Coronary Artery Wall Shear Stress Is Associated With Progression and Transformation of Atherosclerotic Plaque and Arterial Remodeling in Patients With Coronary Artery Disease

Habib Samady, MD; Parham Eshtehardi, MD; Michael C. McDaniel, MD; Jin Suo, PhD; Saurabh S. Dhawan, MD; Charles Maynard, PhD; Lucas H. Timmins, PhD; Arshed A. Quyyumi, MD; Don P. Giddens, PhD

Background—Experimental studies suggest that low wall shear stress (WSS) promotes plaque development and high WSS is associated with plaque destabilization. We hypothesized that low-WSS segments in patients with coronary artery disease develop plaque progression and high-WSS segments develop necrotic core progression with fibrous tissue regression.

Methods and Results—Twenty patients with coronary artery disease underwent baseline and 6-month radiofrequency intravascular ultrasound (virtual histology intravascular ultrasound) and computational fluid dynamics modeling for WSS calculation. For each virtual histology intravascular ultrasound segment (n=2249), changes in plaque area, virtual histology intravascular ultrasound–derived plaque composition, and remodeling were compared in low-, intermediate-, and high-WSS categories. Compared with intermediate-WSS segments, low-WSS segments developed progression of plaque area (P=0.027) and necrotic core (P<0.001), whereas high-WSS segments had progression of necrotic core (P<0.001) and dense calcium (P<0.001) and regression of fibrous (P<0.001) and fibrofatty (P<0.001) tissue. Compared with intermediate-WSS segments, low-WSS segments demonstrated greater reduction in vessel (P<0.001) and lumen area (P<0.001), and high-WSS segments demonstrated an increase in vessel (P<0.001) and lumen (P<0.001) area. These changes resulted in a trend toward more constrictive remodeling in low- compared with high-WSS segments (73% versus 30%; P=0.06) and more excessive expansive remodeling in high- compared with low-WSS segments (42% versus 15%; P=0.16).

Conclusions—Compared with intermediate-WSS coronary segments, low-WSS segments develop greater plaque and necrotic core progression and constrictive remodeling, and high-WSS segments develop greater necrotic core and calcium progression, regression of fibrous and fibrofatty tissue, and excessive expansive remodeling, suggestive of transformation to a more vulnerable phenotype.

Key Words: atherosclerosis | coronary artery disease | hemodynamics | intravascular ultrasonography, interventional | wall shear stress

Although cardiovascular risk factors lead to systemic inflammation, oxidative stress, and endothelial dysfunction, it is recognized that coronary atherosclerotic plaques are focally distributed with highly variable rates of progression. However, prediction of regional plaque progression in an individual coronary segment remains elusive.

Editorial see p 763
Clinical Perspective on p 788

Altered in wall shear stress (WSS) have been implicated in the focal distribution and pathophysiology of coronary atherosclerosis. Low WSS leads to a proatherogenic endothelial cell phenotype and focal development of atherosclerosis and vascular remodeling in experimental models and pilot clinical studies. Both low WSS and high WSS have been implicated in the production of matrix metalloproteinases and plasmin by endothelial cells that can destabilize plaque fibrous caps. In addition, high WSS has been shown to induce apoptosis of smooth muscle cells, which might enhance plaque vulnerability.

To date, the role of both low WSS and high WSS in the development of plaque progression, change in plaque com-
position, and arterial remodeling in patients with coronary artery disease (CAD) has not been investigated. We hypothesized that segments with low WSS will develop plaque progression and constructive remodeling, whereas segments with high WSS will develop progression of necrotic core with regression of fibrous tissue and extensive expansive remodeling, suggestive of greater plaque vulnerability. Accordingly, we prospectively studied serial changes in plaque area, virtual histology intravascular ultrasound (VH-IVUS)–derived plaque composition, and remodeling in coronary segments with low, intermediate, and high WSS in patients with nonobstructive CAD treated with optimal medical therapy.

Methods

Study Population

Twenty patients presenting to the cardiac catheterization laboratory at Emory University Hospital between December 2007 and January 2009 with an abnormal noninvasive stress test or stable anginal syndromes and found to have a nonobstructive lesion requiring invasive physiological evaluation were enrolled. Exclusion criteria included myocardial infarction, cardiogenic shock or hemodynamic instability, lesion requiring percutaneous or surgical revascularization, coronary artery bypass bypass surgery, severe valvular heart disease, presence of visual coronary collaterals, inability to provide informed consent, serum creatinine ≥1.5 mg/dL, liver disease, or significant hematologic disease.

