Weighing the Evidence for Decision Making About Percutaneous Coronary Intervention in Patients With Stable Coronary Artery Disease

William E. Boden, MD

“To have striven, to have made the effort, to have been true to certain ideals—this alone is worth the struggle.”

——William Penn

Since the first percutaneous coronary intervention (PCI) was performed 35 years ago, there have been profound and sustained evolutions in catheter-based revascularization that have shifted the treatment of patients with coronary artery disease (CAD) largely away from an initial pharmacological approach to one that has increasingly emphasized an anatomically driven management strategy. Because there are abundant clinical trial data that support the benefit of urgent/emergent PCI in patients with ST-segment–elevation myocardial infarction or non–ST-segment–elevation acute coronary syndromes (ACS) in reducing death or myocardial infarction (MI),1–6 there has been an expanding use of PCI and physician embracement of coronary stenting that has revolutionized patient management and clinical outcomes in these high-risk patients.

Less well recognized and appreciated over the past 2 decades has been the concomitant evolution and refinement in medical therapy, which has become increasingly robust by contemporary standards and now includes the routine use of evidence-based “disease-modifying” secondary prevention therapies (eg, aspirin, thienopyridines, statins, inhibitors of the renin-angiotensin system, and β-blockers for post-MI patients), all of which have been shown in placebo-controlled, randomized controlled trials (RCTs) to reduce death and MI in CAD patients. Additionally, important treatments directed primarily toward anginal symptoms and relief of ischemia (eg, β-blockers for angina, calcium channel blockers, long-acting nitrates, and ranolazine) are widely used clinically. When these proven therapies are combined with lifestyle interventions (a heart-healthy diet and weight loss/maintenance, smoking cessation, and regular physical exercise), the aggregation of these complementary and addi-

tive management approaches is frequently referred to as optimal medical therapy (OMT).7

It is against this therapeutic backdrop that clinicians frequently are faced with discordant evidence from clinical trials that complicate decision making for patients with symptomatic CAD. We universally accept the fact that total or subtotal coronary occlusion after plaque rupture or fissuring in ACS patients is a cardiovascular emergency that cannot be optimally managed medically. By contrast, several RCTs such as the Clinical Outcomes Utilizing Revascularization and Aggressive druG Evaluation (COURAGE) Trial,7 Bypass Angioplasty Revascularization 2 Diabetes Trial (BARI-2D),8 and Japan Stable Angina Pectoris (JSAP) study,9 as well as numerous meta-analyses of these RCTs,10–14 including a very recent one of 8 stent trials in the era of modern medical therapy,15 have all failed to demonstrate any incremental clinical benefit for PCI above and beyond OMT for the reduction of death or nonfatal MI, hospitalization for ACS, need for unplanned revascularization, and a durable, sustained effect on angina relief—findings quite in contrast to those achieved with PCI in acute MI or ACS patients.15–6

Yet, although data derived from RCTs are frequently cited as the putative “gold standard” of high-quality scientific evidence that underlies our professional society treatment guidelines, there are nonetheless well-recognized shortcomings that impact the degree to which such data can be generalized more broadly to the universe of patients who are treated in the “real-world” setting of routine clinical practice. Thus, an equally important source of scientific evidence derives from observational studies, prospective registries, and longitudinal clinical databases. Among the most important of these in CAD management over the past 15 years has been that of the New York State Cardiac Advisory Board’s Cardiac Diagnostic Catheterization Database and PCI Registry. Dr Hannan and his coworkers have made significant and sustained contributions to our collective understanding of the real-world implications of myocardial revascularization in clinical practice, and once again, in this issue of Circulation, this group of investigators has reported on the comparative outcomes for patients who do and do not undergo PCI for stable CAD in New York State.16

Because there is a paucity of data regarding what treatments patients receive after undergoing diagnostic coronary angiography for stable CAD, Hannan et al16 examined the 4-year clinical outcomes between patients who received routine medical treatment (RMT) with or without PCI between 2003 and 2008. Overall, a total of 9586 patients were followed up prospectively in this registry, of whom 8486 (or
versus 21.2%, RMT had a significantly lower rate of death or MI (16.5% who received RMT alone, patients who received PCI plus PCI alone, the propensity matching comprised only 933 matched pairs of patients (n=1866).

The main study findings revealed that compared with those who received RMT alone, patients who received PCI plus RMT had a significantly lower rate of death or MI (16.5% versus 21.2%, P=0.003), mortality (10.2% versus 14.5%, P=0.02), MI (8.0% versus 11.3%, P=0.007), and subsequent revascularization (24.1% versus 29.1%, P=0.005). Adjusted hazard ratios representing the relative outcomes across the entire follow-up period (up to 4 years) also favored the PCI-plus-RMT versus RMT-only group for both death/MI and death alone. The rate of PCI for stable CAD in this analysis before COURAGE (2003–2007) was 88.4% and was virtually identical (88.7%) after COURAGE (2008). Of note, there were no differences in comparative outcomes for patients <65 years of age or for patients who underwent PCI for single-vessel CAD between the PCI-plus-RMT and RMT-alone groups.

Thus, when physicians confront the decision of how best to treat patients with symptomatic CAD, they frequently consider whether the initial management approach should be OMT alone or OMT in addition to coronary revascularization—generally PCI in the vast majority of patients for whom revascularization would be considered. In such a situation, should physicians be guided more by the findings derived from multiple RCTs and meta-analyses of these studies, or should they rely instead on the findings from observational studies and prospective registries? How should the discerning, practicing physician make sense of what appear to be diametrically opposite findings and conclusions regarding PCI for stable CAD from RCTs like COURAGE and BARI-2D (along with some 6 meta-analyses) and the data from observational studies like the current New York State Registry report? Are there important clues that might represent insights into how these data should be interpreted, and, as will be examined, is it possible that the findings from the present population-based study might not really be as apparently positive for PCI as they would at first appear?

The important observations from this analysis can be summarized as follows:

- As the authors acknowledge, there were significant differences in many important baseline characteristics between the PCI-plus-RMT and RMT-alone groups that no amount of propensity matching could completely correct or resolve. The RMT-treated patients were older, generally sicker, and had more comorbidities (higher rates of heart failure, left ventricular dysfunction, prior MI, peripheral vascular disease, renal failure, and prior coronary artery bypass graft surgery).
- Unmeasured factors such as coronary lesion characteristics, bleeding risks, noncardiac comorbidities, differential rates of medication usage, the highly disproportionate percentage of patients who underwent PCI (~90%) versus RMT alone (11%), and uncertainties as to what led to referral for PCI or RMT create significant confounding and selection bias that could seriously skew the results in favor of PCI.
- The small cohort of 933 matched pairs represented only 20% of the total population undergoing diagnostic coronary angiography, and as noted above, the fact that only ~10% of patients received RMT alone raises serious concerns about the validity of the data and the degree to which these highly selected results can be generalized to the totality of CAD patients in the “real world.”
- Although the median follow-up for the propensity-matched cohort was 2.87 years, the statistical comparisons for outcomes data were based on 4-year event rates. This methodological inconsistency is not explained adequately.
- Most importantly, RMT is never defined in the present study. In fact, the authors acknowledge that “the nature of the medical therapy provided to the RMT patients in [their] study is completely unknown, and undoubtedly many RMT patients received nonoptimal treatment.”
- The authors propose that the 2 possible reasons why RMT outcome rates were higher than in COURAGE are that the New York State RMT population was significantly less selected (and therefore at a higher risk) or because “patients had RMT instead of OMT.” A frequent, but erroneous, criticism of the COURAGE trial has created a misperception that these patients were “low risk” or that higher-risk patients were systematically excluded. The accompanying Table compares the New York State overall study population of 9586 patients, the 1886 matched pairs in the propensity analysis, and the COURAGE Trial study population of 2287 patients. For virtually all relevant baseline characteristics, the COURAGE patients had comparable rates of positive stress tests, heart failure, left ventricular function, prior revascularization, diabetes mellitus, cerebrovascular and peripheral vascular disease, and Canadian Cardiovascular Society angina class. Compared with the New York State data set, COURAGE patients were younger and less likely to be female, but they had higher rates of prior MI, renal failure, and significantly more extensive angiographic multivessel CAD. In short, it is highly unlikely that any differences in clinical outcomes between these 2 studies could be explained by the continued nonfactual assertions that COURAGE patients were a “highly select population” and that the “lower mortality rate in COURAGE” occurred because “many high-risk patents were excluded.”
- It is unclear why the rate for PCI in stable CAD in New York State was so remarkably high, at ~90%. Given the absence of evidence-based data in support of PCI clinical benefit, both before and after COURAGE, one would have anticipated a greater degree of equipoise in the choice of treatment for this population for nonacute CAD patients with chronic angina, perhaps with rates of initial PCI that...
Table. Comparative Baseline Characteristics Between New York State Cardiac Diagnostic Catheterization Database and COURAGE Trial

