Røros Rehabilitation Center. The patients underwent a medical examination before starting rehabilitation. All rehabilitation centers tested patients for VO2peak and HRpeak with full-lead ECG before the rehabilitation program for safety reasons, and the results from these tests determined the individual exercise intensity zones for the patients. Both high- and moderate-intensity exercise sessions were conducted throughout a rehabilitation period containing, on average, 37 exercise sessions. All patients in this study participated in the standard rehabilitation given at the institutions, which consisted of separate sessions of high- versus moderate-intensity exercise. The adverse events during or after the exercise sessions were counted and related to the intensity of exercise. The training modality typically consisted of treadmill exercise, but aerobic group training, biking sessions, and outdoor walking and cross-country skiing were also performed.

Execution of High- and Moderate-Intensity Exercise
The high-intensity interval training sessions were performed as described earlier22 and typically consisted of warm-up for a minimum of 10 minutes at 60% to 70% of HRpeak before working four 4-minute intervals at 85% to 95% of HRpeak. Each interval was separated by active pauses at 50% to 70% of HRpeak. The training session was terminated by a cool-down period at 50% to 70% of HRpeak. Moderate exercise was simply the intensity one could carry on for a prolonged time period, and the subject should be able to converse in full sentences. During the moderate-exercise sessions, the patients worked continuously, with intensity ≤70% of HRpeak. The subjects were heart rate monitors in some exercise sessions to ensure that proper intensity was performed according to the initial HRpeak test. Furthermore, high intensity was additionally controlled either by the Borg rating of perceived exertion (on a scale of 6–20),23 and by instructing the subjects to exercise at an intensity that brought them to breathe heavily, causing difficulties to speak more than a couple of words. When heart rate monitors were not used, exercise sessions were categorized as moderate-intensity exercise when the perceived exertion was at ~12 to 14 on the Borg 6 to 20 scale,23 and as high intensity when the perceived exertion was >15 to 17 at the high-intensity parts of the session.

Adverse Events
An adverse event related to exercise training was defined as cardiac arrest or acute myocardial infarction during exercise, or within the first hour afterward. Only events occurring during and after supervised exercise training were included. The emergency response to cardiac arrests was immediate use of defibrillator, and any suspicion of complications during the rehabilitation stay was reported to the individual unit’s responsible physician for diagnostic determination.

Statistical Analysis
Before the collection and interpretation of data, the study was assessed by the regional committee for medical research ethics. Estimation of sample size and power were done by STATA, version 12.

Results
Among the 4846 patients, a total of 175 820 exercise sessions lasting ~1 hour were recorded, distributed on 129 456 hours of moderate-intensity exercise and 46 364 hours of high-intensity exercise. Overall, the incidences included 1 cardiac arrest with fatal outcome during moderate-intensity exercise and 2 nonfatal cardiac arrests during high-intensity exercise (Table 1). There were no myocardial infarctions in the data material. During their stay at the rehabilitation centers, the patients performed an average of 36% high-intensity sessions in comparison with the number of moderate-intensity sessions. Thus, when relating the number of adverse events to the number of patient-exercise hours, the event rates were 1 per 129 456 hours of moderate-intensity exercise and 1 per 23 182 hours of high-intensity exercise. These results indicate that both types of exercise training are associated with low event rates. The types of adverse events related to exercise are presented in Table 2.
Discussion

Our study is the first to examine the risk of adverse events of combined organized high-intensity interval exercise training and moderate-intensity training in CHD patients. We found 1 fatal cardiac arrest during moderate-intensity exercise and 2 nonfatal cardiac arrests during high-intensity interval exercise. Because the number of high-intensity training sessions was 36% of the number of moderate-intensity sessions, the rates of complications to the number of patient-exercise hours were 1 per 129,456 sessions of moderate-intensity exercise and 1 per 23,182 hours of high-intensity exercise. The absolute event rates were very low after exposure to both types of exercise, and the calculated power to detect such a minor difference was only 23%. A sufficiently powered study with an adequate sample size (power of 0.80 and significance level 0.05) conducted in a similar way to ours would have required close to 21,000 patients to detect differences between groups, and a randomized study with 1:1 randomization would have had to include 10,264 patients in each group. Another challenge is to assess the severity of a death in comparison with a successful resuscitation of 2 cardiac arrests when comparing the risks of the 2 intensity modes. The low event rate after exposure to both types of exercise training may thus be the strongest interpretation of this study. Because of the more extensive use of high-intensity exercise training in cardiac rehabilitation worldwide, we believe that our study provides highly demanded knowledge about the risk of such exercise for secondary cardiac rehabilitation.

