Feasibility, Safety, and Therapeutic Efficacy of Human Induced Pluripotent Stem Cell-Derived Cardiomyocyte Sheets in a Porcine Ischemic Cardiomyopathy Model

Masashi Kawamura, MD; Shigeru Miyagawa, MD, PhD; Kenji Miki, MSc; Atsuhiro Saito, PhD; Satsuki Fukushima, MD, PhD; Takahiro Higuchi, MD; Takui Kawamura, MD; Toru Kuratani, MD, PhD; Takashi Daimon, PhD; Tatsuya Shimizu, MD, PhD; Teruo Okano, PhD; Yoshiki Sawa, MD, PhD

Background—Human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs) are a promising source of cells for regenerating myocardium. However, several issues, especially the large-scale preparation of hiPS-CMs and elimination of undifferentiated iPSCs, must be resolved before hiPS cells can be used clinically. The cell-sheet technique is one of the useful methods for transplanting large numbers of cells. We hypothesized that hiPS-CM-sheet transplantation would be feasible, safe, and therapeutically effective for the treatment of ischemic cardiomyopathy.

Methods and Results—Human iPS cells were established by infecting human dermal fibroblasts with a retrovirus carrying Oct3/4, Sox2, Klf4, and c-Myc. Cardiomyogenic differentiation was induced by WNT signaling molecules, yielding hiPS-CMs that were almost 90% positive for α-actinin, Nkx2.5, and cardiac troponin T. hiPS-CM sheets were created using thermoresponsive dishes and transplanted over the myocardial infarcts in a porcine model of ischemic cardiomyopathy induced by ameroid constriction of the left anterior descending coronary artery (n = 6 for the iPSC group receiving sheet transplantation and the sham-operated group; both groups received tacrolimus daily). Transplantation significantly improved cardiac performance and attenuated left ventricular remodeling. hiPS-CMs were detectable 8 weeks after transplantation, but very few survived long term. No teratoma formation was observed in animals that received hiPS-CM sheets.

Conclusions—The culture system used yields a large number of highly pure hiPS-CMs, and hiPS-CM sheets could improve cardiac function after ischemic cardiomyopathy. This newly developed culture system and the hiPS-CM sheets may provide a basis for the clinical use of hiPS cells in cardiac regeneration therapy. (Circulation. 2012;126[suppl 1]:S29–S37.)

Key Words: pluripotent stem cell ■ regeneration therapy ■ transplantation

The myocardium has limited regenerative capacity, and loss of myocardium due to myocardial infarction therefore leads to heart failure. Despite remarkable recent progress in medical and surgical treatments for heart failure, end-stage heart failure remains a leading cause of morbidity and mortality.1 Therefore, the myocardium is one of the most important targets in regenerative medicine. Cell therapy has been introduced as a new treatment for heart failure. Clinical trials using bone marrow cells and myoblasts are underway; although these cells improve cardiac performance, chiefly through paracrine cytokine effects, they show limited differentiation into cardiomyocytes.2

Induced pluripotent stem (iPS) cells were first generated by nuclear reprogramming of mouse fibroblasts in 2006,3 and human iPS (hiPS) cells were established in 2007 by the transduction of defined factors.4,5 The production of hiPS cells poses fewer legal and ethical issues than does the generation of human embryonic stem (ES) cells. In addition, recent studies have demonstrated methods for the highly efficient production from hiPS cells of cardiomyocytes with typical electrophysiological function and pharmacological responsiveness.6,7 Human iPS cells represent an unlimited source of cardiomyocytes because of their great potential for differentiation and are therefore one of the most promising sources of cells for cardiac regenerative therapy.8,9 Nevertheless, many important problems, especially the large-scale preparation of cardiomyocytes by differentiation of iPS cells and the elimination of undifferentiated iPSCs to avoid teratoma formation, must be addressed before hiPS cells can be used clinically.8,9

The recently developed scaffoldless tissue engineering technique of cell-sheet engineering is applicable to myocar-
dial regeneration therapy.\textsuperscript{10} In contrast to the needle injection technique, the cell-sheet technique can deliver a large number of cells to damaged myocardium without the loss of transplanted cells or injury to the host myocardium. We have previously reported that use of the cell-sheet technique with autologous skeletal myoblasts improves cardiac function in small and large animal models of ischemic cardiomyopathy.\textsuperscript{11,12}

We hypothesized that hiPS-derived cardiomyocyte (hiPS-CM)-sheet transplantation would be therapeutically effective in the context of ischemic cardiomyopathy. In this study, we examined the following aspects of this procedure: stable in vitro culture of a large number of cardiomyocytes by differentiation of hiPS cells, generation of hiPS-CM sheets for clinical applications using temperature-responsive dishes, survival of hiPS-CM sheets in the myocardium of a large animal, and the direct contribution of these sheets to the improvement of cardiac performance by structural and electromechanical integration into the recipient myocardium, without teratoma formation, in a porcine ischemic cardiomyopathy model.