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>All New York State Patients (n=9586)</th>
<th>Propensity-Matched Patients (n=1866)</th>
<th>COURAGE Patients (n=2287)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y</td>
<td>65.1 ±11.0</td>
<td>66.4 ±11.2</td>
<td>62.9 ±9.9</td>
</tr>
<tr>
<td><65</td>
<td>47</td>
<td>43</td>
<td>60</td>
</tr>
<tr>
<td>65–74</td>
<td>32</td>
<td>30</td>
<td>29</td>
</tr>
<tr>
<td>≥75</td>
<td>22</td>
<td>27</td>
<td>11</td>
</tr>
<tr>
<td>Female</td>
<td>34</td>
<td>34</td>
<td>15</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>71</td>
<td>68</td>
<td>86</td>
</tr>
<tr>
<td>Black</td>
<td>16</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>Other</td>
<td>14</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>Body mass index, kg/m²</td>
<td>30.05 ±6.1</td>
<td>29.8 ±6.1</td>
<td>29.6 ±5.0</td>
</tr>
<tr>
<td>≤18</td>
<td>0.6</td>
<td>0.9</td>
<td>0.2</td>
</tr>
<tr>
<td>19–40</td>
<td>93</td>
<td>93</td>
<td>96</td>
</tr>
<tr>
<td>>40</td>
<td>7</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Stress test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Result unknown</td>
<td>35</td>
<td>37</td>
<td>28</td>
</tr>
<tr>
<td>Positive test</td>
<td>65</td>
<td>63</td>
<td>79*</td>
</tr>
<tr>
<td>Viable myocardium</td>
<td>Ischemic myocardium†</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small</td>
<td>11</td>
<td>23</td>
<td>63</td>
</tr>
<tr>
<td>Medium/large</td>
<td>89</td>
<td>67</td>
<td>37</td>
</tr>
<tr>
<td>Vessel disease</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1, No proximal LAD</td>
<td>59</td>
<td>62</td>
<td>23</td>
</tr>
<tr>
<td>1, With proximal LAD</td>
<td>11</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>2, No proximal LAD</td>
<td>26</td>
<td>26</td>
<td>27</td>
</tr>
<tr>
<td>2, With proximal LAD or 3-vessel disease</td>
<td>4</td>
<td>4</td>
<td>42</td>
</tr>
<tr>
<td>History of CHF</td>
<td>5</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Ejection fraction, %</td>
<td>...</td>
<td>...</td>
<td>60.9 ±10.7</td>
</tr>
<tr>
<td><40%</td>
<td>4</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>40–50%</td>
<td>10</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>>40%</td>
<td>80</td>
<td>76</td>
<td>83</td>
</tr>
<tr>
<td>CCS angina class</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>13</td>
<td>20</td>
<td>12</td>
</tr>
<tr>
<td>I</td>
<td>16</td>
<td>22</td>
<td>30</td>
</tr>
<tr>
<td>II</td>
<td>34</td>
<td>35</td>
<td>37</td>
</tr>
<tr>
<td>III</td>
<td>37</td>
<td>24</td>
<td>21</td>
</tr>
<tr>
<td>Prior MI</td>
<td>13</td>
<td>13</td>
<td>39</td>
</tr>
<tr>
<td>Prior PCI</td>
<td>25</td>
<td>22</td>
<td>16</td>
</tr>
<tr>
<td>Prior CABG</td>
<td>13</td>
<td>17</td>
<td>11</td>
</tr>
<tr>
<td>Cerebrovascular disease</td>
<td>6</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>PVD</td>
<td>7</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>33</td>
<td>36</td>
<td>34</td>
</tr>
<tr>
<td>Renal failure</td>
<td>1</td>
<td>1</td>
<td>3‡</td>
</tr>
</tbody>
</table>

COURAGE indicates Clinical Outcomes Utilizing Revascularization and Aggressive drug Evaluation trial; LAD, left anterior descending coronary artery; CHF, congestive heart failure; CCS, Canadian Cardiovascular Society; MI, myocardial infarction; PCI, percutaneous coronary intervention; CABG, coronary artery bypass graft; and PVD, peripheral vascular disease.

Values are mean ± SD or percentages.

*ST-segment depression >1.0 mm.
†Ischemic myocardium: “small” indicates none/minimal; “large,” moderate/severe (by perfusion scintigraphy).
‡Renal disease (estimated glomerular filtration rate <60 mL/min.)
would be in the 50% to 60% range. These data are troubling and suggest that decision making in such an important population of patients is not in conformity with existing clinical practice guidelines.

- It is particularly interesting that Hannan and coworkers16 were unable to demonstrate that patients who received PCI plus RMT had better clinical outcomes than those who received RMT alone for 2 common and important subsets: patients <65 years of age and those who had angiographic single-vessel CAD. A recent assessment of the American College of Cardiology National Cardiovascular Data Registry revealed that among the 405,824 patients who underwent elective PCI for stable ischemic heart disease in the United States between July 1, 2009, and September 30, 2011, 43% were <65 years old, and 46% underwent PCI for single-vessel CAD.17 Perhaps the findings of Hannan et al16 should guide physician decision making as to who would (or would not) benefit and, as an important corollary, who should (or should not) undergo PCI for stable CAD and chronic angina.

- Lastly, the authors highlight that several other studies have shown that medication adherence is generally poor, and many other studies have shown that adherence strongly affects outcomes. They argue that “although OMT is as effective as PCI/OMT for patients with stable CAD in a tightly controlled trial with excellent adherence, different results might occur in real-world situations.” Most certainly, this could be true, but if no attempt was even made to initiate or quantify OMT, as in the present study, can one infer from this that it is not worth even attempting or achieving? If the bar to initiate OMT is set so low, and the physician motivation and commitment to support and achieve OMT is so limited and superficial, is it surprising that the attitude or “message” then becomes, “It’s much easier to just do (and advocate for) PCI,” and by contrast, just “too hard” to achieve OMT, in spite of what the compelling scientific evidence tells us? In other words, for medical therapy, has “the perfect become the enemy of the good?”

In the final analysis, how can clinicians interpret the findings of the present study in the context of trials like COURAGE and BARI-2D, in which guideline-directed medical therapy (or OMT) was the operant comparator with PCI? In the setting of such absent information about the extent and magnitude of medical therapy, do these data really inform clinical practice? Clearly, RMT does not equal OMT. From the present study, should we conclude that clinical outcomes are significantly better than medical therapy when we do not even know what constituted medical therapy in this nonrandomized comparison? Do we infer from these data that because almost 90% of stable CAD patients with angina underwent PCI, this is a defendable, evidence-based therapeutic approach? Is it a fair criticism that because high rates of adherence to treatment targets with OMT were achieved in RCTs,7,8 we should dismiss or diminish the importance of these therapeutic goals in routine clinical practice and, by inference, opt for the easier management approach and perceived “quicker fix” of PCI?

Although during the 5 years since COURAGE was originally published,7 some progress and traction in the clinical practice arena has been realized, the unfortunate reality is that neither this study nor BARI-2D have been real “game-changers.” Too few CAD patients are being managed medically when this approach should be undertaken, and too many patients are being deprived of an “OMT-first” treatment paradigm when this would be both an evidence-based and clinically appropriate approach.18 In a 2011 comparison of OMT usage before and after COURAGE by Borden et al,19 very little difference was seen in physician treatment patterns, which suggests that either we are in denial that OMT should be viewed as the foundation for all subsequent CAD therapies or there is an unacceptably sizable blind spot in how we view the importance of OMT through the prism of a PCI-first treatment lens.

This controversy is unlikely to end until more definitive data emerge from clinical trials. The FAME-II trial (Fraction Flow Reserve-Guided Percutaneous Coronary Intervention Plus Optimal Medical Treatment Versus Optimal Medical Treatment Alone in Patients With Stable Coronary Artery Disease) was recently terminated because in patients randomized to PCI that was guided by fractional flow reserve compared with medical therapy alone without revascularization, there was a significantly lower rate of hospitalization for ACS and subsequent unplanned revascularization (FAME-II Trial Investigators, personal communication, March 2012). Although not yet published, this trial is very likely to accelerate the use of PCI as an anatomic treatment that is further refined by an invasive physiological tool to guide its more selective use. Yet FAME-II was not designed to assess whether a fractional flow reserve–guided strategy versus OMT would reduce prognostically important ischemia subtending stenotic coronary segments, and as yet, we have no information about whether death or MI was favorably altered by this approach versus OMT alone. By contrast, the National Heart, Lung, and Blood Institute–funded International Study of Comparative Health Effectiveness with Medical and Invasive Approaches (ISCHEMIA) Trial, slated to begin enrollment in mid-2012, will address prospectively, in 8000 high-risk patients, the critical question of whether patients with moderate to severe myocardial ischemia who receive optimal myocardial revascularization combined with OMT will have a lower rate of long-term cardiovascular death or MI than those treated with OMT alone (ISCHEMIA Trial Investigators, personal communication, March 2012).

