The decision to use antithrombotics for stroke prevention in atrial fibrillation (AF) requires the assessment of an individual patient’s risk of stroke balanced with their likelihood of bleeding on treatment. US practice guidelines have recommended the use of the CHADS2 score (Congestive heart failure, Hypertension, Age \geq75 years, Diabetes mellitus, Stroke [2 points]; graded from 0–6 according to presence of major risk factors; see the Table) for the assessment of stroke risk in patients with AF.1 However, this score cannot precisely categorize all patients at different risks of thromboembolism.2 The CHADS2 model does not account for certain previously underappreciated risk factors, including the increase in stroke risk with age in patients <75 years old and in those with vascular disease, and thus allocates many patients to the low- and intermediate-risk categories who might actually be relatively stroke prone.3 The 2010 European Society of Cardiology guidelines for the management of AF4 recommend use of the more inclusive CHA2DS2-VASc score (Congestive heart failure, Hypertension, Age \geq75 years [2 points], Diabetes mellitus, Stroke/TIA/Thromboembolism [2 points], Vascular disease, Age 65–74 years, Sex category; graded 0–9; see the Table), which incorporates additional risk factors, including age of 65 to 74 years and vascular disease. Validation studies have shown that the CHA2DS2-VASc score performs better than CHADS2 in distinguishing patients at low or intermediate-risk thromboembolic risk.5 In a large Danish registry, thromboembolism rates at 1 year for patients at low risk (score=0) were 0.78%/y with CHA2DS2-VASc and 1.67%/y with CHADS2.6

Risk models have also been developed to stratify bleeding risk in anticoagulated patients. The European Society of Cardiology guidelines recommend the use of the HAS-BLED (hypertension, abnormal renal/liver function, stroke, bleeding history or predisposition, labile international normalized ratio, elderly, drugs/alcohol concomitantly) score (graded from 0–9 based on the presence of risk factors for hemorrhage; see the Table), which was derived from multivariate analysis of predictors of bleeding in several cohorts of patients with AF treated with antithrombics.4 Increasing HAS-BLED scores correlate well with progressive bleeding risk.7 However, this model and others similar to it include many of the same risk factors that also impose greater risk of thromboembolism (eg, increasing age, prior stroke, and hypertension), making clinical decisions difficult when faced with a patient considered to be at high risk of both stroke and bleeding.

In this issue of Circulation, Frierberg and Lip8 present a retrospective analysis of the Swedish nationwide Hospital Discharge Register evaluating the overall net benefit of warfarin anticoagulation among patients with AF at various strata of stroke and bleeding risk. The authors evaluated one of the largest cohorts of patients ever studied (n=170 292) and followed them up for an average of 1.5 years. Net benefit was defined as the rate of stroke without warfarin minus the rate of intracranial hemorrhage on warfarin, and an adjusted net benefit was calculated as the rate of stroke prevented by warfarin relative to the rate of intracranial hemorrhage attributable to warfarin, with the latter multiplied by a weighting factor of 1.5 to account for the more severe outcomes associated with intracranial hemorrhage. The presence of risk factors in study patients and definitions of diagnoses and outcomes were based on appropriate International Classification of Disease codes established during hospital contacts. Information on patient medication use was derived from the Swedish national Prescribed Drug Registry when available, and alcohol intake was assessed from diagnostic codes when applicable.

The 2 major findings of this important study are the following. First, in nearly all patients with AF except those at lowest stroke risk, warfarin reduces the stroke risk to a greater extent than it augments risk of intracranial hemorrhage, resulting in a positive net benefit from treatment; this conclusion remains valid even in patients considered to be at moderate to high risk for bleeding as assessed by the HAS-BLED score. Second, the CHA2DS2-VASc score is more effective than the traditional CHADS2 risk model in identifying the group of patients at very low risk of stroke in whom the risk balance of warfarin therapy and no anticoagulation favors more conservative management.

In patients with high risk scores with either CHA2DS2-VASc or HAS-BLED, which are frequently both elevated in patients with advancing age, warfarin use was associated with the most substantial net benefit. Even when the frequently disastrous consequences of intracranial hemorrhage were weighted as 1.5 times the severity of ischemic stroke, the net benefit favored warfarin treatment in all patients except those at lowest stroke risk (CHA2DS2-VASc=0). Advancing age is a known major risk factor for
both stroke and warfarin-associated hemorrhage. Although the risk of bleeding rises only modestly with the age-related risk of stroke in patients with AF,9,10 the fear of hemorrhage in the elderly is often cited as justification to withhold anticoagulation. Singer et al11 found the net hemorrhage in the elderly is often cited as justification to withhold anticoagulation which is supported by the analysis of the Danish registry that found rates of thromboembolism to be lower with vitamin K antagonists in all risk categories except those with a CHA2DS2-VASc score of 0.6 Together, such observations suggest that a low-risk CHADS2 score may provide false reassurance, prompting clinicians to defer anticoagulation in patients who might actually benefit. The authors suggest that anticoagulation should be considered the rule in patients with AF, deferring only in cases of patients with no CHA2DS2-VASc risk factors or those at “very high” bleeding risk (ie, those with malignant hypertension or prior episodes of major bleeding), conservative monitoring without treatment should be considered.

There are 2 relative limitations related to the design of this retrospective, nonblinded, nonrandomized cohort study, as acknowledged by the authors. First, the authors used a national registry to identify both patients with AF and patients with ischemic and hemorrhagic stroke during hospital contacts; the full validity and selection bias associated with such registries can be questioned. Furthermore, such registries preclude identification of other important risk factors or those at “very high” bleeding risk (ie, those with malignant hypertension or prior episodes of major bleeding), conservative monitoring without treatment should be considered.