At least 5 reports have previously estimated the incidence of exercise-related cardiovascular complications from exercise-based cardiac rehabilitation programs among persons with documented CHD. An initial survey involving 30 cardiac rehabilitation programs in Canada and the United States detected 1 nonfatal and 1 fatal cardiovascular complication per 34,673 and 116,402 hours, respectively. Contemporary exercise-based cardiac rehabilitation programs appear to have a lower complication rate, because an analysis of 4 reports estimated 1 cardiac arrest per 116,406 patient-hours, 1 myocardial infarction per 219,970 patient-hours, 1 fatality per 752,365 patient-hours, and 1 major complication per 81,670 patient-hours of participation. This low fatality rate applies to medically supervised programs that are run by personnel trained to handle emergencies. It is claimed that the death rate would be 6-fold higher without the successful management of cardiac arrest provided by such specialists. Furthermore, CHD patients are normally medically evaluated before participation in cardiac rehabilitation programs, which typically decreases the event rates even more, supporting the use of supervised exercise-based cardiac rehabilitation programs for patients after cardiac events. In our study, all centers conducted cardiopulmonary testing including 12-lead ECG before rehabilitation. Exclusion as a result of the stress test on admission was very rare, however. The main reason for exclusion was recurrent ischemia by ECG, chest pain, and low exercise capacity, which resulted in a new examination to decide whether rehabilitation could be initiated. The problem with exclusion of those with the highest risk was thus low in our data set.

We have previously shown that exercise training reduces the risk of cardiovascular and all-cause mortality in both men and women with established CHD, particularly when exercising at moderate or high intensity in comparison with low exercise intensity. However, previous reports also indicate that vigorous exertion increases the likelihood of acute myocardial infarction and sudden cardiac death, especially in sedentary persons with occult or manifested CHD performing irregular vigorous physical activity. Former studies investigating risk of vigorous exertion in general have usually defined strenuous exertion as a metabolic equivalent of 6 or higher. By using an absolute level of 6 metabolic equivalents, it is hard to assess the relative level of exertion, and an effort close to maximal for 1 individual could be very light for another. Because the myocardial stress among patients is more related to the relative oxygen uptake, it seems more meaningful to assess risk according to relative levels of exertion. All patients in our study exercised according to their relative intensity level determined by individual heart rates and the Borg rating of perceived exertion, which makes the true level of exertion and the associated risk easier to compare.

Long-term aerobic exercise conducted at higher intensities is associated with a reduced risk of future cardiovascular disease in comparison with long-term aerobic exercise conducted at lower intensities, suggesting that the former may confer greater cardioprotective benefits. Despite that randomized controlled trials by now have been underpowered to prove this relationship, Swain and Franklin have addressed this issue in an extensive review with the use of epidemiological studies and smaller clinical trials. They included both epidemiological studies that evaluated the benefits of physical activity of varying intensity levels and clinical trials that trained individuals at different exercise intensities, while controlling for the total energy expenditure. The epidemiological studies consistently found a greater reduction in risk of cardiovascular disease with high- (>6 metabolic equivalents) in comparison with moderate-intensity physical activity and reported more favorable risk profiles for individuals engaged in vigorous, as opposed to moderate-intensity physical activity. Clinical trials generally reported greater improvements after high- (>60% VO2peak) in comparison with moderate-intensity exercise for diastolic blood pressure, glucose control, and aerobic capacity, but reported no intensity effect on improvements in systolic blood pressure, lipid

Table 2. Major Cardiovascular Complications During Medically Supervised Exercise in Cardiac Rehabilitation

