The opinions expressed in this article are not necessarily those of the editors or of the American Heart Association.

From the Department of Medicine, Division of Hematology & Oncology, McAllister Heart Institute, University of North Carolina at Chapel Hill.

Correspondence to Nigel Mackman, PhD, University of North Carolina at Chapel Hill; Chapel Hill, NC. E-mail nmackman@med.unc.edu

Circulation is available at http://circ.ahajournals.org
DOI: 10.1161/CIRCULATIONAHA.112.094920

© 2012 American Heart Association, Inc.
Importantly, in contrast to the results observed with lactadherin-deficient mice, Del-1–deficient mice do not have increased basal levels of microvesicles compared with controls. The authors hypothesize that this lack of change in basal microvesicle level may be caused by compensation by other pathways.

Dasgupta and colleagues found that binding of platelet microvesicles to cultured human umbilical vein endothelial cells and human microvascular endothelial cells was inhibited by blocking phosphatidylserine or αvβ3. Similar results were observed with microvesicles from red blood cells. However, no studies were presented with microvesicles from monocytes or endothelial cells, which have lower levels of Del-1 binding in the circulation. Next, fluorescently labeled human platelet microvesicles were injected into mice, and their uptake was measured in endothelial cells in various tissues. Del-1 deficiency led to a 50% reduction in microvesicle uptake by lung and liver endothelial cells but no change in uptake by splenic endothelial cells. These differences may reflect heterogeneous αvβ3 expression in the endothelium of the different tissues. For instance, relatively high levels of αvβ3 are observed in lung microvascular endothelium, with weaker expression in other organs. Despite differences in processing of these exogenous microvesicles, as noted above, there was no change in levels of endogenous microvesicles in Del-1–deficient mice. Therefore, these results should be interpreted cautiously.

Endotoxemia leads to increased levels of circulating microvesicles in mice. Interestingly, administration of lipopolysaccharide dramatically decreases lactadherin expression in the spleen, which would limit the effectiveness of this pathway to clear the elevated levels of microvesicles. Dasgupta and colleagues determined whether a deficiency in Del-1 affected levels of microvesicles after challenge with lipopolysaccharide. They found significantly higher levels of microvesicles in the plasma of Del-1–deficient mice compared with controls. This result suggests that the Del-1 clearance pathway may be “turned on” during pathological conditions that are associated with elevated levels of circulating microvesicles. At present, it is not clear how the Del-1

<table>
<thead>
<tr>
<th>Table. Studies Assessing Clearance of Microvesicles In Vivo</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Cell Origin of MVs</strong></td>
</tr>
<tr>
<td>------------------------</td>
</tr>
<tr>
<td>Platelet MVs</td>
</tr>
<tr>
<td>Platelet MVs</td>
</tr>
<tr>
<td>Erythrocyte MVs</td>
</tr>
<tr>
<td>Endothelial cell MVs</td>
</tr>
<tr>
<td>Tumor cell MVs</td>
</tr>
</tbody>
</table>

MV indicates microvesicle; Del-1, developmental endothelial locus-1.
clearance pathway is upregulated, but it may be by increased expression of αvβ3. Indeed, αvβ3 expression is increased in endothelial cells exposed to inflammatory stimuli, such as tumor necrosis factor-α.13

Other molecules beside lactadherin and Del-1 bind to phosphatidylserine-positive microvesicles. For instance, the bridging molecule called growth-arrest-specific 6 (also known as GAS6) can bind to phosphatidylserine on cells and the phagocyte receptor tyrosine kinase MER.14 However, we did not find a difference in the number of phosphatidylserine-positive microvesicles between growth-arrest-specific 6–deficient mice and controls either at baseline or after lipopolysaccharide challenge (Burnier L, Lee R, Angelillo-Scherrer A, and Mackman N, unpublished data, 2011). β2-Glycoprotein I is another phosphatidylserine binding protein that binds platelet microvesicles and promotes their phagocytosis by macrophages in a phosphatidylserine-dependent manner.15 Ligand-receptor interactions may also contribute to microvesicle clearance. Binding of monocye-derived microvesicles to activated platelets was shown to be dependent on both phosphatidylserine and P-selectin glycoprotein ligand-1.16 A similar dual interaction may occur between monocyte microvesicles and activated endothelium (Figure). Therefore, we propose a general mechanism for microvesicle uptake by macrophages and endothelial cells that involves both binding via phosphatidylserine bridging molecules, such as lactadherin and Del-1, to αvβ3 and other ligand-receptor interactions. The relative contribution of each of these different pathways to microvesicle clearance from the circulation remains to be determined.

Interestingly, different organs have been implicated in microvesicle clearance depending on the cell origin of the microvesicles (Table).5,6,9,17,18 This may be because of differences in protein and lipid composition of microvesicles from different cell types. Interestingly, splenectomy is associated with increased levels of circulating red blood cell and leukocyte microvesicles in patients.19 This observation is consistent with the lactadherin-macrophage clearance pathway operating mainly in the spleen. Moreover, removal of the spleen in a xenograft tumor model was associated with increased levels of tumor-derived microvesicles.18 In rodent studies, microvesicles are cleared very rapidly (Table). In contrast, platelet microvesicles were cleared more slowly in patients receiving platelet transfusions.20 Importantly, efficient clearance of circulating microvesicles is needed in pathological conditions. One study found that a 30-minute exposure to second-hand smoke was associated with an increase in circulating endothelial cell–derived microvesicles for up to 24 hours, which may reflect ongoing endothelial cell activation and/or a defect in clearance.2

The findings by Dasgupta and colleagues5 have implications beyond the field of microvesicle clearance. These investigators demonstrate that platelet microvesicles can interact with endothelial cells in vivo. This result is highly significant because numerous in vitro and ex vivo studies have shown that various microvesicles can modulate endothelial cell biology by inducing endothelial proliferation, inflammatory phenotype, or dysfunction.2 The in vivo relevance of these studies was so far somewhat uncertain.

In conclusion, the present study not only highlights a new mechanism for the clearance of circulating microvesicles but also sheds new light on in vitro studies showing that different microvesicles can regulate endothelial cell functions. Because the endothelium is positioned at the interface of blood and tissues, it plays a key role in interpreting signals delivered via the circulation. We speculate that different microvesicles may be targeted to endothelial cells in various organs by specific interactions, similar to the delivery of letters using zip codes. Further studies are needed to better understand how microvesicles modulate endothelial cell biology in vivo.

Acknowledgments

We would like to thank our colleagues for critical reading of the manuscript.

Sources of Funding

This work was supported by the Philippe Foundation (to Dr Rautou) and a grant (HL095096; to Dr Mackman) from the National Institutes of Health.

Disclosures

None.

References


**KEY WORDS:** Editorials, endothelial function, endothelium, platelets, clearance, microparticles.
Del- et-ion of Microvesicles From the Circulation
Pierre-Emmanuel Rautou and Nigel Mackman

Circulation. 2012;125:1601-1604; originally published online March 2, 2012;
doi: 10.1161/CIRCULATIONAHA.112.094920
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2012 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://circ.ahajournals.org/content/125/13/1601

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published
in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial
Office. Once the online version of the published article for which permission is being requested is located,
click Request Permissions in the middle column of the Web page under Services. Further information about
this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/