**Materials and Methods**

Animal care complied with the “Guide for the Care and Use of Laboratory Animals” (National Institutes of Health publication No. 85-23, revised 1996). Experimental protocols were approved by the Ethics Review Committee for Animal Experimentation of Osaka University Graduate School of Medicine.

**Culture, Differentiation, and Purification of hiPS Cells and Collection of Conditioned Medium**

The hiPS cell line 201B7 that was generated using the 4 transcription factors Oct4, Sox2, Klf4, and c-Myc (a generous gift from Professor Yamanaka, Kyoto University, Kyoto, Japan) was used in this study.\textsuperscript{4} The hiPS cells were cultured on Matrigel (BD Bioscience)-coated dishes in mTeSR1 medium (Stem Cell Technologies).

Human iPS cells were then dissociated using StemPro Accutase Cell Dissociation Reagent (Invitrogen), transferred to Corning ultralow-attachment surface culture dishes (Sigma-Aldrich) at a density of 50 000 cells/mL in mTeSR1 with Y-27632 (Wako), and cultured for 4 days to allow them to form embryoid bodies. The embryoid bodies were replated with differentiation medium of hiPS-CM sheet transplantation until euthanasia. The minipigs were randomly divided into 2 treatment groups, either hiPS-CM sheet transplantation or sham operation (n=6 each).

**Preparation of hiPS Cell-Derived Cardiomyocyte Sheets**

The hiPS-CMs were detached using StemPro Accutase Cell Dissociation Reagent and seeded onto 6-cm UpCell dishes (CellSeed). The next day, the dish was incubated at room temperature, which caused the cells to detach spontaneously to form scaffold-free hiPS-CM sheets.

**Generation of the Porcine Chronic Myocardial Infarction Model and hiPS-CM Sheet Transplantation**

A chronic myocardial infarction model was generated by placement of an ameroid constrictor (COR-2.50-SS; Research Instruments) around the left anterior descending coronary artery in female minipigs (Japan Farm) weighing 20 to 25 kg\textsuperscript{14} (Figure 1). Four weeks after myocardial infarction induction, transplantation of hiPS-CM sheets was performed through median sternotomy under general anesthesia. All animals were immunosuppressed with daily intake of tacrolimus (0.6 mg/kg; Astellas) from 5 days before transplantation until euthanasia. The minipigs were randomly divided into 2 treatment groups, either hiPS-CM sheet transplantation (iPS group) or sham operation (n=6 each).

**Standard and 2-Dimensional Speckle-Tracking Echocardiography**

Transthoracic echocardiography was performed under general anesthesia using a 5.0-MHz transducer (Apio Arida). The left ventricular (LV) end-diastolic and end-systolic diameters were measured, whereas the LV end-diastolic and end-systolic volumes (LVEDV and LVESV, respectively) were calculated from the Teichholz formula.\textsuperscript{15} The LV ejection fraction (LVEF) was calculated from the following formula: LVEF (%) = 100 × (LVEDV − LVESV) / LVEDV.

Two-dimensional speckle-tracking echocardiography analysis was performed using the customized 2-dimensional speckle-tracking echocardiography software for the Toshiba system (2D Wall Motion Tracking). Regional cardiac function was evaluated using radial strain values obtained from the midshort-axis plane and expressed as a percentage.
Cardiac CT Scan
Electrocardiography-gated multislice CT was performed in the supine position with a 16-slice multislice CT scanner (Somatom Emotion 16; Siemens) during end-expiratory breathhold under general anesthesia. Multislice CT was performed after intravenous injection of 90 mL of nonionic contrast medium (Iomeprol; Bracco Imaging). Axial images were reconstructed using the scanner software. All images were analyzed on a workstation (AZE; Virtual PI Lexus 64). LVEDV and LVESV were obtained from the workstation and LVEF was calculated using the formula described previously.

Holter Electrocardiography
Holter electrocardiography was performed for 24 hours in both groups (n=6 each). The arrhythmogenesis associated with hiPS-CM sheet transplantation was evaluated based on the number of premature ventricular contractions.

Histology, Immunohistolabeling, and Fluorescence In Situ Hybridization
Dissociated cultured cells were fixed in 4% paraformaldehyde. Primary antibodies included anticardiac troponin T (cTNT; Abcam), anti-α-actinin (Sigma-Aldrich), anti-human CD31 (BD Bioscience), anti-human CD34 (BD Bioscience) and antivimentin (BD Bioscience) visualized by fluorescent-conjugated secondary antibodies such as AlexaFluor488 goat antirabbit IgG, AlexaFluor488 goat antimouse IgG, and AlexaFluor488 donkey anti-goat IgG (Invitrogen) with counterstaining by 4′,6-diamidino-2-phenylindole (Dojindo) and assessed by fluorescence microscopy. Images of the samples were acquired with a Biorevo BZ-9000 (Keyence). Positivity of the cardiomyocyte-specific markers or other lineage markers in the cultured cells was determined from the acquired images by using computer-based cell counting with the Dynamic Cell Count BZ-H1CE software (Keyence).