<table>
<thead>
<tr>
<th>Patient</th>
<th>Sex (♂/♀)</th>
<th>Age, y</th>
<th>Rehabilitation Center</th>
<th>Event (Year)</th>
<th>Exercise-Related Complication</th>
<th>Exercise Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>♂</td>
<td>60</td>
<td>Feiring Clinic</td>
<td>2007</td>
<td>Cardiac arrest, F</td>
<td>Moderate</td>
</tr>
<tr>
<td>2</td>
<td>♂</td>
<td>58</td>
<td>Feiring Clinic</td>
<td>2008</td>
<td>Cardiac arrest, NF</td>
<td>High</td>
</tr>
<tr>
<td>3</td>
<td>♂</td>
<td>61</td>
<td>Ålesund</td>
<td>2010</td>
<td>Cardiac arrest, NF</td>
<td>High</td>
</tr>
</tbody>
</table>

♂ indicates male; ♀, female; F, fatal; and NF, nonfatal.
profile, or body fat loss. The review concluded that, if the total energy expenditure of exercise is held constant, exercise performed at a high intensity appears to convey greater cardio-protective benefits than exercise performed at a moderate intensity.

It appears that the long-term benefits of moderate physical activity even in those with risk for CHD seem to outweigh the risks. Our research group has, during the past decade, conducted randomized controlled trials among patients with established heart disease such as CHD and post–myocardial infarction heart failure, in which we have demonstrated that the beneficial cardiovascular effects of aerobic exercise training are intensity dependent, with superiority of high aerobic intensity interval training in comparison with moderate-intensity training. Common for these studies is that, when volume of exercise is controlled for, interval training at 85% to 95% of HRpeak has been even more effective for improving VO2peak than exercising at 60% to 70% of HRpeak. There thus seems to be a true dose-response relationship regarding exercise intensity for improving VO2peak, in which high-intensity exercise training confers about twice the benefit of moderate-intensity exercise training. This may be of importance because VO2peak constitutes an important prognostic parameter for cardiovascular morbidity and mortality. High-intensity interval training may also be required for an effect to occur on left ventricular structure and function. We have previously identified several different patterns of response to programs that use high- or moderate-intensity exercise in patients with established heart disease. In patients with CHD and post–myocardial infarction heart failure, a reversal of the pathological remodeling and systolic and diastolic improvements were observed only after high-intensity exercise training. In these randomized studies, both strain rate and tissue imaging echocardiographic evaluation of heart function has suggested that high-, not moderate-intensity exercise, improved parameters related to both systolic contraction and diastolic relaxation rates. In fact, 36 sessions of high-intensity interval exercise training in patients with heart failure reduced left ventricular dilatation and mass, increased ejection fraction and systolic and diastolic blood flow, and several systolic and diastolic motion parameters, as well.

 Favorable intensity-dependent effects of exercise training have also been observed in individuals who have not yet developed cardiovascular disease, but are living with an increased risk of developing such disease because of the presence of risk factors merging into the metabolic syndrome.

The results of the current study indicate that the risk of a cardiovascular event is low after both high-intensity exercise and moderate-intensity exercise in a cardiovascular rehabilitation setting. When considering earlier indications that adaptation in exercise capacity and cardiac function show a dose-response relationship, or display an intensity threshold for adaptation to occur, high-intensity interval training should be considered in future rehabilitation programs among CHD patients.

Limitations

Because of the low number of casualties the power of the study to detect such a minor difference was only 23%, and a type II error can thus not be ruled out. The absolute event rates, however, were very low after exposure to both types of exercise training, and this fact may thus be the strongest interpretation of the study. We encourage continuing collection of these types of data to evaluate the safety aspect of high-intensity exercise in future cardiac rehabilitation.

Acknowledgments

We thank the rehabilitation units at Ålesund Hospital, Feiring Heart Clinic, and Reoros Rehabilitation Center for providing the data material making up this study.

Sources of Funding

The study was supported by grants from the K.G. Jebsen Foundation, The Research Council of Norway, and The Norwegian Council of Cardiovascular Disease.

Disclosures

None.

References

American Heart Association Exercise, Cardiac Rehabilitation, and Prevention Committee, the Council on Clinical Cardiology; the Councils on Cardiovascular Nursing, Epidemiology and Prevention, and Nutrition, Physical Activity, and Metabolism; and the American Association of Cardiovascular and Pulmonary Rehabilitation. Circulation. 2007;115:2675–2682.

