Empirical Support for Cardiovascular Health
The Case Gets Even Stronger

Lawrence J. Appel, MD, MPH

Recently, the American Heart Association (AHA) adopted a new and ambitious strategic goal: “by 2020, to improve the cardiovascular health of all Americans by 20%, while reducing deaths from cardiovascular disease by 20%.”

In the process, it defined a new concept, cardiovascular health, which comprises 7 components: 4 ideal health behaviors (nonsmoking, body mass index <25 kg/m², physical activity at goal levels, and a diet consistent with current recommendations) together with 3 ideal health factors (untreated total cholesterol <200 mg/dL, untreated blood pressure <120/80 mm Hg, and fasting blood glucose <100 mg/dL). This new approach emphasizes prevention with a focus on achieving and sustaining desirable behaviors.

At the time of the AHA report, the health benefits of each of the 7 individual components were well supported by available literature. A few studies had also defined the relationship of clusters of ideal levels of risk factors and behaviors and had assessed their relationship with health outcomes, quality of life, and cost. Specifically, Stamler defined low cardiovascular risk as a cluster of optimal levels of traditional cardiovascular risk factors, whereas Stampfer defined a cluster of ideal lifestyle behaviors. Yet, in 2010, when the AHA published its 2020 strategic goal, there was no available research on the new metric, cardiovascular health.

In the current issue of Circulation, 2 articles address this gap and provide complementary data related to cardiovascular health or at least a forme fruste.

Liu et al assessed the relationship between adopting a healthy lifestyle during young adulthood and the prevalence of a low cardiovascular-risk profile in middle age. The research was conducted in the Coronary Artery Risk Development in (Young) Adults (CARDIA) cohort study, which enrolled young adults 18 to 30 years of age. Participants were 3154 black and white men and women, with data collected at 3 time points: year 0 (baseline), year 7, and year 20. Healthy risk factors (HLFs) were (1) body mass index <25 kg/m², (2) no or moderate alcohol intake, (3) higher healthy diet score, (4) higher physical activity score, and (5) never smoking. The primary outcome was a low cardiovascular disease (CVD) risk profile at year 20 defined as the absence of CVD and the presence of untreated total cholesterol <200 mg/dL, untreated blood pressure <120/80 mm Hg, no diabetes mellitus, and never smoking. The HLFs were based on the average across values at baseline, year 7, and year 20. Very few persons had all 5 HLFs at baseline, just 6% of the cohort.

The principal finding of the Liu study was a graded direct relationship: the more HLFs in young adulthood, the greater the prevalence of low (desirable) CVD risk profile at middle age 20 years later. Specifically, the prevalence of a low CVD risk profile increased progressively from only 3% in those with 0 to 1 HRF to 60.7% in those with 5+ HLFs. In the whole cohort, the overall prevalence of a low CVD risk profile dropped from 43.7% at the baseline examination to 24.5% at year 20. Some of their most interesting findings related to potential impact of adopting HRFs. Among those who had <4 HLFs at all time points (years 0, 7, and 20), the prevalence of a low CVD profile was only 13.6% at year 20.

Among adopters, namely those who initially had <4 HLFs at baseline but who subsequently had 4+ HLF at year 7, year 20, or both years, the prevalence was strikingly higher (29.8%, 37.5%, and 52.2%, respectively).

The study by Ford and colleagues addressed another issue, namely, the relationship of low, intermediate, and ideal levels of the 7 metrics that comprise the cardiovascular health metric with subsequent mortality from all causes and from diseases of the circulatory system. The setting was the National Health Examination Survey in which baseline data were collected between 1999 and 2002. Mortality was assessed via linkage with the National Death Index through 2006. Participants were 7622 adults ≥20 years of age. Median follow-up was 5.8 years, during which time there were 532 deaths, of which 186 were attributed to circulatory system diseases.

The main finding of the study by Ford and colleagues was the progressive inverse relationship between the number of ideal health metrics and subsequent mortality, both all-cause mortality and mortality from diseases of the circulatory system. In fully adjusted models, there was a 78% reduced risk of all-cause mortality in those with 5+ ideal health metrics compared with those with no ideal health metric. For mortality from diseases of the circulatory system, the corresponding risk reduction was a striking 88%. In general, for each of the 7 health metrics, there was a dose–response relationship of mortality across the poor, intermediate, and ideal levels of each health metric, albeit nonsignificant in several instances, possibly because of insufficient statistical power. Extremely few participants, just 1.1%, had ideal levels of all 7 health metrics.