In summary, until the results of these newer trials are known, we must base treatment decisions in stable CAD patients with chronic angina on the best available evidence. In that context, we need to weigh and integrate all the current scientific information—from RCTs, meta-analyses, and observational studies—in an attempt to define and individualize the best treatment for stable CAD patients. Yet in so doing, we should not extrapolate the potential life-saving benefits of PCI in ACS patients to the broad population of stable CAD and chronic angina patients in whom PCI has not been shown to be superior to OMT and lifestyle intervention. Embracing optimal medical therapy in a PCI-first practice culture takes
enormous effort, dedication, and commitment, but in the end, its benefits are well worth the struggle.

Disclosures
None.

References

Key Words: Editorials | comparative effectiveness research | coronary disease | ischemic heart disease | outcomes | percutaneous coronary intervention
Weighing the Evidence for Decision Making About Percutaneous Coronary Intervention in Patients With Stable Coronary Artery Disease
William E. Boden

Circulation. 2012;125:1827-1831; originally published online March 22, 2012; doi: 10.1161/CIRCULATIONAHA.112.100669

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2012 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/125/15/1827

Data Supplement (unedited) at:
http://circ.ahajournals.org/content/suppl/2013/05/12/CIRCULATIONAHA.112.100669.DC1
http://circ.ahajournals.org/content/suppl/2013/10/02/CIRCULATIONAHA.112.100669.DC2

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Circulation* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Circulation* is online at:
http://circ.ahajournals.org//subscriptions/
Commentaire éditorial

Evaluation des données pour la prise de décision d’une intervention coronaire percutanée chez les patients présentant une maladie coronaire stable

William E. Boden, MD

« Donner le meilleur de soi, ne pas ménager sa peine, être fidèle à certains idéaux — cela à lui seul vaut de lutter. »

— William Penn

Depuis la réalisation de la toute première intervention coronaire percutanée (ICP) il y a trente-cinq ans, de profondes améliorations ont régulièrement été apportées à la revascularisation par cathétérisme, qui, de l’approche initiale essentiellement fondée sur le traitement pharmacologique, ont eu pour effet de faire évoluer la prise en charge des patients coronariens vers une stratégie faisant une part de plus en plus importante à l’anatomie. Du fait de l’accumulation des données d’essais cliniques montrant l’impact bénéfique de la réalisation d’une ICP en urgence en termes de réduction de la mortalité ou de l’incidence de l’infarctus du myocarde (IDM) chez les patients présentant un IDM avec sus-décalage du segment ST ou d’un syndrome coronaire aigu (SCA) sans sus-décalage de ST, les médecins ont été de plus en plus portés à pratiquer des ICP et à poser des stents coronaires, ce qui a radicalement changé la prise en charge et le pronostic clinique de ces patients à haut risque.

Ces vingt dernières années, on a, en revanche, moins bien pris la mesure des améliorations qui ont été parallèlement apportées au traitement médical, dont les fondements sont devenus de plus en plus solides au regard des normes actuelles et qui fait aujourd’hui couramment appel aux thérapeutiques de prévention secondaire validées qui sont les « modificateurs de maladie » (représentées, entre autres, par l’aspirine, les thiéopirepinides, les statines, les inhibiteurs du système rénine-angiotensine et les bêtabloquant pour les patients en post-infarctus), dont des essais randomisés et contrôlés contre placebo (ERC) ont établi qu’ils diminuent les risques de décès et d’IMD chez les patients coronariens. Il est, en outre, fait un large usage des médicaments majeurs principalement destinés à réduire les symptômes angineux et à combattre l’ischémie (dont, notamment, les bêtabloquants employés pour traiter l’angor, mais aussi les inhibiteurs calciques, les dérivés nitrés d’action prolongée et la ranolazine). Lorsque ces thérapeutiques pharmaco logiques validées sont associées à des mesures visant à modifier l’hygiène de vie (régime alimentaire cardioprotecteur et diminution durable du poids corporel, arrêt du tabac et activité physique régulière), la mise en œuvre de ces stratégies de prise en charge complémentaires et additives est fréquemment qualifiée de « traitement médical optimal » (TMO).

C’est dans ce contexte thérapeutique que les cliniciens se trouvent fréquemment confrontés aux données discordantes des essais cliniques, qui compliquent les prises de décision face aux patients atteints de maladie coronaire symptomatique. Nous nous accordons tous à considérer qu’une occlusion coronaire complète ou presque faisant suite à la rupture ou à la fissuration d’une plaque d’athéroscoroièse chez un patient présentant un SCA est une urgence cardiovasculaire que le traitement médical ne permet pas de prendre en charge de façon optimale. En revanche, plusieurs ERC tels que COURAGE (Clinical Outcomes Utilizing Revascularization and Aggressive druG Evaluation [étude comparative des résultats cliniques de la revascularisation et du traitement médicamenteux agressif]), BARI-2D (Bypass Angioplasty Revascularization 2 Diabetes [second essai sur la revascularisation par angioplastie et pontage dans le diabète]) et JSAP (Japan Stable Angina Pectoris (angor stable au Japon)) ainsi que diverses méta-analyses de ces ERC, dont celle récemment publiée sur huit essais de revascularisation par stent menés à l’ère du traitement médical moderne, ont montré l’absence de supériorité clinique de l’ICP sur le TMO tant en termes de diminution des taux de décès, d’IMD non fatal, d’hospitalisations pour SCA et de revascularisations non programmées que de durabilité de l’effet exercé sur les manifestations d’angor, observations quelque peu opposées aux résultats de l’ICP chez les patients atteint d’un IDM aigu ou d’un SCA.

De fait, bien que les données issues des ERC soient fréquemment présentées comme le supposé « étalon-or » en matière de preuves scientifiques de première qualité sur lesquelles la communauté médicale fonde ses recommandations therapeutiques, ces données comportent toutefois des faiblesses bien établies qui font qu’elles ne peuvent être généralisées à l’ensemble des patients qui sont traités en pratique clinique quotidienne. C’est pourquoi il est une source de données scientifiques tout aussi précieuse qui est représentée par les études observationnelles, les registres...
prospectifs et les bases de données cliniques longitudinales. L’un des instruments les plus importants mis à notre disposition depuis maintenant quinze ans dans le domaine de la prise en charge de la maladie coronaire est le Cardiac Diagnostie Catheterization Database and PCI Registry (registre des ICP couplé à une base de données sur les cathéterismes cardiaques à visée diagnostique) géré par le comité consultatif cardiologique de l’Etat de New York. Le Dr Hannan et son équipe, qui ont déjà puissamment contribué à notre prise de conscience collective des implications effectives de la revascularisation myocardique en pratique clinique, viennent de publier dans Circulation les résultats d’une étude qui visait à comparer le devenir des patients coronariens stables résidant dans l’Etat de New York selon qu’ils avaient ou non fait l’objet d’une ICP.16

En raison du manque de données sur les traitements mis en œuvre chez les individus atteints d’une maladie coronaire stable ayant donné lieu à la réalisation d’une coronarographie diagnostique, Hannan et al16 ont comparé les résultats cliniques à 4 ans chez les patients ayant bénéficié d’un traitement médical conventionnel (TMC) entre 2003 et 2008 selon qu’une ICP avait été ou non également pratiquée. Dans le cadre ce registre, 9 586 patients ont été suivis sur un mode prospectif, parmi lesquels 8 486 (89 %) avaient fait l’objet d’une ICP, 2 % avaient bénéficié d’un pontage et seulement 11 % avaient reçu un traitement médical. Toutefois, le principal centre d’intérêt de cette analyse a été une cohorte de patients appariés par calcul des scores de propensions pour 20 facteurs susceptibles d’avoir exercé une influence à la fois sur le traitement mis en œuvre (ICP plus TMC ou TMC seul) et sur ses résultats. Les critères de jugement retenus dans l’étude ont été l’incidence d’un événement composite représenté par le décès ou l’IDM, les taux de décès uniques et d’IDM seuls ainsi que le taux de revascularisations ultérieures au cours d’une période médiane de suivi de 2,87 ans. En raison du faible nombre de patients (n = 1 100) qui, comme cela a été mentionné plus haut, avaient uniquement reçu le TMC, l’appariement par calcul des scores de propensions n’a porté que sur 933 paires de patients (n = 1 866).

Les principaux résultats de l’étude ont été que, parallèlement aux patients ayant seulement reçu le TMC, ceux qui avaient en outre bénéficié d’une ICP ont présenté des taux significativement inférieurs d’événements combinant le décès et l’IDM (16,5 % contre 21,2 % ; p = 0,003), de décès (10,2 % contre 14,5 % ; p = 0,02), d’IDM (8,0 % contre 11,3 % ; p = 0,007) et de revascularisations ultérieures (24,1 % contre 29,1 % ; p = 0,005).16 Les rapports de risques ajustés reflétant les taux relatifs d’événements survenus sur l’ensemble de la période de suivi (4 ans) ont également été en faveur du groupe ICP-TMC pour la combinaison décès-IDM et pour le décès seul. Dans cette analyse, le taux d’ICP pratiquées pour traiter des coronaropathies stables a été de 88,4 % au cours de la période antérieure à COURAGE (2003–2007) et est demeuré pratiquement le même (88,7 %) postérieurement à cet essai (2008). Il y a lieu d’observer qu’aucune différence n’a été relevée entre les groupes ICP-TMC et TMC seul quant aux taux d’événements survenus chez les patients âgés de moins de 65 ans ou chez ceux traités par ICP pour une lésion monotronculaire.