All patients underwent baseline and 6-month follow-up radiofrequency backscatter IVUS (VH-IVUS) and baseline computational fluid dynamics (CFD) modeling for WSS calculation. All patients underwent lipid profile assessment at baseline and follow-up and underwent serial changes in plaque area, virtual histology intravascular ultrasound (VH-IVUS)–derived plaque composition, and remodeling in coronary segments with low, intermediate, and high WSS in patients with nonobstructive CAD treated with optimal medical therapy.

Coronary Angiography and Physiology Assessment

All patients underwent bivalve coronary angiography in a Philips Integris bivalve coronary catheterization system (Philips Medical Systems, Andover, MA). The bivalve angles were chosen to visualize the index vessel and at least 3 horizontal and 3 vertical markers on the calibration box in each view. At the time of catheterization, a 6F coronary guide catheter was introduced into the ostium of the coronary artery. Unfractionated heparin 50 U/kg was administered intravenously as a bolus. Fractional flow reserve and coronary flow reserve were measured with a 0.014-in pressure and Doppler flow velocity monitoring guidewire (ComboWire, Volcano Corp, Rancho Cordova, CA). The ComboWire was advanced to the tip of the guide catheter, and the aortic pressure and guide wire pressures were equalized. The guidewire was advanced into the proximal, nontortuous portion of the vessel at least 5 mm from major angiographic side branches (>2 mm diameter) to measure the inlet velocity. The ComboWire was then advanced into the distal vessel, and the outlet velocity was also recorded. Subsequently, 140 μg kg⁻¹ min⁻¹ intravenous adenosine was infused for 3 minutes to induce maximal coronary hyperemia for measurement of fractional flow reserve and coronary flow reserve. Fractional flow reserve was defined as the ratio of mean distal to aortic pressure during hyperemia; coronary flow reserve was defined as the ratio of hyperemic to baseline average peak velocity.

To assess the reproducibility of the resting velocity measurements used in CFD models to calculate WSS, we performed in 10 patients 2 separate average peak Doppler flow velocity measurements in 3 different locations in each patient, yielding a total of 60 measurements. We found good reproducibility for average peak velocity (concordance correlation coefficient, 0.979; 95% confidence interval, 0.966 to 0.986).

Gray-Scale and Virtual Histology Intravascular Ultrasound Image Acquisition and Analysis

Image acquisition with IVUS was performed after administration of 200 μg intracoronary nitroglycerin with a phased-array 20-MHz Eagle Eye Gold Catheter and the s5 Imaging System (Volcano Corp). The IVUS catheter was located as distal as possible with a guidewire side branch used as the starting point. Automated motorized pullback (0.5 mm/s) was performed, and IVUS images were continuously acquired up to the guide catheter in the aorta to sample 60 mm of the proximal vessel. The ECG-gated gray-scale IVUS images and radiofrequency signals were acquired and stored for offline analysis. Intravascular ultrasound radiofrequency data were acquired at the peak of the R wave. Angiography was used to record the IVUS catheter start position and its relationship to adjacent anatomic landmarks such as diagonal or septal branches. Offline volumetric reconstruction and analysis of the entire imaged segment were performed by a single experienced investigator who was blinded to the patients’ clinical and WSS data, according to criteria of the American College of Cardiology Clinical Consensus document on IVUS using Volcano Image Analysis Software version 3.0 (Volcano Corp).

The IVUS measurements of external elastic membrane (EEM), plaque (plaque and media; EEM minus lumen), and lumen cross-sectional areas were performed for every recorded VH-IVUS frame (0.5-mm thickness), defined as an IVUS segment in the present analysis. Plaque burden was calculated as plaque area divided by EEM area. To assess plaque composition, absolute and relative (percentage) areas of VH-IVUS parameters (fibrofatty tissue, fibrous tissue, necrotic core, and dense calcium) were measured for each IVUS segment. Baseline and follow-up IVUS images were reviewed side by side on a display and were coregistered. The distal end of the target segment was determined by the presence of a reproducible index side branch. Change in areas of EEM, lumen, plaque, and 4 components of plaque (necrotic core, dense calcium, fibrous tissue, and fibrofatty tissue) and plaque burden were calculated as follow-up values minus baseline values for each IVUS segment. Intraobserver analysis was performed by an experienced analyst in random samples of 10 patients (n=886 frames) at least 2 weeks apart, demonstrating good reproducibility for plaque area (concordance correlation coefficient, 0.968; 95% confidence interval, 0.965 to 0.973) and necrotic core area (concordance correlation coefficient, 0.978; 95% confidence interval, 0.976 to 0.980).