CLINICAL PERSPECTIVE
High level of physical fitness and regular exercise are closely related to cardiovascular health and reduced risk of cardiovascular disease and mortality. Aerobic exercise is therefore strongly recommended for patients with coronary heart disease. Exercise performed at higher relative intensities than aerobic capacity has been found to elicit greater increase in aerobic capacity and greater cardioprotective effects than exercise at moderate intensities. Despite that higher levels of physical activity are found to reduce cardiovascular events, it is advocated that vigorous activity could also acutely and transiently increase the risk of sudden cardiac events in susceptible persons. We therefore studied the risk of cardiovascular events during organized high-intensity interval exercise training and moderate-intensity training among 4846 coronary heart disease patients in 4 Norwegian cardiac rehabilitation centers. The event rate after patients were exposed to both types of exercise training was low. In a total of 175 820 exercise training hours where all patient performed both type of training, we found 1 fatal cardiac arrest during moderate-intensity exercise (129 456 exercise hours) and 2 nonfatal cardiac arrests during high-intensity interval exercise (46 364 exercise hours). There were no myocardial infarctions in the data material. Because the number of high-intensity training hours was 36% of the number of moderate-intensity training hours, the rates of complications to the number of patient-exercise hours were 1 per 129 456 of moderate-intensity exercise and 1 per 23 182 of high-intensity exercise. We believe that our study provides needed knowledge about the risk of high-intensity exercise training for patients undergoing secondary cardiac rehabilitation.
Cardiovascular Risk of High- Versus Moderate-Intensity Aerobic Exercise in Coronary Heart Disease Patients

Øivind Rognmo, Trine Moholdt, Hilde Bakken, Torstein Hole, Per Mølstad, Nils Erling Myhr, Jostein Grimsmo and Ulrik Wisløff

Circulation. 2012;126:1436-1440; originally published online August 9, 2012;
doi: 10.1161/CIRCULATIONAHA.112.123117

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2012 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/126/12/1436

Data Supplement (unedited) at:
http://circ.ahajournals.org/content/suppl/2013/05/12/CIRCULATIONAHA.112.123117.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Circulation* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Circulation* is online at:
http://circ.ahajournals.org//subscriptions/
L’aldostérone inactive le récepteur à l’endothéline B par l’intermédiaire d’une substitution redox des cystéïnyl-thiols, ce qui diminue la teneur de l’endothélium pulmonaire en monoxyde d’azote et favorise l’hypertension artérielle pulmonaire

Bradley A. Maron, MD ; Ying-Yi Zhang, PhD ; Kevin White, PhD ; Stephen Y. Chan, MD, PhD ; Diane E. Handy, PhD ; Christopher E. Mahoney, BA ; Joseph Loscalzo, MD, PhD ; Jane A. Leopold, MD

Contexte—L’hypertension artérielle pulmonaire (HAP) se caractérise notamment par une diminution de la production endothéliale de monoxyde d’azote (NO) et par une élévation du taux d’endothéline 1. Sachant que celle-ci stimule la monoxyde d’azote synthétisante endothéliale (eNOS) par l’intermédiaire des récepteurs à l’endothéline B (ETB), il est permis de penser que cette voie de signalisation est altérée dans l’HAP. L’endothéline 1 stimule également la synthèse surrénalienne de l’aldostérone ; au niveau des vaisseaux périphériques, l’hyperaldostéronisme induit une dysfonction vasculaire en augmentant la formation endothéliale d’espèces réactives de l’oxygène et en diminuant les taux de NO. Nous avons donc formulé l’hypothèse selon laquelle l’aldostérone favoriserait l’HAP en perturbant la signalisation de l’ETB et de l’eNOS par un mécanisme consistant à accroître le stress oxydatif au sein de l’endothélium pulmonaire.