Ainsi, lorsque les médecins ont à décider de la façon la plus appropriée de prendre en charge leurs patients atteints d’une maladie coronaire symptomatique, ils sont fréquemment conduits à se demander si l’approche initiale doit être uniquement fondée sur l’instauration d’un TMC ou si celui-ci doit venir en complément d’une revascularisation coronaire, laquelle consistera en une ICP pour la grande majorité des patients chez lesquels l’indication aura été posée. Pour lever le doute, ces médecins doivent-ils s’appuyer préférentiellement sur les résultats des multiples ERC et méta-analyses de ces essais ou doivent-ils plutôt s’en remettre aux données des études observationnelles et des registres prospectifs ? Comment un praticien clairvoyant peut-il tirer profit des résultats et conclusions en apparence diamétralement opposés fournis sur l’emploi de l’ICP chez le coronarien stable par les essais tels que COURAGE et BARI-2D (et les quelque six méta-analyses qui en ont été tirées) et par les études observationnelles comme celle récemment réalisée à partir du registre de l’Etat de New York ? Existe-t-il des éléments déterminants sur lesquels il est possible de s’appuyer pour interpréter ces données et, comme cela est examiné plus loin, se peut-il que les résultats de la présente étude de population ne soient pas aussi favorables à l’ICP qu’ils le paraissent ?

Les points essentiels de l’étude en question peuvent être résumés comme suit :

• Comme les auteurs le relèvent eux-mêmes, les groupes ICP-TMC et TMC seul différaient fortement par de nombreuses caractéristiques initiales importantes, ce qu’aucun appariement en fonction des scores de propensions n’était en mesure de corriger totalement. Les patients pris en charge par le seul TMC étaient plus âgés, généralement plus malades et présentaient davantage de pathologies associées (à savoir des taux supérieurs d’insuffisances cardiaques, de dysfonctions ventriculaires gauches, d’antécédents d’IDM, d’artériopathies des membres inférieurs, d’insuffisances rénales et d’antécédents de pontage aorto-coronaire).

• Les éléments non pris en compte tels que les caractéristiques des lésions coronaires, le risque hémorragique, les pathologies associées non cardiaques, les différences de taux de prescription des médicaments, le pourcentage totalement disproportionné de patients qui ont bénéficié d’une ICP (environ 90 %) comparativement au groupe ayant uniquement reçu le TMC (11 %) et l’absence d’information sur les motifs ayant conduit à poser l’indication d’une ICP ou d’un TMC constituent d’importants facteurs de confusion à l’origine de biais de sélection ayant pu gravement altérer les résultats en faveur de l’ICP.

• La petite cohorte de 933 paires de patients apparées ne représentait que 20 % de la population totale ayant fait l’objet d’une coronarographie à visée diagnostique et, comme cela est mentionné ci-dessus, le fait que seulement quelque 10 % des patients aient reçu le TMC seul conduit à mettre sérieusement en doute la validité des données et la possibilité d’extension de ces résultats fortement sélectionnés à tous les patients coronariens pris en charge dans la pratique courante.
36 Circulation Janvier 2013

- Alors que la durée médiane de suivi de la cohorte appariée en fonction des scores de propension a été de 2,87 ans, les comparaisons statistiques entre les résultats cliniques ont porté sur les taux d’événements à 4 ans. Cette discordance méthodologique n’a pas reçu d’explication satisfaisante de la part des auteurs.
- Surtout, le TMC n’est jamais expliqué dans l’étude. De fait, les auteurs admettent que « la nature du traitement médical prescrit aux patients du groupe TMC dans l’étude leur [était] complètement inconnue, de nombreux patients inclus dans ce groupe ayant très certainement reçu un traitement non optimal ».
- Les auteurs considèrent que les taux supérieurs d’événements cliniques enregistrés sous TMC dans leur étude comparativement à ceux rapportés dans l’essai COURAGE peuvent éventuellement s’expliquer par le fait que les patients de l’Etat de New York ayant reçu un TMC étaient beaucoup moins sélectionnés (et, donc, encouraient un risque plus important) ou que les « patients avaient reçu un TMC et non le TMO ». Une réserve fréquemment exprimée à l’égard de COURAGE, mais qui est totalement infondée, a donné, à tort, le sentiment que les patients de cet essai étaient « à faible risque » ou que les individus qui encouraient un risque supérieur avaient été systématiquement écartés. Le Tableau qui suit compare les 9 586 patients qui constituaient la cohorte totale de l’étude de l’Etat de New York, les 1 886 paires de patients inclus dans l’analyse fondée sur les scores de propension et les 2 287 patients qui formaient la population de l’essai COURAGE. Au regard de la quasi-totalité des caractéristiques initiales pertinentes, les patients de COURAGE ont présenté des taux comparables d’épreuves d’effort positives, d’insuffisances cardiaques, de dysfonctions ventriculaires gauches, d’antécédents de revascularisation, de diabète, de troubles vasculaires cérébraux, d’arthropathies des membres inférieurs et de manifestations angiennes correspondant aux différentes classes de la Canadian Cardiovascular Society. Comparativement à celle de l’étude de l’Etat de New York, la population de COURAGE était plus jeune et compait moins de femmes, mais les taux d’antécédents d’IDM et d’insuffisances rénales étaient plus élevés et les lésions pluriotunclaires révélées par la coronarographie significativement plus importantes. Dès lors, il est hautement improbable que les différences de résultats cliniques existant entre ces deux études trouvent leur explication dans les allégations non fondées régulièrement avancées, à savoir que les patients de COURAGE auraient constituté une « population hautement sélectionnée » et que « le taux de mortalité inférieur rapporté dans COURAGE tiendrait au fait que « de nombreux patients à haut risque avaient été exclus ».
- Aucun élément ne permet d’expliquer pourquoi le taux d’ICP pratiqué chez les patients de l’Etat de New York atteint d’une maladie coronaire stable a été aussi extra-ordinairement élevé, puisqu’il a atteint près de 90 %. Compte tenu de l’absence de données factuelles démontrant l’impact clinique favorable de l’ICP, aussi bien avant qu’après COURAGE, on se serait attendu à ce que les types de traitements proposés à cette population de patients angineux chroniques indemnes d’événement coronarique aigu aient été mieux équilibrés, avec un taux d’ICP premières de l’ordre de 50 à 60 %. Ces données sont dérangeantes, car elles portent à penser que les décisions thérapeutiques prises à l’égard d’une population aussi importante de patients ne sont pas conformes aux actuelles recommandations en matière de pratiques cliniques.
- Il est particulièrement intéressant que Hannan et al n’ont pas été en mesure de démontrer que la réalisation d’une ICP en sus du TMC avait produit de meilleurs résultats cliniques que le TMC instauré seul dans deux importants sous-groupes de patients que les médecins sont fréquemment appelés à prendre en charge : les sujets âgés de moins de 65 ans et ceux chez lesquels la coronarographie a objectivé la présence d’une lésion monotonculaire. Une récente analyse du registre national de données cardiovasculaires de l’American College of Cardiology a révélé que, sur les 405 824 patients ayant fait l’objet d’une ICP réglée pour prendre en charge une cardiopathie ischémique stable aux Etats-Unis entre le 1er juillet 2009 et le 30 septembre 2011, 43 % avaient moins de 65 ans et 46 % avaient été ainsi traités pour une lésion coronaire monotonculaire. Peut-être les médecins devraient-ils médiéter sur les données de Hannan et al. s’agissant de définir quels sont les patients pour lesquels la réalisation d’une ICP serait (ou non) bénéfique et, corollaire important, quels sont ceux relevant (ou non) d’une telle intervention pour traiter une maladie coronaire stable avec angor chronique.
- Pour finir, les auteurs observent que plusieurs autres travaux ont montré que l’adhésion au traitement médicamenteux est généralement médiocre et que nombre d’autres études ont établi que l’observance du traitement influe fortement sur les résultats cliniques. Ils considèrent que « si, dans un essai rigoureusement contrôlé et bénéficiant d’une excellente observance, le TMO est aussi efficace chez les patients atteints d’une maladie coronaire stable lorsqu’il est prescrit seul que lorsqu’il est couplé à une ICP, il pourrait en être différemment dans la pratique clinique réelle ». Tel est peut-être effectivement le cas, mais, dès lors que, comme dans la présente étude, aucune tentative n’a été faite pour instaurer ou quantifier le TMO, faut-il en conclure qu’il ne vaut même pas la peine d’être tenté ou mené à bien ? Si la barre de mise en œuvre du TMO est placée aussi bas et que la volonté du médecin à préconiser et prescrire un tel traitement TMO est aussi faible et superficielle, faut-il s’étonner que l’attitude ou le « message » véhiculé soit ensuite qu’il est tellement plus simple de pratiquer une ICP (et de la faire accepter au patient) et que, à l’opposé, il est vraiment « trop difficile » de mener à bien un TMO, cela au mépris de ce que nous enseigne une masse colossale de données scientifiques ? En d’autres termes, en matière de traitement médical, « le mieux est-il devenu l’ennemi du bien ? »