Different nomenclatures have been used in the literature to describe arterial remodeling patterns. Here, we use extensive expansive (also called overcompensatory), compensatory (also called compensatory expansive or incompletely compensatory), and constructive remodeling to describe the 3 patterns of arterial remodeling on the basis of the American College of Cardiology/European Society of Cardiology clinical expert consensus documents on standards for acquisition, measurement, and reporting of IVUS studies. Serial remodeling was defined as excessive expansive (also called overcompensatory), compensatory (also called compensatory expansive or incompletely compensatory), and constructive. On the basis of the IVUS clinical expert consensus documents, the serial remodeling index of each VH-IVUS frame was calculated as ΔEEM area (EEM area at follow-up minus EEM area at baseline). Positive ΔEEM area was defined as positive remodeling, and negative ΔEEM area was defined as constructive (negative) remodeling. Furthermore, segments with positive remodeling were subdivided into excessive expansive (ΔEEM area divided by Δplaque area, ie, plaque area at follow-up minus plaque area at baseline was >1) or compensatory (ΔEEM area divided by Δplaque area was between 0 and 1).0,16,20,21

Computational Fluid Dynamics and Wall Shear Stress Analysis

The physical 3-dimensional (3D) path of the IVUS catheter during pullback was determined by use of the corresponding bivalve angiographic projections acquired before the pullback. The bivalve images were coregistered with a specially designed platform beneath the subject that contained spatial markers that enabled definition of precise geometric locations in 3D space independently of any
It is known that the newtonian assumption for blood is incompressible newtonian fluid (viscosity constant with respect to computational domain. The fluid (blood) was assumed to be an inlet section was extended proximally to provide an entrance length from the measurements recorded from a stable set of cycles. The peak velocity registered in the Doppler ultrasound sample volume the inlet velocity was a plug profile with velocity equal to 80% of the velocity profiles measured by the Doppler wire. Our assumption for the mesh was imported into the commercial solver CFD-ACE (CFD Research Corp, Huntsville, AL), and points of each frame were connected by spline curves to rebuild the information from angiography and IVUS images. The boundary coronary artery), arterial branches were added on the basis of reconstruction of the main artery of interest (left anterior descending frame was aligned perpendicular to the catheter core. Subsequent to catheter pullback. After image adjustment owing to rotation, each frame was aligned perpendicular to the catheter core. Subsequent to reconstruction of the main artery of interest (left anterior descending coronary artery), arterial branches were added on the basis of information from angiography and IVUS images. The boundary points of each frame were connected by spline curves to rebuild the luminal geometry in 3D space. The reconstructed 3D surface was meshed in CFD-GEOM (CFD Research Corp, Huntsville, AL), and the mesh was imported into the commercial solver CFD-ACE (CFD Research Corp).

Inlet and outlet boundary conditions were specified as a series of velocity profiles measured by the Doppler wire. Our assumption for the inlet velocity was a plug profile with velocity equal to 80% of the peak velocity registered in the Doppler ultrasound sample volume (corresponding to peak values in the Doppler spectrum). This profile was imposed at each time step in the pulsatile cycle as determined from the measurements recorded from a stable set of cycles. The inlet section was extended proximally to provide an entrance length of 1.5 times the vessel diameter to allow a smooth transition into the computational domain. The fluid (blood) was assumed to be an incompressible newtonian fluid (viscosity constant with respect to shear rate). It is known that the newtonian assumption for blood is valid under the pulsatile, moderate Reynolds number flow conditions in coronary arteries. Wall shear stress is dependent on the fluid viscosity and the gradient of the velocity profile perpendicular to the vessel surface. Because viscosity remains constant in newtonian fluids, WSS is largely dependent on velocity. After the pulsatile flow field in the region of interest was computed, WSS was determined as a function of time in the cardiac cycle and spatial location around the lumen. and the evaluation had previously been shown to be highly reproducible. We next computed the time average of the magnitude of WSS over the pulsatile cycle at each point around the circumference at each axial location (each cross section) and then computed a circumferential average of these values. The result is a spatially and temporally averaged value of WSS magnitude at each axial location. An example of WSS and superimposed VH-IVUS data are displayed in Figure 2.

Although WSS is a continuous and dynamic variable, for the purpose of this study and on the basis of the previous cell culture, experimental, and human data, low WSS was defined as <10 dynes/cm², intermediate WSS as ≥10 and <25 dynes/cm², and high WSS as ≥25 dynes/cm².

Statistical Analysis
Continuous variables are described as mean±SD or median and interquartile range as appropriate; categorical variables are given as counts and proportions. Correlated error is introduced by the clustering of arterial segments within patients. For this correction, random-effects ANOVA was used for continuous dependent variables such as change in plaque area and WSS, the categorical independent variable of interest. For independent variables with ≥2 categories, the method of Scheffé was used to adjust P values for multiple comparisons. In circumstances with categorical dependent and independent variables, logistic regression was used, and the Huber White Sandwich Estimator was used to adjust P values for clustering of lesions within patients. The concordance correlation coefficient was used to evaluate the reproducibility of the IVUS and velocity measurements. Data analyses were performed with SAS version 9.2 (SAS Institute Inc), SPSS version 18.0, and Stata version 11.1. P<0.05 was established as the level of statistical significance.

