Macrophages play an important role in tissue repair and remodeling and innate immune response. Tissue macrophages are highly heterogeneous and can undergo 2 distinct programs of functional specification termed classical (M1) and alternative (M2) activation.1,2 In response to signals elicited by bacterial infections, such as lipopolysaccharide (LPS) and interferon-γ, macrophages adopt a proinflammatory phenotype and contribute to defense against invading pathogens through phagocytosis, bactericidal activity, and the secretion of proinflammatory cytokines and chemokines. In contrast, interleukin-4 (IL-4) and IL-13 promote alternative activation of macrophages that favors tissue remodeling and repair, parasite elimination, and tumor progression. At the molecular level, M1 and M2 macrophages express unique cell surface markers and secrete distinct sets of effector molecules. Classically activated macrophages secrete proinflammatory cytokines, such as tumor necrosis factor α, IL-1β, and IL-6, and produce reactive oxygen species and nitric oxide, whereas alternatively activated macrophages preferentially synthesize anti-inflammatory cytokines such as IL-10 and have subdued proinflammatory cytokine gene expression. A balance between classical and alternative macrophage activation serves to maintain tissue homeostasis and host defense.

A MicroRNA Circuitry Links Macrophage Polarization to Metabolic Homeostasis

Zhuo-Xian Meng, PhD; Guo-Xiao Wang, BS; Jiandie D. Lin, PhD

Macrophage polarization is a critical process for maintaining tissue homeostasis and modulating the immune response. Chronic low-grade inflammation in metabolic tissues is now recognized as a central feature of obesity that exacerbates the progression of insulin resistance.1–3 The inflammatory state in obesity is distinct from classical inflammation activated by pathogens in that it is engaged in response to nutrient excess and relatively chronic in nature. The pathological expansion of adipose tissue in obesity leads to elevated production of proinflammatory cytokines, increased infiltration of immune cells, particularly adipose tissue macrophages, and the formation of crown-like structures, where dead adipocytes and adipocyte remnants are surrounded by phagocytic macrophages.4,5 Remarkably, whereas resident adipose tissue macrophages in lean subjects are primarily alternatively activated M2 macrophages, high-fat feeding induces a phenotypic switch in macrophage polarization toward a proinflammatory type in mouse adipose tissue.8 In addition, chronic inflammation leads to extensive and potentially pathogenic remodeling of adipose tissue in obesity.9 The relationship between macrophage polarization and insulin sensitivity extends beyond simple correlation. In fact, mouse models with defective proinflammatory cytokine signaling tend to have improved glucose homeostasis and insulin sensitivity after diet-induced obesity.1,3,5 On the contrary, genetic and pharmacological manipulations that impair macrophage alternative activation exacerbate obesity-induced insulin resistance and associated metabolic disorders, such as hepatic steatosis. Anti-inflammation therapies have demonstrated promising effects in lowering blood glucose in recent clinical studies.1,3

How is macrophage polarization fine-tuned in metabolic tissues? One of the most striking aspects of nutrient excess-induced inflammation is that certain nutrients are capable of directly engaging inflammatory signaling pathways. Saturated fatty acids bind to toll-like receptor (TLR) and activate proinflammatory response whereas polyunsaturated fatty acids elicit beneficial metabolic effects in part through repressing inflammatory signaling.10,11 Chronic nutrient excess also promotes endoplasmic reticulum stress and stimulates c-Jun N-terminal kinase/IκB kinase signaling, leading to nuclear factor κB activation and the induction of proinflammatory gene expression.12 Recent studies have identified several transcription factors and coactivators that regulate macrophage alternative activation. Signal transducer and activator of transcription 6 is a transcription factor downstream of IL-4 receptor signaling that plays a crucial role in specifying the alternatively activated phenotype.13 Signal transducer and activator of transcription 6 induces the expression of peroxisome proliferator-activated receptor gamma coactivator-1 beta, which promotes mitochondrial oxidative metabolism, a key feature of alternatively activated macrophages. Nuclear hormone receptors peroxisome proliferator-activated receptors γ and δ appear to be indispensable for sustaining alternative activation state.1 Interestingly, Kruppel-like factor 4 promotes M2 macrophage polarization through a dual mechanism: activation of M2 genetic program cooperatively with signal transducer and activator of transcription 6 and active repression of M1 macrophage gene expression.14 In this issue of Circulation, Zhou and colleagues15 identified microRNA-223 (miR-223) as an important regulator of macrophage polarization and provided evidence that supports the functional significance of this new pathway in metabolic homeostasis (Figure). MicroRNAs (miRNAs) are short noncoding RNAs that are approximately 22 nucleotide in length and modulate gene expression through binding to target mRNAs.16 The pairing of miRNA to its target mRNAs...
Circulation
June 12, 2012