The excised heart specimen was fixed with either 10% buffered formalin or 4% paraformaldehyde for frozen sections. Picrosirius red or periodic acid-Schiff stains were used to assess interstitial fibrosis or cardiomyocyte hypertrophy, respectively. To evaluate neovascularization in the peri-infarct area, immunolabeling with antihuman von Willebrand factor antibody (Dako) was done. The sections were immunolabeled by the primary antibodies such as anti-TNT (Abcam) and anti-slow myosin heavy chain (Sigma-Aldrich) antibodies, visualized by AlexaFluor488 goat antigoat IgG (Invitrogen), counterstained by 4′,6-diamidino-2-phenylindole (Dojindo) and assessed by fluorescence microscopy. The media contained high concentrations of various factors such as hepatocyte growth factor (HGF), stromal cell-derived factor (SDF), interleukin 6, leukemia inhibitory factor (LIF), macrophage migration inhibitory factor (MIF), and monocyte chemotactic protein-1.

Subsequently, culture in the thermoresponsive dishes yielded round-shaped scaffold-free hiPS-CM sheets (Figure 2J). Hematoxylin & eosin-stained cross-sections of the sheet showed a 30- to 50-μm-thick regular structure with abundant extracellular matrix (Figure 2K). Immunohistolabeling showed that the cytoplasm of most of the cells in the hiPS-CM sheets was homogeneously positive for cTNT (Figure 2L).

Feasibility and Safety of hiPS-CM Sheet Transplantation Into the Chronic Myocardial Infarction Heart
Transplantation of 8 hiPS-CM sheets was successfully performed through median sternotomy under general anesthesia in 6 immunosuppressed minipigs with LVEF values of 35% to 45% due to induced chronic myocardial infarction. There was no mortality related to the procedure or otherwise before the planned euthanasia. Twenty-four-hour electrocardiography monitoring only rarely identified ventricular arrhythmias in either group before the planned euthanasia (data not shown). In addition, no teratomas were formed in the heart or other thoracic organs within the 8 weeks after the transplantation of the hiPS-CM sheets (data not shown).

Global Cardiac Functional Recovery After hiPS-CM-Sheet Transplantation
Serial standard transthoracic echocardiography was performed before and 4 and 8 weeks after the cell-sheet transplantation or sham surgery. The baseline LV end-diastolic diameter, LV end-systolic diameter, and LVEF did not differ significantly between the 2 groups. The sham-operated pigs showed nonsignificant upward trends in LV end-diastolic diameter and LV end-systolic diameter and a downward trend in LVEF between 4 and 8 weeks after surgery (Figure 3A–C). LVEF was significantly greater in the iPSC group than in the sham group after 4 (53.2%±4.3% versus 38.3%±4.3%, P<0.01) and 8 (51.6%±4.9% versus 36.0%±5.9%, P<0.01) weeks. LV...
end-systolic diameter was significantly smaller in the iPS group than in the sham group after 4 (25.0 ± 1.9 mm versus 30.1 ± 3.4 mm, \(P<0.05\)) and 8 (26.2 ± 3.3 mm versus 34.7 ± 5.4 mm, \(P<0.05\)) weeks, whereas LV end-diastolic diameter did not differ significantly between the 2 groups.

A cardiac multislice CT scan was performed 8 weeks after the treatment and also demonstrated that LVEF was significantly greater in the iPS group (50.7% ± 5.4%) than in the sham group (40.5% ± 1.7%, \(P<0.05\); Figure 4A). LVEDV and LVESV were significantly smaller in the iPS group than in the sham group (57.1 ± 7.5 mL versus 76.1 ± 4.1 mL, \(P<0.05\), and 28.3 ± 6.0 mL versus 45.3 ± 3.0 mL, \(P<0.05\), respectively; Figure 4B–C).

**Recovery of Regional LV Wall Motion After hiPS-CM Sheet Transplantation**

Serial speckle-tracking echocardiography was performed to compare the strain values at baseline and 4 weeks after the treatment. Radial strain was measured from the midshort-axis plane to evaluate regional wall motion (Figure 5B–C). In the sham group, the radial strain levels in the infarct, the border, and the remote area had not changed significantly after 4 weeks relative to the baseline values. In contrast, in the iPS group, the radial strain in the border area was significantly greater after 4 weeks than at baseline (10.35% ± 4.17% versus 15.22% ± 1.66%, \(P<0.05\)), whereas the radial strain levels in the infarct and the remote area had not changed significantly.

**Pathological Hypertrophy, Interstitial Fibrosis, and Vascular Density**

The pathological cardiomyocyte hypertrophy, interstitial fibrosis, and vascular density 8 weeks after the treatment were assessed semiquantitatively by periodic acid-Schiff staining, picrosirius red staining, and immunohistochemistry for von Willebrand factor, respectively (Figure 6). The diameters of the cardiomyocytes in the remote area were significantly smaller in the iPS group than in the sham group. There was consistently significantly less accumulation of interstitial fibrosis in the remote area in the iPS group than in the sham group. In addition, the vascular density in the border area was significantly greater in the iPS group than in the sham group.