Results
The left anterior descending coronary arteries were evaluated in 20 patients. Baseline demographic and clinical
Wall Shear Stress and Change in Plaque Area and Virtual Histology Intravascular Ultrasound–Derived Plaque Composition

Compared with baseline, low-WSS segments showed plaque area progression ($P=0.028$), whereas intermediate- and high-WSS segments showed plaque area regression ($P=0.009$ and $P<0.001$, respectively). Figure 3 presents examples of IVUS segments at baseline and follow-up demonstrating change in plaque area and VH-IVUS–derived plaque composition stratified by WSS categories.

Low Wall Shear Stress

Over the 6-month follow-up, low-WSS segments demonstrated an increase in plaque area (0.12 ± 0.78 mm2) compared with intermediate-WSS segments (-0.09 ± 1.16 mm2; $P=0.027$) or high-WSS segments (-0.16 ± 1.17 mm2; $P=0.002$), both of which demonstrated plaque area regression (Figure 4A). Similarly, an increase in plaque burden was observed in low-WSS segments ($3.39\pm6.06\%$) compared with intermediate-WSS segments ($-0.13\pm6.34\%$; $P<0.001$) and high-WSS segments ($-1.34\pm6.93\%$; $P<0.001$).

Evaluation of change in VH-IVUS–derived plaque composition demonstrated that low-WSS segments were associated with a greater increase in necrotic core area compared with intermediate-WSS segments (0.15 ± 0.26 versus -0.03 ± 0.44 mm2; $P<0.001$; Figure 4B). However, there were no significant differences in change in other VH-IVUS–derived plaque components between low- and intermediate-WSS segments. Comparison of change in VH-IVUS–derived plaque composition between low- and high-WSS segments is described below in the High Wall Shear Stress section.

Intermediate Wall Shear Stress

Coronary segments with intermediate WSS showed mild plaque area regression (-0.09 ± 1.16 mm2; $P<0.001$), with minimal change in VH-IVUS–derived plaque composition, compared with baseline (Figure 4A and 4B).

High Wall Shear Stress

A comparison of high- and intermediate-WSS segments showed that there was no significant difference in change in plaque area.

Table 1. Demographic and Clinical Characteristics of the Study Population (n=20)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Median (IQR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y</td>
<td>54 (46–68)</td>
</tr>
<tr>
<td>Male, n (%)</td>
<td>13 (65)</td>
</tr>
<tr>
<td>White, n (%)</td>
<td>14 (70)</td>
</tr>
<tr>
<td>Body mass index, kg/m2</td>
<td>30 (27–36)</td>
</tr>
<tr>
<td>Hypertension, n (%)</td>
<td>14 (70)</td>
</tr>
<tr>
<td>Current smoking, n (%)</td>
<td>5 (25)</td>
</tr>
<tr>
<td>Diabetes mellitus, n (%)</td>
<td>7 (35)</td>
</tr>
<tr>
<td>Family history of CAD, n (%)</td>
<td>8 (40)</td>
</tr>
<tr>
<td>Previous myocardial infarction, n (%)</td>
<td>2 (10)</td>
</tr>
</tbody>
</table>

Baseline lipid profile

<table>
<thead>
<tr>
<th>Lipid</th>
<th>Median (IQR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total cholesterol, mg/dL</td>
<td>186.0 (168.0–212.5)</td>
</tr>
<tr>
<td>Triglycerides, mg/dL</td>
<td>115.5 (83.5–158.8)</td>
</tr>
<tr>
<td>High-density lipoprotein, mg/dL</td>
<td>39.5 (33.3–52.8)</td>
</tr>
<tr>
<td>Low-density lipoprotein, mg/dL</td>
<td>118.5 (105.3–140.5)</td>
</tr>
</tbody>
</table>

Follow-up lipid profile

<table>
<thead>
<tr>
<th>Lipid</th>
<th>Median (IQR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total cholesterol, mg/dL</td>
<td>139.0 (124.3–151.3)</td>
</tr>
<tr>
<td>Triglycerides, mg/dL</td>
<td>107 (75.8–138.8)</td>
</tr>
<tr>
<td>High-density lipoprotein, mg/dL</td>
<td>42.5 (31.3–57.3)</td>
</tr>
<tr>
<td>Low-density lipoprotein, mg/dL</td>
<td>70.5 (54.3–87.5)</td>
</tr>
<tr>
<td>Coronary flow reserve</td>
<td>2.35 (2.03–2.59)</td>
</tr>
<tr>
<td>Fractional flow reserve</td>
<td>0.90 (0.82–0.96)</td>
</tr>
</tbody>
</table>

