The role of channelopathies in the pathogenesis of sudden cardiac death in patients with structurally normal hearts is a rapidly evolving story. Many ion channels are involved, including loss-of-function sodium channelopathies, of which the phenotypic spectrum ranges from lethal arrhythmias to asymptomatic carriers and includes Brugada syndrome (BrS), cardiac conduction disease, sick sinus syndrome, atrial fibrillation, and dilated cardiomyopathy. BrS, characterized by right precordial ST elevation on the ECG, is frequently associated with conduction delay, potentially lethal arrhythmias, and a positive family history of sudden premature death. BrS is estimated to be responsible for $\approx 4\%$ of all sudden deaths and 20% of sudden deaths in patients with structurally normal hearts. Despite an overall prevalence of $\approx 5 / 10000$ individuals, BrS is considered extremely rare in the pediatric population. However, children harboring loss-of-function mutations in the gene coding for the sodium channel α-subunit (SCN5A) have been reported to present with life-threatening arrhythmias, especially during febrile episodes. While SCN5A mutations account for 11% to 28% of BrS probands, mutations of the L-type calcium channel, including the gene coding for the L-type calcium channel β-subunit (CaCNB2), among others, have recently been implicated in $\approx 13\%$ of patients with BrS-related phenotypes and sudden cardiac death.4

In this issue of *Circulation*, Kanter et al5 describe their experience with very young children manifesting ventricular arrhythmias due to previously undetected loss-of-function sodium and/or calcium channelopathies. Twenty of 32 patients <2 years of age with rapid ventricular tachycardia (VT) or ventricular fibrillation (VF), known structural heart disease, and 9 of the remaining 12 patients had intraventricular conduction delay (IVCD) or Brugada pattern (coved) ECG, of which 4 had associated conditions (myocarditis, Barth syndrome, and drug use). The clinical features and subsequent management and follow-up of the remaining 5 patients are reported in detail. Interestingly, all 5 patients had at least 1 disease-causing mutation in SCN5A or CaCNB2.5

This is the first single-center observational study of the manifestations of these channelopathies in such a young patient population and provides some valuable insights into the phenotypic and genotypic nature of the disorder. However, in the past decade, an increasing number of children <2 years of age have been reported with similar clinical characteristics.$^3,5–16$ The striking features of these 19 (including the Kanter et al series) previously healthy infants are as follows: (1) VT/VF was the presenting feature in 89% of patients (rapid VT at presentation was a selection criterion of Kanter et al, and occurrence of VT/VF could have also led to a reporting bias of the other cases reported in the literature); (2) IVCD was present in 89% of patients; (3) type 1 BrS ECG was present in 37% of patients of which 71% were spontaneous; and (4) fever-related arrhythmias occurred in 53% of patients (Figure). Of the 13 patients with SCN5A mutations, all but one (92%) presented with IVCD, whereas only 2 (15%) had a spontaneous type 1 BrS ECG (see also Figure 4 in the article by Kanter et al) and 1 patient showed the type 1 BrS ECG after drug challenge. It is noteworthy that 2 of these 13 patients had VT and IVCD at 5 months of age, within 1 to 2 days of receiving their standard childhood immunization, with documented fever in one of them.3,6 SCN5A mutations were of nonsense/frameshift type in 7 patients (including 3 compound heterozygotes), missense ($D356N$) with complete loss of sodium current in 1 patient, missense ($I230T$) with significant loss of sodium current in 1 patient (homozygosity of patient and 3 siblings), missense ($Q270K$) with both loss- and gain-of-function properties in 1 patient, and missense mutation ($R1193Q/L567Q$) with marked acceleration of sodium channel inactivation in 2 patients. An SCN5A mutation ($IVS10+2 \rightarrow \alpha$) of unknown functional significance was reported in a patient harboring 2 L-type calcium channel mutations.

In this unique patient population of children <2 years of age, IVCD manifesting as wide QRS complex monomorphic tachycardia appears to be the most dominant sign of disease as opposed to what is observed in adults. Although the exact mechanism behind this is unclear, it is obvious that these young patients with loss-of-function sodium channelopathies possess arrhythmogenic substrates that make them easy prey for potentially lethal ventricular arrhythmias, especially in the setting of fever, a common feature in infancy. There is also substantial evidence to believe that individuals carrying an SCN5A mutation with severe loss-of-function properties such as frameshift mutations “or double hits,” like most of these children, develop a more severe phenotype with an arrhythmogenic substrate facilitating monomorphic VT, in comparison with mutation carriers with just channel dysfunction.17

Article see p 14

The opinions expressed in this article are not necessarily those of the editors or of the American Heart Association.

From the Department of Cardiology, Heart Failure Research Centre, Academic Medical Centre, Amsterdam, the Netherlands.

Correspondence to Arthur A.M. Wilde, MD, PhD, Department of Cardiology, Heart Failure Research Centre, Academic Medical Centre, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands. E-mail a.a.wilde@amc.uva.nl

(Circulation. 2012;125:6-8.)

© 2011 American Heart Association, Inc.