**Upregulation of Vascular Endothelial Growth Factor and Basic Fibroblast Growth Factor Expression in the Border Area After Treatment**

The expression levels of growth factors that are expressed in the myocardium and are potentially related to neovascular-
claration were quantified by real-time polymerase chain reaction 8 weeks after the treatment. The expression levels of vascular endothelial growth factor and basic fibroblast growth factor in the border area were significantly greater in the iPS group than in the sham group (Figure 7).

Phenotypic Fate of the Transplanted iPS-CMs in the Heart

The hiPS-CMs were labeled in vitro with a red fluorescent marker before transplantation. The labeled cells were identified on the surface of the heart 2 weeks after transplantation. Some of these cells were positive for slow myosin heavy chain (Figure 8A–D). Because the labeled cells could no longer be identified by 8 weeks after transplantation, the presence of the transplanted cells was assessed by fluorescence in situ hybridization using a human-specific genomic probe 8 weeks after transplantation. A small number of human genome-positive cells that expressed slow myosin heavy chain remained present in the infarct area (Figure 8E–G).

Discussion

The major findings of this study were as follows: (1) the newly developed culture system for hiPS cells successfully yielded approximately $2.5 \times 10^7$ highly pure hiPS-CMs, and hiPS-CM sheets could be made from these high pure hiPS-CMs using temperature-responsive dishes; (2) the hiPS-CM sheets survived in damaged myocardium in the short term and improved cardiac function in a porcine ischemic cardiomyopathy model, chiefly through the paracrine effects of cytokines. Histological analysis indicated that transplantation of hiPS sheets attenuated left ventricular remodeling and increased neovascularization; and (3) hiPS-derived cardiomyocytes could still be detected 8 weeks after transplantation, but the number of hiPS-CMs that survived long term was very small. No teratoma formation was observed in animals that received hiPS-CM sheets.

The optimal number of cells for clinical use of cardiac regeneration therapy remains unknown. Implantation of approximately $10^8$ to $10^9$ cells was shown to produce cardiac improvement in previous clinical trials using bone marrow-derived cells. Given these results, it may be necessary to transplant almost this number of hiPS-CMs into impaired myocardium to improve cardiac function in a clinical setting. It is challenging to obtain large numbers of hiPS-CMs at high purity because clinical application of hiPS cells requires 3 steps (ie, proliferation, differentiation, and purification). In
In the present study, we obtained approximately $2.5 \times 10^7$ hiPS-CMs after differentiation and purification of hiPS cells. One advantage of our culture system for hiPS cells is its simplicity, because it involves only supplementation with cytokines for differentiation and culture in glucose-free medium for purification. Our culture system might be able to yield higher numbers of hiPS-CMs and could, possibly, be expanded to a clinically useful scale. Moreover, a previous study evaluating the propensity of secondary neurospheres generated from iPSCs to form teratomas found a significant correlation between the teratoma diameter and the proportion of undifferentiated cells in the secondary neurospheres. Importantly, no teratoma formation was detected in the current experiment, which could be because our purification method limited the number of undifferentiated iPSCs in the hiPS-CMs.

Figure 5. Evaluation of regional wall motion by 2-dimensional speckle-tracking echocardiography. Representative examples of radial strain analysis in each group are shown in B (sham) and D (iPS). A, In the sham group, the radial strain values of all areas did not differ significantly between the baseline and 4 weeks after the sham operation. C, In the iPS group, the radial strain value of the border area of the infarct was significantly greater 4 weeks after treatment than at baseline. The radial strain values of the other areas relative to the infarct did not differ significantly before and after hiPS-CM-sheet transplantation. $P < 0.05$ versus baseline. iPS indicates induced pluripotent stem cells; hiPS-CM, human induced pluripotent stem cell-derived cardiomyocyte.

Structural connection and electromechanical integration have been considered to be the mechanisms of functional recovery of the impaired myocardium after ES cell-derived cardiomyocyte transplantation. We therefore predicted that the hiPS-CMs would connect structurally and electromechanically with the host myocardium, as seen for ES cell-derived cardiomyocytes. However, although functional cardiac recovery was observed after hiPS-CM-sheet transplantation, only a few transplanted cells were persistently present. It has been shown that the therapeutic effects of stem cell therapy can result from paracrine or direct effects. Paracrine effects have been considered as the major mechanisms responsible for the therapeutic efficacy of cell therapy with somatic tissue-derived stem or progenitor cells. These effects classically refer to the ability of transplanted cells to extracellularly...
release various cardioprotective factors into the damaged cardiac tissue to directly enhance reverse LV remodeling. In contrast, recent reports have suggested that cell transplantation upregulates various cardioprotective factors native to the cardiac tissue through “crosstalk” between the transplanted cells and the native cardiac tissue. In addition, another report has shown that paracrine effects of human cardiosphere-derived cells, which are capable of directed cardiac regeneration in vivo, play important roles in improving infarcted myocardium. In our study, we observed that several factors, which were reportedly involved in cardiac repair, were secreted by hiPS-CMs during in vitro screening. Consequently, cardiomyocyte hypertrophy and interstitial fibrosis were significantly attenuated in the infarct-remote area after cell sheet transplantation. In addition, capillary density was increased in the infarct border area associated with the upregulation of vascular endothelial growth factor and basic fibroblast growth factor after cell sheet transplantation. Speckle-tracking echocardiography showed that the regional function in the corresponding area was preserved after cell sheet transplantation as compared with that after a sham operation, in which the regional function progressively deteriorated. This suggests that ischemia-related hibernation in the infarct border myocardium might have recovered by increased blood flow because of angiogenesis. These findings suggest that in our study, paracrine effects are the major mechanisms underlying the functional improvement after hiPS-CM-sheet implantation. In contrast, only a small fraction of the transplanted cells differentiated into cardiac lineage, as assessed by fluorescence in situ hybridization analysis, which clearly distinguished cells of human origin from porcine cardiac tissue. This finding suggests that direct effects were not a major contributing mechanism responsible for the functional benefits observed in this study. Therefore,