Compliance with medical treatment

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Median (IQR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspirin, n (%)</td>
<td>14 (70)</td>
</tr>
<tr>
<td>Lipid lowering medication, n (%)</td>
<td>14 (70)</td>
</tr>
</tbody>
</table>

Baseline gray-scale IVUS and VH-IVUS findings stratified by WSS categories

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Low WSS</th>
<th>Intermediate WSS</th>
<th>High WSS</th>
<th>P*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Segments, n</td>
<td>205</td>
<td>1034</td>
<td>1010</td>
<td></td>
</tr>
<tr>
<td>WSS, dynes/cm2</td>
<td>5.7±2.3</td>
<td>18.3±4.7</td>
<td>43.9±21.4</td>
<td><0.0001</td>
</tr>
<tr>
<td>EEM area, mm2</td>
<td>16.1±5.7</td>
<td>17.5±5.7</td>
<td>15.3±5.5</td>
<td>0.58</td>
</tr>
<tr>
<td>Lumen area, mm2</td>
<td>11.4±4.5</td>
<td>11.4±4.1</td>
<td>8.2±3.8</td>
<td>0.021</td>
</tr>
<tr>
<td>Plaque area, mm2</td>
<td>4.6±2.1</td>
<td>6.1±3.1</td>
<td>7.1±3.7</td>
<td>0.028</td>
</tr>
<tr>
<td>Plaque burden, %</td>
<td>28.8±10.3</td>
<td>34.3±12.4</td>
<td>45.9±15.9</td>
<td><0.0001</td>
</tr>
<tr>
<td>Necrotic core area, mm2</td>
<td>0.24±0.39</td>
<td>0.56±0.70</td>
<td>0.80±0.80</td>
<td>0.13</td>
</tr>
<tr>
<td>Dense calcium area, mm2</td>
<td>0.045±0.096</td>
<td>0.24±0.42</td>
<td>0.37±0.53</td>
<td>0.28</td>
</tr>
<tr>
<td>Fibrous area, mm2</td>
<td>1.15±1.17</td>
<td>1.78±1.66</td>
<td>2.50±2.05</td>
<td>0.009</td>
</tr>
<tr>
<td>Fibrofatty area, mm2</td>
<td>0.13±0.20</td>
<td>0.26±0.33</td>
<td>0.51±0.61</td>
<td>0.006</td>
</tr>
</tbody>
</table>

WSS indicates wall shear stress; EEM, external elastic membrane. Data are mean±SD.

*For comparison across 3 categories of WSS.

Characteristics of the study population are summarized in Table 1. In the 2249 VH-IVUS frames (median, 120; interquartile range, 80 to 133 frames per artery) analyzed, low WSS, intermediate WSS, and high WSS were found in 205, 1034, and 1010 segments, respectively. The mean values of WSS in low-, intermediate-, and high-WSS segments were 5.7±2.3, 18.3±4.7, and 43.9±21.4 dynes/cm2, respectively. The baseline gray-scale IVUS and VH-IVUS findings stratified by WSS categories are presented in Table 2.
(−0.16±0.117 versus −0.09±0.16 mm²; \(P=0.38 \); Figure 4A). However, in an evaluation of VH-IVUS–derived plaque composition, compared with intermediate-WSS segments, high-WSS segments demonstrated greater increase in necrotic core area (0.09±0.51 versus −0.03±0.44 mm²; \(P<0.001 \)) and dense calcium area (0.08±0.34 versus 0.00±0.26 mm²; \(P<0.001 \)), with significantly greater reduction in fibrous area (−0.21±0.83 versus 0.00±0.85 mm²; \(P<0.001 \)) and fibrofatty area (−0.14±0.44 versus 0.01±0.32 mm²; \(P<0.001 \); Figure 4B).

When change in VH-IVUS–derived plaque composition was compared between high- and low-WSS segments, we observed significantly more regression of fibrous area (−0.21±0.83 versus 0.14±0.56 mm²; \(P<0.001 \)) and fibrofatty area (−0.14±0.44 versus 0.01±0.32 mm²; \(P<0.001 \)) and progression of dense calcium area (0.08±0.34 versus 0.03±0.09 mm²; \(P=0.03 \)) in high- compared with low-WSS segments (Figure 4B). There was no significant difference in change in necrotic core area between high- and low-WSS segments (0.09±0.51 versus 0.15±0.26 mm²; \(P=0.2 \)).