En dernière analyse, comment les médecins doivent-ils interpréter les résultats de la présente étude face à ceux des essais COURAGE et BARI-2D, dans lesquels l’ICP a été directement comparée à un traitement médical conforme aux
Tableau. Caractéristiques initiales comparées des patients recensés dans la base de données de l’État de New York sur le cathétérisme cardiaque à visée diagnostique et de ceux inclus dans l’essai COURAGE

<table>
<thead>
<tr>
<th>Caractéristiques</th>
<th>Cohorte totale de l’État de New York (n = 9 586)</th>
<th>Patients appariés pour la propension (n = 1 866)</th>
<th>Patients de l’essai COURAGE (n = 2 287)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>65.1 ± 11.0</td>
<td>66.4 ± 11.2</td>
<td>62 ± 9.9</td>
</tr>
<tr>
<td><65 ans</td>
<td>47</td>
<td>43</td>
<td>60</td>
</tr>
<tr>
<td>65 à 74 ans</td>
<td>32</td>
<td>30</td>
<td>29</td>
</tr>
<tr>
<td>≥75 ans</td>
<td>22</td>
<td>27</td>
<td>11</td>
</tr>
<tr>
<td>Femmes</td>
<td>34</td>
<td>34</td>
<td>15</td>
</tr>
<tr>
<td>Origine éthnique</td>
<td>Blanche</td>
<td>71</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>Noirs</td>
<td>16</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Autres</td>
<td>14</td>
<td>13</td>
</tr>
<tr>
<td>Indice de masse corporelle, kg/m²</td>
<td>30.05 ± 6.1</td>
<td>29.8 ± 6.1</td>
<td>29.6 ± 5.0</td>
</tr>
<tr>
<td>≤18</td>
<td>0.6</td>
<td>0.9</td>
<td>0.2</td>
</tr>
<tr>
<td>19 à 40</td>
<td>93</td>
<td>93</td>
<td>96</td>
</tr>
<tr>
<td>>40</td>
<td>7</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Epreuve d’effort</td>
<td>Résultat inconnu</td>
<td>35</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>Epreuve positive</td>
<td>65</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Degré d’altérité myocardique</td>
<td>[ischémie myocardique]</td>
<td></td>
</tr>
<tr>
<td>Inconnu</td>
<td>Faible</td>
<td>11</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Moyen/Élevé</td>
<td>89</td>
<td>67</td>
</tr>
<tr>
<td>Type de coronaropathie</td>
<td>Mononoculaire sans lésion de la portion proximale de l’artère I/A</td>
<td>59</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>Mononoculaire avec lésion de la portion proximale de l’artère I/A</td>
<td>11</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Biconoculaire sans lésion de la portion proximale de l’artère I/A</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Biconoculaire avec lésion de la portion proximale de l’artère I/A</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Antécédents d’IIC</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Fraction d’éjection, %</td>
<td></td>
<td>60.9 ± 10.7</td>
</tr>
<tr>
<td>≤40 %</td>
<td>4</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>40 à 50 %</td>
<td>10</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>>40 %</td>
<td>80</td>
<td>76</td>
<td>83</td>
</tr>
<tr>
<td>Classe d’angoir de la CCS</td>
<td>0</td>
<td>13</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>16</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>34</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Antécédents d’IDM</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Antécédents d’ICP</td>
<td>25</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Antécédents de PAC</td>
<td>13</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Trouble vasculaire cérébral</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>AMI</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Diabète</td>
<td>33</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>Insuffisance rénale</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

COURAGE : Clinical Outcomes Utilizing Revascularization and Aggressive drug Evaluation ; I/A : artère interventriculaire antérieure ; IIC : Insuffisance cardiaque ischémique ; CCS : Canadian Cardiovascular Society ; IDM : Infarctus du myocarde ; ICP : Intervention coronaire percutanée ; PAC ; pontage aorto-coronaire ; AMI : artéiopathy de membres inférieurs.

Les valeurs sont exprimées sous forme de moyennes ± ET ou de pourcentages.

* Sous-décalage du segment ST égal ou supérieur à 1,0 mm.
** Ischémie myocardique : « faible » signifie que l’ischémie est absente au minimum ; « élevé » correspond à une ischémie de degré modéré à sévère (sur la base des données de la scintigraphie de perfusion),
*** Insuffisance rénale (débit de filtration glomérulaire estimé inférieur à 60 mℓ/min).
recommandations (c’est-à-dire un TMO) ? Dans la mesure où aucune information n’est fournie sur la nature et l’ampleur du traitement médical institué, ces données peuvent-elles vraiment être d’une quelconque utilité pour la pratique clinique ? Assurément, un TMC ne saurait être assimilé à un TMO. Cette étude doit-elle nous porter à conclure que les résultats cliniques sont significativement supérieurs à ceux du traitement médical alors même que nous ignorons en quoi consistait ce traitement dans cette comparaison non randomisée ? Devons-nous considérer, à la lumière de ces données, que parce que près de 90 % des patients coronariens stables présentant des manifestations angineuses ont fait l’objet d’une ICP, il s’agit là d’une stratégie thérapeutique défendable car validée ? Est-il légitime d’arguer que, parce que, dans les ERC, les objectifs du TMO ont pu être atteints grâce au niveau d’observance élevé,12 nous ne devons accorder à ces objectifs thérapeutiques qu’une importance limitée sinon nulle dans la pratique clinique courante et, en conséquence, opter pour le mode de prise en charge plus aisé et le « remède plus rapide » en apparence que constitue l’I/P ?

Bien que, au cours des cinq années qui ont suivi la publication de COURAGE,13 les pratiques cliniques aient quelque peu évolué, la triste réalité est que ni cette étude ni BARI-2D n’ont véritablement « changé la donne ». Trop peu de patients coronariens sont pris en charge médicalement comme ils devraient l’être et trop nombreux sont ceux que l’on prive du bénéfice d’un « TMO premier » alors qu’il s’agit d’une approche thérapeutique fondée sur les preuves et cliniquement pertinente.14 Dans une analyse comparative publiée en 2011 par Borden et al sur le recours au TMO avant et après COURAGE,19 ces auteurs ont constaté que les comportements thérapeutiques des médecins n’avaient que très peu évolué, ce qui signifie que soit nous refusons de considérer le TMO comme la première pierre du traitement de la maladie coronaire, soit il existe une tache aveugle inacceptable dans notre manière de visualiser l’importance du TMO au travers du prisme privilégié de l’I/P d’embée.

Cette polémique a peu de chances de s’étendre tant que des éléments plus décisifs n’auront pas été apportés par les essais cliniques. L’étude FAME-II (Fraction Flow Reserve-Guided Percutaneous Coronary Intervention Plus Optimal Medical Treatment Versus Optimal Medical Treatment Alone in Patients With Stable Coronary Artery Disease [évaluation du TMO complétée par une ICP guidée par la mesure de la fraction de flux de réserve coronaire comparativement au TMO instauré isolément chez le coronarien stable]) a récemment été interrompue parce que, chez les patients inclus dans le groupe ayant fait l’objet d’une ICP guidée par la mesure de la fraction de flux de réserve coronaire comparativement au TMO instauré isolément chez le coronarien stable) a récemment été interrompue parce que, chez les patients inclus dans le groupe ayant fait l’objet d’une ICP guidée par la mesure de la fraction de flux de réserve coronaire, les taux d’hospitalisation pour SCA et de revascularisations ultérieures non programmées étaient appréciablement inférieurs à ceux enregistrés dans le groupe de traitement médical seul (investigateurs de l’étude FAME-II, communication personnelle, mars 2012). Bien que non encore publiée, cette étude a toutes chances d’accroître le recours à l’I/P, celle-ci étant présentée comme un traitement que nous ignorons si cette approche a ou non amélioré le taux de décès ou d’IDM comparativement au TMO seul. En revanche, l’essai ISCHEMIA (International Study of Comparative Health Effectiveness with Medical and Invasive Approaches [étude internationale visant à comparer l’efficacité du traitement médical à celle de la prise en charge invasive]) menée à l’instigation du National Heart, Lung, and Blood Institute (Institut national américain de cardiologie, de pneumologie et d’hématologie), dont la phase d’inclusion devrait débuter courant 2012 et dans laquelle 8 000 patients à haut risque seront suivis sur un mode prospectif, a pour but de répondre à la question fondamentale de savoir si, chez des patients atteints d’ischémie myocardique modérée à sévère faisant l’objet d’une revascularisation coronaire optimale couplée à un TMO, le taux à long terme de décès de causes cardiovasculaires ou d’IDM est inférieur à celui observé chez les individus bénéficiant uniquement d’un TMO (investigateurs de l’essai ISCHEMIA, communication personnelle, mars 2012).