The findings by Friberg and Lip6 also reinforce the advantage of the CHA2DS2-VASc model relative to CHADS2 for stroke risk stratification. Although warfarin appeared beneficial in patients across all CHADS2 scores in this study, a CHA2DS2-VASc score of 0 identified a cohort of patients at very low stroke risk in whom anticoagulation was associated with no benefit or some degree of risk. The finding that the lowest-risk patients, as assessed by CHA2DS2-VASc but not CHADS2, may safely defer anticoagulation is supported by the analysis of the Danish registry that found rates of thromboembolism to be lower with vitamin K antagonists in all risk categories except those with a CHA2DS2-VASc score of 0.6 Together, such observations suggest that a low-risk CHADS2 score may provide false reassurance, prompting clinicians to defer anticoagulation in patients who might actually benefit. The authors suggest that anticoagulation should be considered the rule in patients with AF, deferring only in cases of patients with no CHA2DS2-VASc risk factors or those at “very high” bleeding risk (ie, those with malignant hypertension or prior episodes of major bleeding), conservative monitoring without treatment should be considered.

There are 2 relative limitations related to the design of this retrospective, nonblinded, nonrandomized cohort study, as acknowledged by the authors. First, the authors used a national registry to identify both patients with AF and patients with ischemic and hemorrhagic stroke during hospital contacts; the full validity and selection bias associated with such registries can be questioned. Furthermore, such registries preclude identification of other important risk factors or those at “very high” bleeding risk (ie, those with malignant hypertension or prior episodes of major bleeding), conservative monitoring without treatment should be considered.

The findings by Friberg and Lip6 also reinforce the advantage of the CHA2DS2-VASc model relative to CHADS2 for stroke risk stratification. Although warfarin appeared beneficial in patients across all CHADS2 scores in this study, a CHA2DS2-VASc score of 0 identified a cohort of patients at very low stroke risk in whom anticoagulation was associated with no benefit or some degree of risk. The finding that the lowest-risk patients, as assessed by CHA2DS2-VASc but not CHADS2, may safely defer anticoagulation is supported by the analysis of the Danish registry that found rates of thromboembolism to be lower with vitamin K antagonists in all risk categories except those with a CHA2DS2-VASc score of 0.6 Together, such observations suggest that a low-risk CHADS2 score may provide false reassurance, prompting clinicians to defer anticoagulation in patients who might actually benefit. The authors suggest that anticoagulation should be considered the rule in patients with AF, deferring only in cases of patients with no CHA2DS2-VASc risk factors or those at “very high” bleeding risk (ie, those with malignant hypertension or prior episodes of major bleeding), conservative monitoring without treatment should be considered.

There are 2 relative limitations related to the design of this retrospective, nonblinded, nonrandomized cohort study, as acknowledged by the authors. First, the authors used a national registry to identify both patients with AF and patients with ischemic and hemorrhagic stroke during hospital contacts; the full validity and selection bias associated with such registries can be questioned. Furthermore, such registries preclude identification of other important risk factors or those at “very high” bleeding risk (ie, those with malignant hypertension or prior episodes of major bleeding), conservative monitoring without treatment should be considered.
factors such as labile international normalized ratios in patients taking warfarin and concomitant use of illicit and over-the-counter agents, and they may fail to account for malleable risk factors such as control of hypertension. Second, the effect of warfarin on both ischemic stroke prevention and hemorrhagic risk is strongly correlated to the time spent within the target therapeutic range, information impossible to provide in such a retrospective registry analysis. Of interest, in the Randomized Evaluation of Long-Term Anticoagulation Therapy (RE-LY) study, the proportion of patients maintained within the target therapeutic range among warfarin-treated patients in Sweden was particularly high and substantially superior to that seen worldwide including in the United States, raising questions as to whether the balance of risk and benefit is different in centers with less successful management of anticoagulation intensity.

This study by Friberg and Lip highlights 3 evolving directions in the field of antithrombotic therapy for stroke prevention in patients with AF. First, warfarin is associated with substantial clinical benefit in most patients with AF; thus, the decision of whether to implement anticoagulation should be based less on appreciation of high-risk patients and more on the careful identification of those at very low thromboembolic risk (achieved more effectively with the CHA₂DS₂-VASc model) in whom anticoagulation may be safely deferred. Second, because stroke and bleeding risk frequently track together in an individual patient, bleeding risk models such as HAS-BLED should not be used alone to dissuade the use of anticoagulation in patients at high stroke risk; rather, an elevated bleeding score should be considered in patients at intermediate risk of stroke in whom deferral of anticoagulation may be reasonable. Clinical practice will likely move toward the use of anticoagulants for all patients with AF, except in those at very low risk of stroke or very high risk of bleeding (ie, those with malignant hypertension or prior episodes of major hemorrhage). Third, looking forward, the emergence of new oral antithrombotic alternatives to warfarin may further lower the anticoagulation threshold. Dabigatran, rivaroxaban, and apixaban have each demonstrated at least similar efficacy for ischemic stroke prevention compared with warfarin with lower rates of intracranial hemorrhage. Future assessments of net benefit using novel agents may progressively favor treatment in patients at incrementally lower risk of stroke, so that even more patients with AF will be offered antithrombotic therapy.

Disclosures

None.

References

Net Clinical Benefit of Warfarin: Extending the Reach of Antithrombotic Therapy for Atrial Fibrillation
Valentin Fuster and Jason S. Chinitz

Circulation. 2012;125:2285-2287; originally published online April 18, 2012;
doi: 10.1161/CIRCULATIONAHA.112.102319
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2012 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/125/19/2285

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation_ is online at:
http://circ.ahajournals.org/subscriptions/