Wall Shear Stress and Arterial Remodeling

When changes in EEM and lumen area were evaluated in low-WSS compared with intermediate- and high-WSS segments, we found that EEM area demonstrated a greater reduction at follow-up in low-WSS segments (−0.78±1.38 mm²) compared with intermediate-WSS segments (−0.10±1.64 mm²; \(P<0.001 \)) and high-WSS segments (0.14±1.59 mm²; \(P<0.001 \)). In addition, lumen area demonstrated greater reduction at follow-up in low-WSS segments (−0.90±1.52 mm²) compared with intermediate-WSS segments (−0.00±1.81 mm²; \(P<0.001 \)) and high-WSS segments (0.30±1.56 mm²; \(P<0.001 \)). Moreover, compared with intermediate-WSS segments, high-WSS segments showed greater increases in EEM area (0.14±1.59 versus −0.10±1.64 mm²; \(P<0.001 \)) and lumen area (0.30±1.56 versus −0.00±1.81 mm²; \(P<0.001 \)) at follow-up. Furthermore, low-WSS segments were more likely to undergo constrictive remodeling compared with intermediate-WSS segments (73% versus 42%; \(P=0.15 \)) and high-WSS segments (73% versus 30%; \(P=0.06 \)), whereas high-WSS segments were more likely to undergo excessive expansive remodeling compared with low-WSS segments (42% versus 15%; \(P=0.16 \)), although these observations were not statistically significant (Figure 5).

Discussion

The present investigation represents the first prospective evaluation of the value of coronary WSS with respect to plaque progression, change in VH-IVUS–derived plaque composition, and arterial remodeling in patients with CAD treated with optimal medical therapy. We found that compared with intermediate-WSS segments, low-WSS segments developed progression of plaque and necrotic core area, whereas high-WSS segments had progression of necrotic core and dense calcium and regression of fibrous and fibrofatty tissue, as determined by VH-IVUS. Moreover, compared with intermediate-WSS segments, low-WSS segments demonstrated significantly greater reduction in EEM and lumen area with a trend toward more constrictive remodeling, whereas high-WSS segments demonstrated a significantly greater increase in EEM and lumen area with a trend to more excessive expansive remodeling.

The present investigation is unique for several reasons. First, it is the largest investigation of WSS and progression of plaque and its VH-IVUS–derived composition and of remodeling in vivo in humans to date. Second, in contrast to the only previous study\(^{10}\) investigating the role of WSS in human coronary arteries, which did not include data from branch points and used angiographically estimated blood velocity, the present investigation used 3D coronary reconstructions.
including branch point data and measured velocity with a Doppler wire. We believe these methodological differences likely result in more accurate WSS calculations (Figure 2). Third, our study is the first study to use radiofrequency backscatter IVUS (VH-IVUS) to provide insights into the relationship of baseline WSS with change in plaque composition. Finally, because our patient population has more significant CAD compared with the previous human coronary study,10 we were able to investigate the association not only low WSS and VH-IVUS–derived plaque progression but also between high WSS and changes in plaque area and composition in patients treated with contemporary optimal medical therapy.

Low Wall Shear Stress, Plaque Progression, and Constrictive Remodeling

In vitro and animal studies have demonstrated that low WSS promotes atherosclerosis development through loss of the physiological flow-oriented alignment of the endothelial cells, increasing low-density lipoprotein (LDL) accumulation, proliferation of smooth muscle cells, transmigration of macrophages, and inflammation; impairing nitric oxide–dependent atheroprotection; and promoting oxidative stress.8,25,28 We and others have shown in the ApoE−/− mouse model that low WSS in the aorta colocalizes with increased vascular adhesion molecule-1 expression and development of atherosclerotic lipid plaques.7,29 Furthermore, in a mouse partial carotid ligation model, we noted that sites of low and oscillatory WSS were associated with upregulation of proatherosclerotic genes, downregulation of antiatherosclerotic genes, endothelial dysfunction, and the rapid development of atherosclerosis.8

Longitudinal studies investigating the role of low WSS in the progression of atherosclerosis in coronary arteries have been limited. In a study performed in diabetic hyperlipidemic swine by Chatzizisis et al,30 segments with the lowest WSS at baseline developed larger lipid plaques with inflammation and fibroatheromas at follow-up. The same group has recently demonstrated that regions of preceding low WSS had reduced endothelial coverage, augmented infiltration of activated inflammatory cells, and substantially increased expression and enzymatic activity of extracellular matrix-degrading enzymes, ultimately promoting the formation of atheromas with thin fibrous cap.13 In the only prior human investigation, segments located at low WSS developed greater plaque progression and were associated with more constrictive remodeling compared with other segments.10,31 Although this was an important proof of the concept that low WSS may be related to plaque progression in humans, the study of 13 patients with minimal CAD lacked measurement of plaque compositional changes associated with WSS. Our results, using a larger number of patients with greater CAD burden, demonstrate that low WSS is associated with plaque progression in these patients treated with optimal medical therapy and identify changes in VH-IVUS–derived plaque composition associated with low WSS.