Méthodes et résultats—Chez le rat atteint de HAP, l’élévation du taux d’endothéline 1 va de pair avec l’augmentation des concentrations en aldostérone dans le sang et les tissus pulmonaires et avec la diminution des taux pulmonaires de métaloxanes du NO, cela en l’absence de toute insuffisance cardiaque gauche. Nous montrons que, dans les cellules endothéliales d’artères pulmonaires humaines, l’endothéline 1 augmente le taux d’aldostérone par un processus de stimulation de l’aldostérone synthétisante qui est mediée à la fois par le co-activateur 1α des récepteurs gamma activés par les proliférateurs de peroxyssomes et par le facteur stéroïdologéne de type 1. L’aldostérone augmente également la production d’espèces réactives de l’oxygène, ce qui, en oxydant les cystéïnyl-thiols au sein de la région de l’ETB qui régit l’activation de l’eNOS, diminue l’activité de cette enzyme médiane par l’endothéline 1. Le remplacement de la Cys405 de l’ETB par une alanine a amplifié la synthèse du NO dépendante de ce médiateur en situation de stress oxydatif, ce qui confirme que la Cys405 est un thiol redox-sensible qui est indispensable à la voie de signalisation de l’ETB-eNOS. Dans les cellules endothéliales d’artères pulmonaires humaines, l’inhibition des récepteurs aux minéralocorticoïdes par la spironolactone a diminué la libération d’espèces réactives de l’oxygène médisée par l’aldostérone et restauré la production de NO dépendante de l’ETB. Dans deux modèles animaux d’HAP in vivo, l’administration de spironolactone ou d’éplérène a prévenu ou aboli le remodelage vasculaire pulmonaire et amélioré l’hémodynamique cardio-pulmonaire.

Conclusions—Nos observations démontrent que l’aldostérone induit une modification de la configuration d’oxydroduction des cystéïnyl-thiols de l’ETB qui a pour effet de diminuer la formation de NO à partir de l’endothélium pulmonaire et de favoriser l’HAP. (Traduit de l’anglais : Aldosterone Inactivates the Endothelin-B Receptor via a Cysteinyli Thiol Redox Switch to Decrease Pulmonary Endothelial Nitric Oxide Levels and Modulate Pulmonary Arterial Hypertension. Circulation. 2012;126:963–974.)

Mots clés : endothéline ■ monoxyde d’azote ■ cardiopathie pulmonaire ■ aldostérone ■ processus biochimiques d’oxydroduction

Risque cardiovasculaire associé à l’entraînement aérobie chez les patients coronariens associé qu’il est d’intensité élevée ou modérée

Oivind Rognmo, PhD ; Trine Moholdt, PhD ; Hilde Bakken, BSc ; Torstein Hole, MD, PhD ; Per Mølstad, MD, PhD ; Nils Erling Myhr, BSc ; Jostein Grimsmo, MD, PhD ; Ulrik Wisløff, PhD

Contexte—Il a été établi que, lorsqu’il est pratiqué de façon relativement énergique, l’entraînement physique augmente fortement la capacité aérobie et a un effet cardioprotecteur plus marqué que lorsqu’il est effectué à un rythme modéré. Une corrélation inverse a également été mise en évidence entre le risque d’évènement coronarien et l’intensité relative de l’activité physique, indépendamment du volume total de cette dernière. Bien que la pratique d’un entraînement physique d’intensité supérieure constitue un moyen efficace de réduire l’incidence des événements cardiovasculaires, il semblerait toutefois qu’une activité physique trop énergique ait pour effet d’augmenter fortement les risques aigus de mort subite et d’infarctus du myocarde chez les individus prédisposés. Cette éventualité pourrait justifier de reconsidérer les programmes de rééducation cardiaque.

Méthodes et résultats—Nous avons évalué le risque d’évènement cardiovasculaire encouru du fait de la mise en application d’un programme d’entraînement fractionné selon qu’il était d’intensité élevée ou modérée chez 4 846 patients coronariens pris en charge dans trois centres de réhabilitation cardiaque norvégiens. Sur une durée totale de 175 820 heures d’entraînement physique pendant lesquelles tous les patients avaient effectué les deux types d’exercices, nous avons recensé un arrêt cardiaque fatal survenu lors d’une période d’entraînement d’intensité modérée (129 456 heures d’exercice physique) et deux arrêts
Faut-il instaurer un traitement anticoagulant oral lors de la réalisation d'une coronaroplastie avec pose de stent chez un patient en fibrillation atriale dont le score de risque hémorragique HAS-BLED est élevé ?