The opinions expressed in this article are not necessarily those of the editors or of the American Heart Association.

From the Welch Center for Prevention, Epidemiology and Clinical Research, The Johns Hopkins University, Baltimore, MD.

Correspondence to Lawrence J. Appel, MD, MPH, The Johns Hopkins University, 2024 E Monument St, Suite 2–618, Baltimore, MD 21205-2223, E-mail lappel@jhmi.edu
(Circulation. 2012;125:973-974.)
© 2012 American Heart Association, Inc.

Circulation is available at http://circ.ahajournals.org
DOI: 10.1161/CIRCULATIONAHA.111.088542
Strengths of these studies were the large diverse study populations, their prospective designs, and high follow-up rates. Limitations of the CARDIA analyses were the use of year 20 data to define both exposure and outcome and the approach to smoking, which was both an exposure and a component of the outcome. Limitations of the study by Ford were the relatively short duration of follow-up, a median of just 5.8 years, and the low number of outcomes (ie, only 186 deaths from diseases of the circulatory system). Nonetheless, these limitations are minor.

As a member of the task force that defined cardiovascular health, I recall several of our deliberations that are relevant to these articles. In defining cardiovascular health, the task force purposely selected components that are commonly available in national surveys and major cohort studies. The task force also debated the thresholds that defined ideal, intermediate, and poor levels of the 7 components. Ultimately, we selected stringent evidence-based thresholds to define ideal levels. Interestingly, neither study used the explicit definition of cardiovascular health that the task force proposed. Each study modified aspects of the cardiovascular health metric, specifically the definition of ideal diet, physical activity, and diabetes mellitus. Some of the variance might have resulted from the data collection tools used at the inception of these studies. With this in mind, I urge those who design our national surveys and major cohort studies to collect the requisite data to define cardiovascular health, as originally proposed, and to report their findings accordingly. Use of the recommended, albeit stringent, thresholds will facilitate comparisons across studies and progress over time. The bar is high, and appropriately so.

Achieving cardiovascular health is also extraordinarily relevant to 2 contemporary public health goals, eliminating health disparities and improving population health. Although there is widespread recognition of racial and geographic disparities in health,9 there is emerging evidence that factors which comprise the cardiovascular health metric are likely responsible for these racial disparities. In a recent analysis, it was estimated that disparities in 4 factors (smoking, blood pressure, blood glucose, and adiposity) explained well over half of the racial differences in cardiovascular mortality in the United States.10

Lastly, cardiovascular health is closely related to population health, a popular concept among policy makers. The factors that determine cardiovascular health appear to determine noncardiovascular outcomes as well. Additional support comes from the analyses by Ford and colleagues, in which there was a strong dose–response relationship between the number of ideal levels of the cardiovascular metrics with all-cause mortality, not just mortality from diseases of the circulatory system.8 Importantly, achieving population health is now viewed as a critical component of healthcare reform, not just for the sake of improving health but also as a means to control costs. As Davíglus and colleagues documented in the Chicago Heart Study, low cardiovascular risk at middle age is associated with reduced Medicare costs at older ages.2,6

It will be important to replicate such analyses using the ideal cardiovascular health metric and to do so in broader samples and with other estimates of cost, potentially lifetime costs.

In summary, the studies by Liu and Ford provide strong empirical support for cardiovascular health as a valid construct. Efforts must now focus on interventions that assist individuals and populations in achieving and sustaining cardiovascular health, which hopefully will become the default rather than the exception.

Disclosures
The Johns Hopkins University has an institutional consulting agreement with Healthways Inc, a company that delivers health promotion interventions. The university is entitled to fees for the consulting services. Dr Appel provided consulting services and received a portion of the university fees to support his research. The terms of this arrangement are managed by the Johns Hopkins University in accordance with its conflict of interest policies.

References

Key Words: Editorials ■ lifestyle ■ prevention ■ primary prevention
Empirical Support for Cardiovascular Health: The Case Gets Even Stronger
Lawrence J. Appel

Circulation. 2012;125:973-974; originally published online January 30, 2012; doi: 10.1161/CIRCULATIONAHA.111.088542

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/125/8/973

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at: http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at: http://circ.ahajournals.org//subscriptions/