The present investigation demonstrated that despite high-dose statin therapy, coronary segments with low WSS in patients with CAD developed greater plaque area progression over a relatively short time interval (6 months) compared with segments located in areas with intermediate and high WSS. This plaque progression is observed in low-WSS segments despite having less advanced baseline plaques than those located in intermediate and high WSS.
We found that plaque progression at low WSS was due predominantly to a proportionately greater increase in necrotic core and fibrous tissue, as determined by VH-IVUS. In keeping with these clinical observations, necrotic core progression in low-WSS segments has also been shown in 2 previous experimental histopathology animal studies of coronary and carotid arteries.7,30 There are several mechanisms by which low WSS might result in increased necrotic core and fibrous tissue in atherosclerotic plaques. Low WSS has been shown to induce conformational changes in the endothelial cells, to widen gap junctions, to increase permeability of the endothelial cell surface to LDL,32–34 and to upregulate the expression of genes encoding the LDL receptor, cholesterol synthase, and fatty acid synthase.2,35,36 The greater residence time of LDL particles at the endothelial surface in regions of low WSS further promotes LDL uptake.36,37 The progression of fibrous tissue in regions of low WSS observed in the present study may be related to the demonstrated effect of low WSS on smooth muscle cell migration from media to intima and proliferation of smooth muscle cells in response to platelet-derived growth factor, endothelin-1, and vascular endothelial growth factor.2,7,25,35,38–40

In addition to greater plaque progression, we found that low-WSS segments develop significantly smaller EEM during follow-up, resulting in numerically greater rates of constrictive remodeling compared with segments located at intermediate and high WSS. It is possible that the observed constrictive remodeling in low-WSS segments is related to subclinical plaque rupture with subsequent fibrosis and scarring within that area. On the other hand, constrictive remodeling in low-WSS segments has also been proposed as an adaptive mechanism to normalize local WSS to a more physiological, vasculoprotective level.6 Although animal studies have shown varied remodeling responses to low WSS,6,7,30 the only previous prospective human study demonstrated an association between coronary low WSS and constrictive remodeling, in keeping with our findings.19

High Wall Shear Stress, Plaque Transformation, and Excessive Expansive Remodeling

Although high-dose statin therapy is known to result in significant overall plaque regression,41,42 alteration in plaque composition,43–45 and improved outcomes in patients with preexisting CAD,46 such patients nevertheless continue to suffer substantial rates of death and myocardial infarction. We demonstrate for the first time in patients with CAD treated with statins that high-WSS segments develop significant progression of necrotic core and dense calcium and regression of fibrous and fibrofatty tissues, as determined by VH-IVUS, and expansion in EEM (excessive expansive remodeling), implying a phenotypic transformation characteristic of vulnerable plaques.37

Indeed, a recently published natural history study demonstrated the prognostic value of vulnerable plaque defined by VH-IVUS.48 In keeping with these findings, high WSS has also been proposed as a contributor to rupture and thrombosis of advanced atherosclerotic plaques in human coronary 49,50 and carotid arteries.51,52 In addition, data from a human carotid autopsy study demonstrated that high-WSS segments colocalize with increased macrophages levels and plaque rupture.53

In the present study, high-WSS segments had sufficient plaque burden (45.5±15.9%) to cause blood flow acceleration and elevated WSS without being flow limiting (median study vessel fractional flow reserve of 0.90 with no fractional flow reserve <0.75). The association of high-WSS segments with non–flow-limiting lesions at baseline and the longitudinal transformation of these segments to a more vulnerable phenotype are consistent with the concept that vulnerable plaques tend to have significant plaque burden without being flow limiting.47,54

There is an experimental rationale to support the association of high WSS with plaque transformation to a vulnerable phenotype. Indeed, high WSS is known to stimulate endothelial cells to produce plasmin, which dissolves the proteoglycan matrix.11,12 In addition, high WSS increases endothelial cell production of transforming growth factor-β and nitric oxide, which further suppress smooth muscle cell proliferation and induce apoptosis of smooth muscle cells.14,15,50 These changes lead not only to reduced total fibrous tissue but also to thinning of the fibrous cap, possibly making the plaque more vulnerable to plaque rupture.55,56 Furthermore, high WSS has been implicated in the development of increased calcification and necrotic core, similar to findings from the present study. In a study of endothelial cells from baboon aorto-iliac grafts, high-WSS regions were associated with increased expression of bone morphogenic protein-4, which is known to promote vascular inflammation and vascular calcification.11,12 Additionally, high WSS can stimulate the production of metalloproteinases by macrophages, which could contribute to positive remodeling, as noted by the increased EEM area in the present study in regions of high WSS.55,57 Animal studies suggest that segments with high WSS also typically exhibit high mechanical strain,58 which can work to weaken the fibrous cap and may precipitate rupture. Furthermore, in vitro studies imply that platelet activation, adhesion, and aggregation are greatest in regions of high WSS at the throat of a stenosis.59 Taken together, these mechanistic studies provide a rationale for high WSS promoting a vulnerable atherosclerotic plaque phenotype.