Juan M. Ruiz-Nodar, MD, PhD ; Francisco Marín, MD, PhD ; Vanessa Roldán, MD, PhD ; José Valencia, MD, PhD ; Sergio Manzano-Fernández, MD, PhD ; Luis Caballero, MD ; José A. Hurtado, MD ; Francisco Sogorb, MD, PhD ; Mariano Valdés, MD, PhD ; Gregory Y.H. Lip, MD, FACC, FESC

Contexte—Les récentes recommandations européennes en matière de prise en charge de la fibrillation atriale préconisent d’instituer une anticoagulation orale (ACO) chez les patients dont le score CHA2DS2-VASc (insuffisance cardiologique congestive, hypertension artérielle, âge atteignant 75 ans ou plus, diabète, antécédents d’accident vasculaire cérébral, pathologie vasculaire, âge compris entre 65 et 74 ans, sexe féminin) est égal ou supérieur à 1. Certains ont, par ailleurs, proposé d’utiliser le score HAS-BLED (hypertension artérielle, dysfonction rénale/ hépatique, accident vasculaire cérébral, antécédent ou terrain hémorragique, labilité du rapport international normalisé, âge supérieur à 65 ans, prise concomitante de médicaments et d’alcool) pour évaluer le risque hémorragique chez les patients présentant une fibrillation atriale (un score égal ou supérieur à 3 témoignant d’un risque hémorragique élevé). En dépit des recommandations, cette approche n’a jamais été examinée dans une cohorte de patients en fibrillation atriale relevant d’une angioplastie coronaire percutanée avec pose de stent.

Méthodes et résultats—Notre étude a porté sur 590 patients consécutifs atteints de fibrillation atriale qui devaient faire l’objet d’une coronaroplastie percutanée avec pose de stent et dont le score CHA2DS2-VASc était supérieur à 1 (ce qui, conformément aux recommandations, justifiait l’instauration d’une ACO). Nous avons comparé les patients qui encourageaient un risque hémorragique faible à intermédiaire (HAS-BLED compris entre 0 et 2) à ceux exposés à un risque élevé (HAS-BLED ≥3), étudié la relation entre les scores CHA2DS2-VASc et HAS-BLED et confronté les bénéfices et les risques de l’ACO chez les patients présentant un risque hémorragique élevé. Nous avons recensé les épisodes hémorragiques, les événements thromboemboliques, les décès, les événements cardiaques, l’élément composite formé par les événements cardiaques majeurs (décès, infarctus aigu du myocarde et/ou revascularisation d’une lésion cible) et l’élément composite regroupant les événements majeurs (événement cardiaque majeur, hémorragie grave ou événement thromboembolique) survenus au cours d’une période de suivi d’un an. Dans la cohorte de l’étude, 420 (71 %) présentaient un score HAS-BLED égal ou supérieur à 3 ; chez les patients qui étaient sous ACO à leur sortie d’hôpital, la mortalité s’est révélée plus faible (9,3 % versus 20,1 % ; p <0,01), de même que le taux d’événements cardiaques majeurs (13,0 % versus 26,4 % ; p <0,01), alors que le taux d’événements majeurs a été similaire à celui observé dans l’autre groupe (20,5 % versus 27,6 % ; p = 0,11) ; en revanche, l’incidence des hémorragies graves a été plus élevée (11,8 % versus 4,0 % ; p <0,01). L’analyse de Cox multivariée effectuée chez les patients dont le HAS-BLED était égal ou supérieur à 3 a montré que les facteurs prédictifs d’un risque de décès majoré avaient été l’insuffisance rénale chronique et l’insuffisance cardiaque (p <0,05 dans les deux cas), alors que le fait d’avoir été sous ACO à la sortie de l’hôpital avait contribué à diminuer le risque de décès (p <0,01). Les facteurs prédictifs de la survenue d’une hémorragie grave ont été l’insuffisance rénale chronique et la pose de stents à libération de principe actif (p <0,05 dans les deux cas).

Mots clés : fibrillation atriale ■ risque hémorragique ■ anticoagulation orale ■ pose de stent