Circulation is available at http://circ.ahajournals.org

DOI: 10.1161/CIRCULATIONAHA.111.071837

Editorial

Loss-of-Function Sodium Channel Mutations in Infancy A Pattern Unfolds

Priya Chockalingam, MBBS; Arthur A.M. Wilde, MD, PhD
Four patients that did not survive the initial arrhythmia had
SCN5A mutations (including 2 compound heterozygotes). One patient presenting with fever-related syncope and atrial
flutter with spontaneous type 1 BrS ECG (not genotyped)
died suddenly during follow-up while reportedly not receiv-
ing treatment. Among the patients (n=14) that survived,
management involved pharmacological therapy alone in 43%
of patients, pharmacological therapy and implantable cardio-
verter defibrillator (ICD) in 29%, pharmacological therapy
and pacemaker in 7%, and no treatment in 21% of patients.
The male preponderance seen in adults was absent; 58% of
their proposal, it should be highlighted that patient size may
not be the only critical factor in the decision to place an ICD
in these patients. Not only are tachycardia-induced conduc-
tion abnormalities very common in these young children, but
rapid supraventricular tachycardia with conduction delay
could also closely mimic VT. Indeed, ICD therapy, being
associated with an inherent risk of inappropriate shocks in
very young patients with fast supraventricular arrhythmias
mimicking VT and with other mechanical complications, may
prove dangerous. These inappropriate shocks might be
followed by sinus tachycardia, which, in the setting of
use-dependent characteristics of a loss-of-function sodium
channel disorder, could easily deteriorate into a (poten-
tially lethal) wide QRS complex arrhythmia. β-blockers,
generally counterintuitive as a choice of therapy in these
wide QRS-complex ventricular arrhythmias, may indeed
prevent (sinus-)tachycardia and thereby avoid worsening
of the rate-dependent conduction disorder and associated
arrhythmias in these young patients. Several successful
examples have been reported.5,6,9,12,13,16

Quinidine, on the other hand, is known to suppress the
induction of ventricular arrhythmias in BrS by its ability to
inhibit the transient outward current (Ip), and by its anticho-
linergic effect, and it seems to be effective in children.3,18
Although the class 1A antiarrhythmic effect of quinidine is
apparently not detrimental in patients with BrS, caution is
warranted, especially in very young patients with drastic loss
of sodium channel function, as evidenced in a case reported
by Kanter et al,5 where quinidine had to be discontinued
because of extreme QRS widening. It should also be empha-
sized that the long-term adverse effects of quinidine in
children are currently unknown. Only rarely reported effective
in BrS, there is no convincing evidence for lidocaine to
feature in the management schema. Intuitively, even an
inactivated state sodium channel block with a fast dissocia-
tion time constant could be detrimental. At this point, a
treatment strategy combining pharmacological therapy (β-
blockers, eventually quinidine, both with close monitoring of
conduction intervals at different heart rates) with prudent
antipyretic measures, in-hospital monitoring during immuni-

cation and febrile episodes, and adequate parent counseling
might be an appropriate alternative to ICD in many of these
infants.6
In the causation of sudden infant death syndrome (SIDS),
mutations of the sodium channel–related genes seem the most
malignant, accounting for 10% of SIDS cases.19 Interestingly,
death as an adverse event following immunization, even
though it is uncommon, ranged from 1.4% to 2.3% of all
adverse events following immunization reported between
1991 and 2001, and most of these deaths were classified as
SIDS.20 The recent presentation of a 4-month-old girl with
aborted cardiac arrest and recurrent ventricular arrhythmias
associated with vaccination and/or fever in this infant and in
her brother,6 the occurrence of SIDS in a 3-month-old boy on
the day after vaccination (unpublished data), and the study by
Kanter et al5 reporting rapid VT in a 5-month-old boy on
the day of vaccination, all cases united by an underlying loss-of-
function SCN5A mutation, lead us to believe that there might
be more to sudden deaths following immunization than just
SIDS. With population-based studies on SIDS cases revealing

Figure. Characteristics of loss-of-function sodium and calcium channelopathies from published reports of 19 symptomatic chil-
dren <2 years of age.7 This patient had no fever at presenta-
tion but had an appropriate ICD discharge during an episode of
fever. BrS indicates Brugada syndrome; IVCD, intraventricular
conduction delay; VF, ventricular fibrillation; VT, ventricular
tachycardia.

<table>
<thead>
<tr>
<th>Fever</th>
<th>Syncope</th>
<th>Prolonged QT</th>
<th>Type 1 BrS ECG</th>
<th>IVCD</th>
<th>VT/VF</th>
<th>Mutation</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>11</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Legend: SCN5A, CACNB2+SCN5A, CACNB2, Unknown genotype.
imperative information on molecular and genetic pathology of death in many of these infants, careful scrutiny for documented temporal relationship to immunization should be performed to verify this association. With genetic confirmation of the causal mutations in the SIDS/aborted sudden cardiac death patients, family screening should be a mandatory part of the management of these patients. Identification of asymptomatic mutation carriers and/or different phenotypic presentations among other young children in the family will help initiate targeted therapy aimed at arrhythmia prevention.

In summary, loss-of-function sodium and calcium channelopathies may present as sudden death in infants and young children, especially in association with febrile episodes and immunization. Pharmacological therapy together with adequate parental counseling should suffice in most patients, and ICD therapy should be reserved for the refractory cases.

Disclosures
Dr Wilde is a member of the scientific advisory boards of Transgenomics and Sorin.

References

Key Words: Editorials • Brugada syndrome • genetics • ion channels or ion channel • pediatrics • sudden death • ventricular arrhythmia
Loss-of-Function Sodium Channel Mutations in Infancy: A Pattern Unfolds
Priya Chockalingam and Arthur A.M. Wilde

Circulation. 2012;125:6-8; originally published online November 16, 2011;
doi: 10.1161/CIRCULATIONAHA.111.071837
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2011 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/125/1/6

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/