En résumé, en attendant de connaître les résultats de ces tout récents essais, la prise en charge thérapeutique des patients coronariens stables présentant des manifestations d’angor chronique doit reposer sur les meilleurs éléments de preuve disponibles. Pour cela, il nous faut peser et intégrer l’ensemble des données scientifiques existantes, qu’elles émanent aussi bien d’ERC que de méta-analyses ou d’études observationnelles, pour tenter de proposer à ces patients le traitement le mieux adapté à leur profil clinique. Ce faisant, nous ne devons pas extrapoler les effets potentiellement salvateurs dont est crédité l’I/P chez les individus traités pour un SCA à la vaste population des patients atteints de maladie coronaire stable et d’angor chronique chez qui cette intervention ne s’est pas révélée supérieure au TMO avec modification de l’hygiène de vie. Opter pour le traitement médical optimal alors que, culturellement, la préférence est donnée à l’I/P d’embée exige énormément d’effort, de persévérance et de volonté, mais, au bout du compte, les bénéfices retirés valent bien de lutter.

Déclarations

Néant.

Références

Boden | Traitement médical ou ICP ?

Mots clés : éditoriaux ■ étude d’efficacité comparative ■ maladie coronarienne ■ cardiopathie ischémique ■ résultats cliniques ■ intervention coronarienne
Editorial

Ponderación de la evidencia para la toma de decisiones acerca de la intervención coronaria percutánea en pacientes con enfermedad coronaria estable

William E. Boden, MD

“Haber trabajado denodadamente, haber hecho el esfuerzo, tener unos ideales en los que se cree: solo por eso ya merece la pena luchar.”

William Penn

Desde que se llevó a cabo la primera intervención coronaria percutánea (ICP) hace 35 años, se han producido importantes y continuos avances en la revascularización percutánea, lo que, en gran parte, ha desplazado el tratamiento de los pacientes con enfermedad coronaria (EC) del enfoque farmacológico inicial a un planteamiento terapéutico basado, cada vez más, en los datos anatómicos. Dado que existen abundantes datos de ensayos clínicos que respaldan el efecto favorable de la ICP con carácter de urgencia/emergencia en los pacientes con infarto de miocardio con elevación del segmento ST o con síndromes coronarios agudos (SCA) sin elevación del segmento ST, para reducir la mortalidad o el infarto de miocardio (IM)\(^1\)–\(^6\), hemos asistido a una expansión del uso de la ICP y a la aceptación por parte de los médicos de la implantación de stents coronarios, lo cual ha revolucionado el tratamiento de los pacientes y los resultados clínicos obtenidos en estos individuos de alto riesgo.

Véase el artículo de la página 92

La evolución y perfeccionamiento que simultáneamente se ha producido en el tratamiento médico durante las dos últimas décadas ha sido menos reconocido, a pesar de haber alcanzado una mayor solidez con la introducción de los modernos protocolos, los cuales actualmente incluyen el uso sistémico ampliamente, importantes tratamientos que, fundamentalmente, van dirigidos al control de los síntomas anginosos y al alivio de la isquemia (por ejemplo, betabloqueantes para la angina, calcioantagonistas, nitratos de acción prolongada y ranolazina). La suma de estos tratamientos de eficacia probada más intervenciones sobre el estilo de vida (dieta saludable para el corazón y reducción/mantenimiento del peso, dejar de fumar y ejercicio físico regular), a menudo se catalogan como terapia médica óptima (TMO)\(^7\).

Es en esta situación terapéutica en la que los clínicos se encuentran a menudo con una evidencia discordante de ensayos clínicos que complica la toma de decisiones en los pacientes con una EC sintomática. Es un hecho universalmente aceptado que la oclusión coronaria total o subtotal tras la ruptura o fisura de una placa en los pacientes con un SCA constituye una emergencia cardiovascular que no puede abordarse de forma óptima con tratamiento médico. Pero en cambio, varios ECA, como el Clinical Outcomes Utilizing Revascularization and Aggressive druG Evaluation (COURAGE)\(^7\), el Bypass Angioplasty Revascularization 2 Diabetes Trial (BARI-2D)\(^8\) y el estudio Japan Stable Angina Pectoris (JAP)\(^9\), así como numerosos metanálisis de esos ECA\(^10\)–\(^14\), incluido uno muy reciente de 8 ensayos relacionados con la implantación de stents en la época del tratamiento médico moderno\(^15\), no han podido demostrar incremento alguno del beneficio clínico con la ICP por encima de lo obtenido con la TMO, en cuanto a la reducción de la mortalidad o el IM no mortal, la hospitalización por SCA, la necesidad de revascularización no programada, y el efecto duradero y sostenido de alivio de la angina; estos resultados contrastan mucho con los alcanzados con la ICP en pacientes con SCA o IM agudo\(^16\)–\(^6\).

No obstante, aunque los datos obtenidos en ECA se citan con frecuencia como presunto “patrón de referencia” en cuanto a la evidencia científica de alta calidad que subyace en las guías terapéuticas de las sociedades profesionales, de hecho tienen limitaciones claramente reconocidas que influyen en el grado en el que estos datos pueden ser más ampliamente generalizados al universo completo de los pacientes que son tratados en el contexto de la práctica clínica real ordinaria. Por consiguiente, un origen igualmente importante de evidencia científica es el que deriva de los estudios observacionales,
los registros prospectivos y las bases de datos clínicas longitudinales. Entre los más importantes de estos estudios sobre el manejo de la EC de los últimos 15 años se encuentra el registro Cardiac Diagnostic Catheterization Database and PCI Registry del New York State Cardiac Advisory Board. El Dr. Hannan y sus colaboradores han realizado contribuciones importantes y continuadas al conocimiento colectivo de que disponemos sobre las implicaciones que tiene en la práctica clínica real la revascularización miocárdica, y nuevamente, en este número de Circulation, este grupo de investigadores ha presentado los resultados comparativos obtenidos en pacientes a los que se practica o no una ICP para una EC estable en el Estado de Nueva York.16

Dada la escasez de datos existente respecto a los tratamientos que reciben los pacientes tras una angiografía coronaria diagnóstica realizada por una EC estable, Hannan y cols.16 examinaron comparativamente los resultados clínicos a 4 años de los pacientes que recibieron el tratamiento médico estándar (TME) con o sin una ICP entre 2003 y 2008. Un total de 9.586 pacientes fueron objeto de un seguimiento prospectivo en este registro, y de ellos 8.486 (es decir, un 89%) fueron tratados con una ICP, en un 2% se realizó una intervención quirúrgica de bypass, y tan solo un 11% recibieron tratamiento médico. Sin embargo, el centro de interés principal de este análisis fue una cohorte de pacientes en los que se realizó un apareamiento por propensión para 20 posibles factores que podrían haber influido tanto en el tratamiento recibido (ICP más TME frente a TME solo) como en los resultados del tratamiento. Las variables de valoración de interés en este estudio fueron la combinación de muerte o IM, la mortalidad sola, el IM solo y la tasa de revascularizaciones posteriores, durante una mediana de seguimiento de 2,87 años. Como se ha señalado antes, dado que hubo tan pocos pacientes (n = 1.100) en los que se utilizara el TME solo, el apareamiento por propensión incluyó tan solo 933 pares de pacientes equivalentes s (n = 1.866).

Los resultados principales del estudio pusieron de relieve que, en comparación con los pacientes que recibieron el TME solo, los que fueron tratados con ICP más TME presentaron valores significativamente inferiores de la tasa de mortalidad o IM (16,5% frente a 21,2%, p = 0,003), mortalidad (10,2% frente a 14,5%, p = 0,02), IM (8,0% frente a 11,3%, p = 0,007) y revascularizaciones posteriores (24,1% frente a 29,1%, p = 0,005)16. Las razones de riesgos ajustadas, que corresponden a los resultados relativos en todo el periodo de seguimiento (hasta 4 años) fueron también favorables al grupo de ICP más TME en comparación con el grupo de TME solo, tanto para la mortalidad/IM como para la mortalidad sola. La tasa de ICP por una EC estable en este análisis antes del COURAGE (2003–2007) fue del 88,4% y el valor obtenido fue prácticamente idéntico (88,7%) después del COURAGE (2008). Es de destacar que no hubo diferencias en los resultados comparativos de los pacientes de edad < 65 años ni en los pacientes a los que se practicó una ICP para una EC de un solo vaso, al comparar los grupos de ICP más TME y de TME solo.