![Figure 6. Histological evaluation after hiPS-CM-sheet transplantation. A–C, The diameters of the cardiomyocytes were measured at an area remote from the infarct; cardiomyocyte hypertrophy was significantly lower in the iPS group than in the sham group (A). Photomicrographs of periodic acid-Schiff (PAS)-stained sections are shown in B–C. D–F, The proportions of fibrosis-occupied area (%) at a site remote from the infarct; Picrosirius red staining demonstrated significantly less interstitial fibrosis in the iPS group than in the sham group (D). Photomicrographs of the Picrosirius red-stained sections are shown in E–F. G–I, Capillary density in an area bordering the infarct; the capillary density as assessed by immunostaining with an anti-von Willebrand factor antibody was significantly better in the iPS group (G). Photomicrographs of immunostaining for von Willebrand factor are shown in H–I. *P<0.01 versus sham. Bars=100 μm. hiPS-CM indicates human induced pluripotent stem cell-derived cardiomyocyte; iPS, induced pluripotent stem cells.](http://circ.ahajournals.org/)

![Figure 7. Neovascularization-related mRNA expression in an area bordering the infarct measured by real-time polymerase chain reaction (RT-PCR). The mRNA expression levels of vascular endothelial growth factor (VEGF; A) and basic fibroblast growth factor (bFGF; B) were significantly higher in the iPS group than in the sham group. †P<0.05 versus sham. iPS indicates induced pluripotent stem cells.](http://circ.ahajournals.org/)
it will be important to develop additive treatment to enhance survival, differentiation, and integration of the transplanted cells into the cardiac tissue.

Histological analysis revealed that most of the implanted hiPS-CMs disappeared after implantation, indicating poor engraftment of the hiPS-CMs into the impaired myocardium. In our study, hiPS-CMs secreted multiple angiogenic factors or their inducers, and the hiPS-CMs included small populations of CD31- or CD34-positive cells. These findings indicate that the hiPS-CM sheets have angiogenic potential, which might result in the generation of new vascular networks between the hiPS-CM sheets and the host cardiac tissue. A previous report has shown that the prompt formation of a vascular network between the cell sheet and the surrounding host tissue can sufficiently supply blood and oxygen to the transplanted cell sheet to survive and function in the host tissue.22 However, in the present study, the host myocardium persistently experienced low blood supply due to coronary artery occlusion, which can interfere with the formation of a new vascular network between the cardiac tissue and the transplanted hiPS-CM sheets, possibly leading to poor survival and differentiation of the transplanted cells in the heart. Poor engraftment has been shown after experimental transplantation of human ES cell-derived cardiomyocytes through simple injection into the infarcted myocardium; treatment with several factors that block cell death pathways improved the engraftment of transplanted ES cell-derived cardiomyocytes.23 We recently established a new method of cell protection by gene transfection24 and a novel cell delivery system using the omentum,25 which can enhance the therapeutic effects of cell therapy. Additional methods of prolonging cell survival after implantation might be necessary to improve the engraftment rate and thus obtain long-standing therapeutic effects of the hiPS-CM sheet from not only paracrine factors, but also direct contributions to the host heart.

Successful regeneration therapy using human pluripotent stem cells requires that the stem cells or their derivatives remain in the recipient myocardium long term. Unless the cell transplantation is autogeneic, the cells will inevitably be rejected by the immune system. Future clinical applications of hiPS cells for regeneration therapy may involve allogeneic and HLA type-matched transplantsations, because some acute injuries such as myocardial infarction, stroke, or spinal cord trauma are targeted for regeneration therapy.26 Therefore, elimination of immunologic rejection or induction of immunologic tolerance of the transplanted stem cells or their derivatives is a critical issue in stem cell-based medicine.27 In the present study, we used tacrolimus as the only immunosuppressant in a xenotransplantation model; therefore, the failure of prolonged engraftment of hiPS-CMs could have been due to insufficient immunosuppressive therapy. A previous study has demonstrated that combined therapy with tacrolimus and sirolimus significantly prolonged the survival of human ES cells in a xenotransplantation model.28 In another experiment, blocking the leukocyte costimulatory molecules was found to promote successful engraftment of ES and iPS cells in allogeneic and xenogeneic transplantation models.29 These findings indicate that appropriate immunosuppressive therapies could improve stem cell engraftment. However, the immunogenicity of iPS cells has not yet been fully investigated. Further studies are needed to establish appropriate strategies for inducing and maintaining immunologic tolerance during the clinical use of allogeneic iPS cell therapy.