Figure. Regulation of macrophage polarization and metabolic homeostasis by miR-223. MiR-223 targets Pknox1 through binding to its 3’ untranslated region and promotes the alternative (M2) activation pathway. Mice lacking miR-223 have elevated classically (M1) activated macrophages and develop more severe insulin resistance after high-fat feeding. MiR-223 may modulate systemic energy metabolism through its cell-autonomous actions in macrophages and potentially by targeting metabolic tissues after its secretion into circulation.

typically results in their degradation and/or repression of translation. Accumulating evidence has demonstrated that miRNAs represent an important layer of gene regulation in the context of metabolic homeostasis. For example, miR-33a and miR-33b, whose host genes are SREBF2 and SREBF1, respectively, are critical regulators of cholesterol metabolism, whereas miR-103 and miR-107 regulate insulin sensitivity and glucose homeostasis by modulating caveolin-1 in adipocytes. Previous studies have implicated different miRNA members in the regulation of innate and adaptive immune responses as well as immune cell differentiation. However, a role for miRNA in macrophage polarization has not been explored.

MiR-223 is highly enriched in bone marrow and macrophages isolated from adipose tissue, whereas its expression in adipocytes is relatively low. In cultured bone marrow–derived macrophages, miR-223 expression was dramatically induced in response to IL-4 but significantly repressed by LPS treatments, suggesting that miR-223 may regulate certain aspects of macrophage activation. In support of this, miR-223–deficient macrophages elicited a heightened response to LPS in the induction of tumor necrosis factor α gene expression. In contrast, the expression of Arginase 1, a marker for M2 macrophages, was blunted in the absence of miR-223. Consistently, the expression of proinflammatory cytokines, such as tumor necrosis factor α, IL-6, and IL-1β, in miR-223–null adipose tissue was also elevated. These studies demonstrate that miR-223 likely exerts cell-autonomous effects on macrophage polarization. In vivo metabolic analyses revealed that miR-223–deficient mice developed more severe insulin resistance after high-fat feeding that was accompanied with adipose tissue inflammation. Compared with control, adipose tissue macrophages from miR-223–null mice adopted a more proinflammatory profile. Given that miR-223 is highly enriched in myeloid cells, the authors transplanted syngeneic wild-type mice with bone marrow cells isolated from miR-223–deficient mice. Myeloid-specific miR-223 deficiency recapitulated insulin resistance and glucose intolerance observed in miR-223–null mice, suggesting that the metabolic actions of miR-223 are largely attributed to its function in the hematopoietic lineages.

As miR-223 expression is highly responsive to IL-4 and LPS, it could be predicted that its abundance in adipose tissues is likely regulated by diet-induced obesity, which causes a switch from M2 to M1 polarization. Paradoxically, Zhuang et al found that the expression of miR-223 in adipose tissue remains similar between lean and obese groups. However, a role for miRNA in macrophage polarization has not been explored. Particularly, recent studies found that certain miRNAs can be secreted into circulation in the form of microvesicles or lipoprotein particles or in complex with Argonaute proteins. In fact, several disease conditions, including cancer, type 2 diabetes, and cardiovascular diseases, are associated with unique expression signatures of plasma miRNAs, suggesting that circulating miRNAs could serve as novel diagnostic biomarkers. In addition, the presence of relatively
stable miRNAs in circulation supports an emerging role of miRNAs as potential signaling molecules.17

Interestingly, recent work has shown that plasma levels of 5 miRNAs, including miR-223, were significantly decreased in patients with type 2 diabetes.25 In the current study, the authors showed that insulin-stimulated AKT phosphorylation in adipocytes is attenuated in the presence of miR-223–null bone marrow–derived macrophage coculture. Although increased expression of proinflammatory cytokines in miR-223 deficiency provides a plausible explanation, an alternative interpretation of these findings is that miR-223 secreted from the bone marrow–derived macrophages may directly target adipocytes and modulate their insulin sensitivity. To extend this scenario in vivo, it is possible that miR-223 secreted by macrophages may target distal metabolic tissues and exert its effects on energy metabolism in a non–cell autonomous manner. As such, decreased plasma levels of miR-223 in type 2 diabetes mellitus and in miR-223–deficient mice may not only affect macrophage polarization but also regulate metabolic signaling in other tissues. Future experiments are needed to elucidate these intriguing possibilities.

Sources of Funding
This work was supported by National Institutes of Health grants DK077086 and HL097738 (to Dr Lin) and a postdoctoral fellowship (to G.-X.W.) from the American Heart Association.

Disclosures
None.

References

Key Words: Editorials ▪ diabetes mellitus, type 2 ▪ inflammation ▪ macrophages ▪ miR-223, mouse
A MicroRNA Circuitry Links Macrophage Polarization to Metabolic Homeostasis
Zhuo-Xian Meng, Guo-Xiao Wang and Jiandie D. Lin

Circulation. 2012;125:2815-2817; originally published online May 11, 2012;
doi: 10.1161/CIRCULATIONAHA.112.111518
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2012 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://circ.ahajournals.org/content/125/23/2815

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published
in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial
Office. Once the online version of the published article for which permission is being requested is located,
click Request Permissions in the middle column of the Web page under Services. Further information about
this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/