Así pues, cuando los médicos se enfrentan a la decisión de cuál es la mejor forma de tratar a los pacientes con una EC sintomática, a menudo valoran si el enfoque terapéutico inicial debe ser la TMO sola o la TMO además de una revascularización coronaria (generalmente mediante ICP en la inmensa mayoría de los pacientes en los que se plantea la revascularización). En cada situación concreta, ¿debe guiarse el médico en mayor medida por los resultados presentados por múltiples ECA y metanalisis de esos estudios, o debe confiar más bien en los resultados de los estudios observacionales y los registros prospectivos? Ante la toma de decisión, ¿cómo puede el médico clínico interpretar lo que parecen ser resultados y conclusiones diametralmente opuestos respecto a la ICP para la EC estable en ECA como el COURAGE y el BARI-2D (junto con unos 6 metanálisis) y los datos de estudios observacionales como el actual informe del registro del Estado de Nueva York? ¿Hay alguna clave importante que pudiera aportar una mejor perspectiva respecto a la forma en la que deben interpretarse estos datos? y, tal como analizaremos, ¿es posible que los resultados del presente estudio de base poblacional pudieran no ser realmente tan favorables a la ICP como parecen a primera vista?

Las observaciones importantes de este análisis pueden resumirse de la siguiente forma:

- Como reconocen los autores, hubo diferencias significativas en muchas de las características basales importantes entre los grupos de ICP más TME y de TME solo, que no pudieron corregirse o resolverse por completo con el apareamiento por propensión. Los pacientes tratados con TME eran de mayor edad, generalmente con una enfermedad más grave, y presentaban más comorbilidades (mayores tasas de insuficiencia cardiaca, disfunción ventricular izquierda, IM previo, enfermedad vascular periférica, insuficiencia renal y antecedentes previos de cirugía de bypass arterial coronario).

- Los factores no medidos, como características de la lesión coronaria, riesgos de hemorragia, comorbilidades no cardíacas, diferencias en los porcentajes de uso de medicación, desproporción en el porcentaje de pacientes a los que se practicó una ICP (≈ 90%) frente al uso del TME solo (11%) e incertidumbres acerca de lo que motivó la derivación del paciente para la ICP o el TME, son factores de confusión que causan un sesgo significativo que podría influir de manera grave en los resultados, en favor de la ICP.

- La pequeña cohorte de 933 pares equivalentes constituía tan solo un 20% de la población total a la que se practicó una angiografía coronaria diagnóstica y, como se ha señalado antes, el hecho de que solamente ≈ 10% de los pacientes recibieran un TME solo plantea una grave preocupación respecto a la validez de los datos y el grado en el que estos resultados en pacientes muy seleccionados pueden generalizarse a la totalidad de los pacientes con EC en la práctica clínica real.

- Aunque la mediana de seguimiento en la cohorte apareada por propensión fue de 2,87 años, las comparaciones estadísticas de los datos de resultados clínicos se basaron en las tasas de eventos a 4 años. Esta inconsistencia metodológica no se explica de manera adecuada.

- Tiene gran importancia el hecho de que el TME no se define en ningún momento en este estudio. De hecho, los autores reconocen que “la naturaleza del tratamiento médico aplicado a los pacientes del grupo de TME en [su] estudio es completamente desconocido e indudablemente muchos
<table>
<thead>
<tr>
<th>Característica</th>
<th>Todos los pacientes de la base de datos del Estado de Nueva York (n = 9.586)</th>
<th>Pacientes con igualación por propensión (n = 1.866)</th>
<th>Pacientes del ensayo COURAGE (n = 2.287)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edad, años</td>
<td>65,1 ± 11,0</td>
<td>66,4 ± 11,2</td>
<td>62 ± 9,9</td>
</tr>
<tr>
<td>< 65</td>
<td>47</td>
<td>43</td>
<td>60</td>
</tr>
<tr>
<td>65–74</td>
<td>32</td>
<td>30</td>
<td>29</td>
</tr>
<tr>
<td>≥ 75</td>
<td>22</td>
<td>27</td>
<td>11</td>
</tr>
<tr>
<td>Mujeres</td>
<td>34</td>
<td>34</td>
<td>15</td>
</tr>
<tr>
<td>Raza</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blancos</td>
<td>71</td>
<td>68</td>
<td>86</td>
</tr>
<tr>
<td>Negros</td>
<td>16</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>Otros</td>
<td>14</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>Índice de masa corporal, kg/m²</td>
<td>30,05 ± 6,1</td>
<td>29,8 ± 6,1</td>
<td>29,6 ± 5,0</td>
</tr>
<tr>
<td>≤ 18</td>
<td>0,6</td>
<td>0,9</td>
<td>0,2</td>
</tr>
<tr>
<td>19–40</td>
<td>93</td>
<td>93</td>
<td>96</td>
</tr>
<tr>
<td>> 40</td>
<td>7</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Prueba de estrés</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resultado desconocido</td>
<td>35</td>
<td>37</td>
<td>28</td>
</tr>
<tr>
<td>Prueba positiva</td>
<td>65</td>
<td>63</td>
<td>79*</td>
</tr>
<tr>
<td>Miocardio viable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desconocido</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pequeño</td>
<td>11</td>
<td>23</td>
<td>63</td>
</tr>
<tr>
<td>Medio/grande</td>
<td>89</td>
<td>67</td>
<td>37</td>
</tr>
<tr>
<td>Vaso afectado</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1, sin afectación de DAI proximal</td>
<td>59</td>
<td>62</td>
<td>23</td>
</tr>
<tr>
<td>1, con afectación de DAI proximal</td>
<td>11</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>2, sin afectación de DAI proximal</td>
<td>26</td>
<td>26</td>
<td>27</td>
</tr>
<tr>
<td>2, con afectación de DAI proximal o enfermedad de 3 vasos</td>
<td>4</td>
<td>4</td>
<td>42</td>
</tr>
<tr>
<td>Antecedentes de ICC</td>
<td>5</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Fracción de eyección, %</td>
<td>...</td>
<td>...</td>
<td>60,9 ± 10,7</td>
</tr>
<tr>
<td>< 40%</td>
<td>4</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>40–50%</td>
<td>10</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>> 40%</td>
<td>80</td>
<td>76</td>
<td>83</td>
</tr>
<tr>
<td>Clase de angina CCS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>13</td>
<td>20</td>
<td>12</td>
</tr>
<tr>
<td>I</td>
<td>16</td>
<td>22</td>
<td>30</td>
</tr>
<tr>
<td>II</td>
<td>34</td>
<td>35</td>
<td>37</td>
</tr>
<tr>
<td>III</td>
<td>37</td>
<td>24</td>
<td>21</td>
</tr>
<tr>
<td>IM previo</td>
<td>13</td>
<td>13</td>
<td>39</td>
</tr>
<tr>
<td>ICP previa</td>
<td>25</td>
<td>22</td>
<td>16</td>
</tr>
<tr>
<td>Bypass coronario previo</td>
<td>13</td>
<td>17</td>
<td>11</td>
</tr>
<tr>
<td>Enfermedad cerebrovascular</td>
<td>6</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>EVP</td>
<td>7</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>33</td>
<td>36</td>
<td>34</td>
</tr>
<tr>
<td>Insuficiencia renal</td>
<td>1</td>
<td>1</td>
<td>3‡</td>
</tr>
</tbody>
</table>

COURAGE indica ensayo Clinical Outcomes Utilizing Revascularization and Aggressive drug Evaluation; DAI, arteria coronaria descendente anterior izquierda; ICC, insuficiencia cardiaca congestiva; CCS, Canadian Cardiovascular Society; IM, infarto de miocardio; ICP, intervención coronaria percutánea; y EVP, enfermedad vascular periférica. Los valores corresponden a media ± DE o porcentajes.

*Depresión del segmento ST ≥ 1,0 mm.
‡‡Enfermedad renal (filtración glomerular estimada < 60 ml/min).
pacientes del grupo de TME recibieron un tratamiento no óptimo”.

- Los autores proponen que las 2 posibles razones por las que las tasas de eventos clínicos con el TME fueron superiores a las del COURAGE son que la población tratada con TME en el Estado de Nueva York fuera significativamente menos seleccionada (y por tanto, de mayor riesgo) o que los “pacientes recibieran un TME en vez de TMo”. Una crítica frecuente, aunque errónea, que se hace al ensayo COURAGE ha conducido a la percepción errónea de que estos pacientes eran de “bajo riesgo” o de que se excluyó de forma sistemática a los pacientes de mayor riesgo. En la tabla adjunta se compara la población global de estudio del Estado de Nueva York formada por 9.586 pacientes, los 1.886 pares equivalentes incluidos en el análisis por presión, y la población en estudio del ensayo COURAGE formada por 2.287 pacientes. Para prácticamente la totalidad de las características basales relevantes, los pacientes del COURAGE presentaron unas tasas comparables de resultados positivos en las pruebas de estrés, insuficiencia cardíaca, función ventricular izquierda, antecedentes de revascularización previa, diabetes mellitus, enfermedad cerebrovascular y vascular periférica, clase de la angiografía de la Canadian Cardiovascular Society. En comparación con los datos del Estado de Nueva York, los pacientes del COURAGE eran más jóvenes y era menos probable que fueran mujeres, pero tenían unas tasas más altas de IM previo, insuficiencia renal, y una EC angiográfica multi-vaso significativamente más amplia. En pocas palabras, es muy improbable que ninguna de las diferencias de resultados clínicos entre estos 2 estudios pudiera explicarse por las afirmaciones persistentes, no fundamentadas, de que los pacientes del COURAGE eran una “población muy seleccionada” y de que la “menor tasa de mortalidad del COURAGE” se debió a que “se excluyó a muchos pacientes de alto riesgo”.