In conclusion, the present study showed that our culture system yields a large number of highly pure hiPS-CMs and that hiPS-CM sheets could improve cardiac function in the context of ischemic cardiomyopathy, primarily through paracrine cytokine effects. This newly developed culture system and the hiPS-CM sheets may provide a basis for clinical hiPS-CM-sheet transplantation as part of a strategy for promoting the regeneration of damaged myocardium.

**Acknowledgments**

We thank Shigeru Matsumi, Masako Yokoyama, and Akima Harada for excellent technical assistance.

**Disclosures**

Dr Shimizu is a consultant for CellSeed, Inc. Dr Okano is an Advisory Board Member in CellSeed, Inc, and an inventor/developer designated on the patent for temperature-responsive culture surfaces.
References


Feasibility, Safety, and Therapeutic Efficacy of Human Induced Pluripotent Stem Cell-Derived Cardiomyocyte Sheets in a Porcine Ischemic Cardiomyopathy Model
Masashi Kawamura, Shigeru Miyagawa, Kenji Miki, Atsuhiro Saito, Satsuki Fukushima, Takahiro Higuchi, Takuji Kawamura, Toru Kuratani, Takashi Daimon, Tatsuya Shimizu, Teruo Okano and Yoshiki Sawa

Circulation. 2012;126:S29-S37
doi: 10.1161/CIRCULATIONAHA.111.084343
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2012 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/126/11_suppl_1/S29

Data Supplement (unedited) at:
http://circ.ahajournals.org/content/suppl/2012/09/11/126.11_suppl_1.S29.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/
Supplemental Materials

MS ID#: CIRCULATIONAHA/2011/084343

Feasibility, Safety, and Therapeutic Efficacy of Human Induced Pluripotent Stem Cell-derived Cardiomyocyte Sheets in a Porcine Ischemic Cardiomyopathy Model

Materials and Methods

All experimental procedures were approved by the institutional ethics committee. Animal care was conducted humanely in compliance with the "Principles of Laboratory Animal Care" formulated by the National Society for Medical Research and the "Guide for the Care and Use of Laboratory Animals" prepared by the Institute of Animal Resources and published by the National Institutes of Health (Publication No 85-23, revised 1996).

Culture, differentiation, and purification of human iPS cells and collection of conditioned medium

The human iPS (hiPS) cell line 201B7 that was generated using the 4 transcription factors Oct4, Sox2, Klf4, and c-Myc (a generous gift from Professor Yamanaka, Kyoto University, Japan) was used in this study. The hiPS cells were cultured on matrigel™ (BD Bioscience, San Jose, CA)-coated dishes in mTeSR1 medium (Stem Cell Technologies, Vancouver, BC, Canada) that was changed daily. Human iPS cells were then dissociated using StemPro® Accutase® Cell
Dissociation Reagent (Invitrogen, Carlsbad, CA), transferred to Corning® ultra-low-attachment surface culture dishes (Sigma-Aldrich Corp., St. Louis, MO) at a density of 50,000 cells/mL in mTeSR1 with Y-27632 (Wako Pure Chemical Industries, Osaka, Japan), and cultured for 4 days to allow them to form embryoid bodies (EBs). The EBs were re-plated with differentiation medium (DM; DMEM-F12, Invitrogen) containing 20% fetal bovine serum (FBS), 100 μM nonessential amino acids (Invitrogen), 50 U/mL penicillin, 50 mg/mL streptomycin (Invitrogen), and 5.5 mM 2-mercaptoethanol (Invitrogen) and supplemented with 100 ng/mL Wnt3a (R&D Systems, Minneapolis, MN) and 100 ng/mL R-Spondin-1 (Stem RD, Burlingame, CA) and cultured for 2 days. The culture medium was then replaced with DM without the supplemental factors for 2 days and then changed to DM supplemented with 100 ng/mL Dkk1 (R&D Systems) for 2 days. On day 10, the EBs were plated on gelatin-coated dishes in DM, which was refreshed every 2 days.

The culture medium was subsequently replaced with glucose-free DMEM (Invitrogen) with 1 mM lactic acid (Wako) (Hattori, F. and Fukuda, K. WO2007/088874; PCT/JP2007/051563, 2007) on day 20 and changed to DMEM/10% FBS the next day. On day 25, the culture medium was again replaced with glucose-free DMEM with 1 mM lactic acid and changed to DMEM/10% FBS the next day; this procedure eventually generated pure hiPS cell-derived cardiomyocytes (hiPS-CM). The hiPS-CMs were then labeled with a red fluorescent marker (CellTracker Red CMTPX, Invitrogen), as previously described. FBS-free DMEM media were conditioned by hiPS-CMs for 48 hours after the completion of our differentiation and purification protocols. A total
of 48 cytokines and growth factors were measured by the Bio-Plex human cytokine assay (Bio-Rad, UK) for in-vitro screening.

**Preparation of hiPS cell-derived cardiomyocyte sheets**

The hiPS-CMs were detached using StemPro® Accutase® Cell Dissociation Reagent and seeded onto 6-cm UpCell dishes (CellSeed, Tokyo, Japan) at a density of $4 \times 10^6$ cells/dish in combination with normal human dermal fibroblasts (NHDF; Lonza, Basel, Switzerland) at $8 \times 10^5$ cells/dish. The next day, the dish was incubated at room temperature, which caused the cells to detach spontaneously to form a scaffold-free hiPS-CMs sheet.

**Generation of the porcine chronic myocardial infarction model**

Twelve female mini-pigs (Japan Farm, Kagoshima, Japan) weighing 20 to 25 kg were pre-anesthetized with ketamine hydrochloride (20 mg/kg, DAIICHI SANKYO, Tokyo, Japan) and xylazine (2 mg/kg, Bayer HealthCare, Leverkusen, Germany), intubated endotracheally (6 Fr Sheridan, InterMed Japan, Osaka, Japan), and maintained under general anesthesia by a continuous infusion of propofol (6 mg/kg/h, Astra-Zeneca) and vecuronium bromide (0.05 mg/kg/h), DAIICHI SANKYO. The pericardial space was exposed by left thoracotomy through the fourth intercostal space. The distal portion of the left anterior descending coronary artery (LAD) was ligated directly, and an ameroid constrictor (COR-2.50-SS, Research Instruments) was placed
around the LAD just distal to the branch point of the left circumflex coronary artery. The muscle and skin were closed in layers, and the mini-pigs were then allowed to recover and maintained in temperature-controlled individual cages for 4 weeks.

**Transplantation of hiPS-CMs sheets**

All animals were immunosuppressed by daily administration of tacrolimus (0.6 mg/kg, Astellas, Tokyo, Japan) from 5 days before transplantation until sacrifice. Four weeks after the ameroid placement, the mini-pigs were randomly divided into 2 treatment groups (n = 6 each) to undergo either hiPS-CMs sheet transplantation (iPS group) or sham operation.

The hiPS-CMs sheets were transplanted via median sternotomy under general anesthesia. The area of the myocardial infarct was identified visually on the basis of surface scarring and abnormal wall motion. In the iPS group, 8 hiPS-CM sheets were transplanted over the infarcted myocardium. Two layers of hiPS-CM sheets were stacked over the broad surface of the myocardium. The mini-pigs were then allowed to recover in temperature-controlled individual cages and were later humanely sacrificed for analysis. The excised heart and other thoracic organs were visually inspected for possible tumor formation.
**Standard and 2D speckle-tracking echocardiography**

Transthoracic echocardiography was performed under general anesthesia using a 5.0-MHz transducer (Aplio Artida; Toshiba, Otawara, Japan). The left ventricular (LV) end-diastolic and end-systolic diameters (LVDd and LVDs, respectively) were measured in M-mode in the short-axis view, while the LV end-diastolic and end-systolic volumes (LVEDV and LVESV, respectively) were calculated from the Teichholz formula\(^4\). The LV ejection fraction (LVEF) was calculated from the following formula: \( \text{LVEF} (%) = 100 \times \frac{(\text{LVEDV} - \text{LVESV})}{\text{LVEDV}} \). The data are presented as the average of the measurements over 3 continuous beats.

Two-dimensional speckle-tracking echocardiography (2DSE) analysis was performed using the customized 2DSE software for the Toshiba system (2D Wall Motion Tracking, Toshiba Medical Systems). The endocardial border was traced manually, and a region of interest was drawn to include the entire myocardium. The software algorithms automatically segmented the LV planes into equidistant segments and performed speckle tracking on a frame-to-frame basis. The studies were assessed visually, and abnormal curves that appeared to be artifactual were excluded. Regional cardiac function was evaluated using radial strain values obtained from the mid-short-axis plane. The anterior and anteroseptal segments were defined as the infarct area, while the lateral and inferoseptal segments were defined as the border area and the posterior and inferior segments as the remote area. The strain value of each area was calculated from the average of 2 segments and expressed as a percentage (%).
**Cardiac computed tomography scan**

Electrocardiogram-gated multislice computed tomography (MSCT) was performed under general anesthesia in the supine position during end-expiratory breathhold with a 16-slice MSCT scanner (Somatron Emotion 16, Siemens, Forchheim, Germany). A standardized examination protocol was applied using 16 × 0.75-mm collimation, a 3.4-mm table feed per rotation, and a tube rotation time of 420 ms. The tube voltage was 120 kV with 500 effective mAs. MSCT was performed after intravenous injection of 90 mL of non-ionic contrast medium (Iomeprol, Bracco Imaging, Konstanz, Germany). Axial images were reconstructed using the scanner software. All images were analyzed on a workstation (AZE, Virtual Place Lexus 64). LVEDV and LVESV were obtained from the workstation and LVEF was calculated using the formula described above.