- No está claro por qué la tasa de ICP en la EC estable en el Estado de Nueva York fue tan alta, de ≈ 90%. Dada la falta de datos basados en la evidencia que respalden el beneficio clínico de la ICP, tanto antes como después del COURAGE, se hubiera podido prever un mayor grado de prudencia en la elección del tratamiento para esta población de pacientes con EC no aguda y angina crónica, tal vez con unos porcentajes de uso inicial de ICP del orden del 50% al 60%. Estos datos son preocupantes y sugieren que la toma de decisiones en esta población tan importante de pacientes no se atiene a lo establecido en las guías de práctica clínica existentes.

- Tiene especial interés el hecho de que Hannan y colaboradores16 no pudieran demostrar que los pacientes tratados con ICP más TME alcanzaran mejores resultados clínicos que los tratados con TME solo en 2 subgrupos frecuentes e importantes: los pacientes de edad < 65 años y los que presentaban una EC angiográfica de un solo vaso. Una reciente evaluación del American College of Cardiology National Cardiovascular Data Registry ha puesto de relieve que, en los 405.824 pacientes a los que se practicó una ICP electiva por una cardiopatía isquémica estable en EEUU entre el 1 de julio de 2009 y el 30 de setiembre de 2011, un 43% tenían una edad < 65 años y un 46% fueron tratados con la ICP por una EC de un solo vaso17. Tal vez los resultados de Hannan y cols.16 deban orientar la toma de decisiones de los médicos respecto a qué pacientes obtendrán (o no) un beneficio y, como corolario importante, qué pacientes deben (o no) ser tratados con una ICP por una EC estable con angina crónica.

- Por último, los autores resaltan que otros varios estudios han mostrado que la adherencia a la medicación suele ser baja, y muchos estudios han indicado que la adherencia afecta de modo importante a los resultados clínicos. Alegan que “aunque la TMo es igual de efectiva que el empleo de ICP/TMO en los pacientes con una EC estable en un ensayo clínico estrictamente controlado y con una adherencia excelente, los resultados podrían ser diferentes en situaciones de práctica clínica real”. Ciertamente, es posible que fuera así, pero si no se ha hecho ningún intento de iniciar o cuantificar la TMo, como en el presente estudio, ¿cabe inferirse de ello que no vale la pena ni siquiera intentarlo o alcanzarlo? Si el listón para iniciar la TMo se pone tan bajo, y la motivación y el compromiso del médico para respaldar y aplicar la TMo son tan limitados y superficiales, ¿resulta sorprendente que la actitud o el “mensaje” sea entonces que “es mucho más fácil aplicar simplemente (y recomendar) la ICP”, y que en cambio sea simplemente “más difícil” alcanzar el uso de la TMo, a pesar de que lo que nos dice la evidencia científica concluyente al respecto? En otras palabras, para el tratamiento médico, ¿ha pasado a ser “lo perfecto enemigo de lo bueno?”

En el análisis final, ¿cómo pueden los clínicos interpretar los resultados del presente estudio en el contexto de ensayos clínicos como el COURAGE y el BARI-2D, en los que la terapia médica basada en las guías (o TMo) fue el elemento a comparar con la ICP? En el contexto de esta falta de información acerca del grado o la magnitud del tratamiento médico, ¿informan realmente estos datos de lo que ocurre en la práctica clínica? Parece claro que TME no es igual a TMo. De los datos del presente estudio, ¿debemos concluir que los resultados clínicos son significativamente mejores que el tratamiento médico cuando no sabemos siquiera lo que constituiría la terapia médica en esta comparación no aleatorizada? ¿Inferimos de estos datos que, puesto que casi el 90% de los pacientes con EC estable y angina fueron tratados con una ICP, este es un enfoque terapeútico basado en la evidencia y defensible? ¿Es una crítica razonable que, puesto que se alcanzaron unas tasas de adherencia elevadas a los objetivos terapéuticos con la TMo en los ECA7,8, debamos descartar o quitar importancia a estos objetivos terapéuticos en la práctica clínica habitual y, por inferencia, optar por el enfoque de tratamiento más sencillo y por la percepción de un “arreglo más rápido” con la ICP? Aunque durante los 5 años transcurridos desde la publicación inicial del ensayo COURAGE17 se han producido ciertos avances y se ha influido en cierta medida en la práctica clínica, la lamentable realidad es que ni este estudio, ni el BARI-2D han hecho cambiar la situación. Son demasiado pocos los pacientes con EC que están siendo tratados de manera clínica cuando debe aplicarse este enfoque, y demasiados los pacientes a los que se priva de un paradigma de tratamiento de “primero TMo” cuando este sería un enfoque basado en la evidencia y clínicamente apropiado18. En una comparación realizada en
2011 del uso de la TMO antes y después del COURAGE por Borden y cols.19, se observó muy poca diferencia en los parámetros de tratamiento de los médicos, lo cual sugiere que o bien estamos negando que la TMO deba considerarse el fundamento de todas las estrategias de EC posteriores o bien hay una parte ciega inaceptablemente grande en la forma en la que valoramos la importancia de la TMO desde el prisma de una lente de tratamiento basada en plantear primero la ICP.

Es improbable que esta controversia termine mientras no se disponga de datos más definitivos de ensayos clínicos. El ensayo FAME-II (Fraction Flow Reserve-Guided Percutaneous Coronary Intervention Plus Optimal Medical Treatment Versus Optimal Medical Treatment Alone in Patients With Stable Coronary Artery Disease) fue interrumpido recientemente porque, en los pacientes asignados aleatoriamente a la ICP que fue guiada por la reserva de flujo fraccional, en comparación con la terapia médica sola sin revascularización, hubo una tasa significativamente inferior de hospitalización por ACS y de revascularizaciones posteriores no programadas (investigadores del ensayo FAME-II, comunicación personal, marzo de 2012). Aunque no se ha publicado todavía, es muy probable que este ensayo acelere el uso de la ICP como un tratamiento anatómico perfeccionado, además, mediante un instrumento fisiológico invasivo para guiar su uso más selectivo. No obstante, el FAME-II no se diseñó para evaluar si una estrategia basada en la reserva de flujo fraccional, en comparación con la TMO, podría reducir de forma importante para el pronóstico, la isquemia subyacente a los segmentos coronarios estenóticos y, por el momento, no disponemos de información sobre si hubo cambios favorables en la mortalidad o los IM con este enfoque en comparación con la TMO sola. En cambio, el ensayo International Study of Comparative Health Effectiveness with Medical and Invasive Approaches (ISCHEMIA), financiado por el National Heart, Lung, and Blood Institute, programado para iniciar el reclutamiento de pacientes a mediados de 2012, abordará prospectivamente, en 8.000 pacientes de alto riesgo, la cuestión clave de si los pacientes con una isquemia miocárdica moderada o grave que son tratados con una revascularización miocárdica óptima combinada con una TMO presentan una tasa de muerte cardiovascular o IM a largo plazo inferior a la de los pacientes tratados con TMO sola (investigadores del ensayo ISCHEMIA, comunicación personal, marzo de 2012).

En resumen, a la espera de conocer los resultados de estos nuevos ensayos, debemos basar las decisiones de tratamiento para los pacientes con EC estable que presentan angina crónica en la mejor evidencia existente. En este contexto, debemos ponderar e integrar toda la información científica actual (procedente de ECA, metanálisis y estudios observacionales) para intentar definir e individualizar el mejor tratamiento para los pacientes con EC estable. Sin embargo, al hacerlo no debemos extrapolar los posibles beneficios de vidas salvadas por la ICP en los pacientes con SCA a la amplia población de pacientes con EC estable y angina crónica en los que no se ha demostrado que la ICP sea superior a la TMO e intervenciones a nivel de estilo de vida. Adoptar la terapia médica óptima en una cultura de práctica clínica que plantea en primer lugar la ICP requiere un enorme esfuerzo, dedicación y compromiso, pero al final, los beneficios obtenidos compensan claramente esta lucha.

Declaraciones de intereses

Ninguna.

Bibliografía

PALABRAS CLAVE: Editorials ■ comparative effectiveness research ■ coronary disease ■ ischemic heart disease ■ outcomes ■ percutaneous coronary intervention