**Holter electrocardiogram**

Holter electrocardiogram (ECG) was performed for 24 hours in both groups (n = 6 each). The arrhythmogenesis associated with hiPS-CMs sheet transplantation was evaluated based on the number of premature ventricular contractions.

**Histology and immunohistolabeling**

Dissociated cultured cells were fixed in 4% paraformaldehyde for 20 minutes at room temperature, washed 3 times with phosphate-buffered saline (PBS), permeabilized with 0.2% Triton X-100 for
30 minutes, and blocked with 3% BSA in PBS for 2 hours. The primary antibodies used included anti-cardiac troponin T (cTNT, 1:100 dilution, Abcam, Cambridge, UK), anti-Nkx2.5 (1:100 dilution, Santa Cruz Biotechnology, Santa Cruz, CA), anti-α-actinin (1:100 dilution, Sigma-Aldrich Corp.), anti-human CD31 (1:100 dilution, BD Biosciences, San Jose, CA), anti-human CD34 (1:100 dilution, BD Biosciences), and anti-vimentin (1:100 dilution, BD Biosciences) and were visualized by fluorophore-conjugated secondary antibodies such as AlexaFluor488 goat anti-rabbit IgG, AlexaFluor488 goat anti-mouse IgG, and AlexaFluor488 donkey anti-goat IgG (1:1000 dilution, Invitrogen) with counterstaining by 4′,6-diamidino-2-phenylindole (DAPI, Dojindo, Tokyo, Japan) and assessed by fluorescence microscopy. Images of the samples were acquired with a Biorevo BZ-9000 (Keyence, Osaka, Japan). Positivity of the cardiomyocyte-specific markers or other lineage markers in the cultured cells was determined from the acquired images by using computer-based cell counting with the Dynamic Cell Count BZ-H1CE software (Keyence).

The excised heart specimens were either fixed with 10% buffered formalin and embedded in paraffin or fixed with 4% paraformaldehyde, embedded in OCT compound (Tissue Tek; Sakura Finetek, Torrance, CA), and snap-frozen. The paraffin-embedded sections were stained with Picosirius red or periodic acid-Schiff (PAS) to assess interstitial fibrosis and cardiomyocyte hypertrophy, respectively\(^5,6\). The paraffin-embedded sections were immunolabeled with anti-human von Willebrand factor antibody (Dako, Glostrup, Denmark) and visualized with the horseradish peroxidase-based EnVision kit (Dako) according to the manufacturer’s instructions.
Ten different fields were randomly selected, and the number of stained vascular endothelial cells in each field was counted using a light microscope under high-power magnification (×200). The stained blood vessels from the 10 fields were averaged and the results expressed as vascular density (per square millimeter). The frozen sections were immunolabeled with primary antibodies, such as anti-cTNT (Abcam) and anti-slow myosin heavy chain (sMHC, Sigma-Aldrich Corp.), visualized with AlexaFluor488 goat anti-mouse IgG (Invitrogen) counterstained with DAPI, and assessed using the Biorevo BZ-9000 (Keyence) or confocal microscopy (Olympus Japan, FV1000-D IX81, Tokyo, Japan).

**Fluorescence in-situ hybridization (FISH)**

The paraffin-embedded sections were deparaffinized and incubated in 2× SSC for 5 minutes at room temperature (RT), then heated in a microwave oven for 10 minutes and cooled to RT. The samples were subsequently incubated in 0.1% pepsin/0.1M HCl for 5 minutes at 37°C, washed with PBS, and dehydrated through a series of ethanol solutions. A human-specific genomic FISH probe labeled with Cy3 (Chromosome Science Labo, Sapporo, Japan) was then applied to the samples. The entire cover slide with the probe was denatured at 95°C for 10 minutes and then hybridized at 37°C overnight. The following day, the samples were washed with 50% formamide/2× SSC at 37°C for 20 minutes and then with 1×SSC at RT for 15 minutes.
sections were double-stained with the other antibodies described above and counterstained with DAPI.

**Real-time PCR**

Total RNA was extracted from cardiac tissue and reverse transcribed using TaqMan reverse transcription reagents (Applied Biosystems, Stockholm, Sweden), and real-time polymerase chain reaction (RT-PCR) was performed with the ABI PRISM 7700 (Applied Biosystems)\(^7\) system using pig-specific primers for vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF). cDNA samples were prepared and assayed in triplicate. The average copy number of gene transcripts was normalized to that of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) for each sample.

**Statistical analysis**

JMP software (JMP7.01, SAS institute Inc., Cary, NC) was used for all statistical analyses. Continuous values are expressed as the mean ± standard deviation. Within-group differences were compared with the Wilcoxon-Mann-Whitney U test and between-group differences with the Wilcoxon signed-rank test because the sample sizes are too small (just n=6 in each group and n=6 pairs) to allow checking of the assumptions of the unpaired and paired t-tests, respectively. A p-value < 0.05 was considered statistically significant.
Reference