In the present study, expansive remodeling, which was seen in high-WSS segments over time, may be partially explained by the physiological and adaptive arterial enlargement to preserve lumen and subsequently to restore WSS to a more physiological and vasculoprotective level. Indeed, the interplay between WSS and remodeling is highly dynamic, as shown in experimental studies,6 and may be even more complex in patients with coronary artery disease. Currently, it is postulated that arterial remodeling is regulated by a combination of systemic, genetic, and local hemodynamic factors and dynamically responds to plaque progression and the subsequent altering local hemodynamic environment.2,6,35,59,60

Study Limitations

Several limitations require consideration during the interpretation of the results of the present study. First, correlated error was introduced by the clustering of numerous arterial segments within patients. However, appropriate statistical meth-
ods were used to adjust for correlated error. Second, accurate coregistration of individual IVUS segments at 2 time points is challenging; however, a single experienced investigator performed all IVUS analyses and carefully identified and used the same anatomic landmarks as described in the Methods section. Third, plaque composition data are derived from VH-IVUS. Clearly, the gold standard for assessment of plaque composition is true histology. However, this cannot be performed in coronary arteries in vivo. Contemporary technologies that can be applied in clinical studies of coronary plaque composition are limited to radiofrequency backscatter IVUS such as VH-IVUS (Volcano Corp) or iMAP (Boston Scientific) and optimal coherence tomography (which does not have sufficient tissue penetration to evaluate plaque transmurality consistently). The limitations of VH-IVUS for assessing plaque composition include a small number of studies correlating VH-IVUS with true histology and limited clinical outcomes. Indeed, a recent study in the swine atherosclerotic model found no correlation between necrotic core size determined by VH-IVUS and real histology, questioning the ability of VH-IVUS to detect thin-cap fibroatheromas. Nevertheless, several studies have evaluated the accuracy of VH-IVUS compared with ex vivo human coronary histology and in vivo directional coronary arterectomy specimens, with predictive accuracies of 87% to 97%. In addition, a recent large study has linked VH-IVUS in conjunction with gray-scale IVUS findings with adverse clinical outcomes.

Fourth, a potential confounding factor in the present study is treatment with high-dose statins. However, all patients (and coronary segments with different baseline WSS) were exposed to same dose of statin, and the mean LDL cholesterol level at follow-up was 70 mg/dL, which represents the standard-of-care target goal for patients with established CAD. Therefore, we propose that the observed differences in plaque burden and composition are related to different baseline WSS values. Finally, the present study does not demonstrate a cause-effect relationship between altered WSS patterns, plaque development, and vulnerability process. Evaluation of these cause-effect relationships in human coronary atherosclerosis remains challenging, and experimental models, despite their inherent limitations, allow greater mechanistic insight into these cause-effect relationships. Larger, prospective, clinical, natural history studies are also underway to help elucidate these cause-effect relationships.

Conclusions

In patients with CAD undergoing optimal medical therapy, coronary segments with low WSS develop greater plaque progression and constrictive remodeling compared with intermediate-WSS segments. Compared with intermediate-WSS segments, high-WSS segments develop greater VH-IVUS-defined plaque necrotic core and dense calcium progression, regression of fibrous and fibrofatty tissues, and excessive expansive remodeling, suggestive of transformation to a more vulnerable phenotype. This complex interplay between WSS and plaque development sheds light on the biomechanical factors that might contribute to human coronary atherosclerotic plaque progression and transformation.

Acknowledgments

We acknowledge the Emory interventional cardiology fellows, catheterization laboratory staff, and Andrew R. King for participation in the study performance.

Sources of Funding

This study was funded by the Wallace H. Coulter Translational/Clinical Research Seed Grant Program of the Georgia Institute of Technology and Emory University, Atlanta, GA; Pfizer Pharmaceuticals; and Volcano Corp.

Disclosures

None.

References

CLINICAL PERSPECTIVE

Atherosclerosis progression in human coronary arteries is modulated by the interplay of systemic risk factors and local hemodynamic forces, including wall shear stress (WSS). Cell culture and experimental animal models have shown that endothelium exposed to low WSS displays an atherosclerotic phenotype with focal development of atherosclerosis and vascular remodeling. Using a comprehensive in vivo method of WSS assessment, we prospectively studied serial changes in coronary plaque area and composition and in arterial remodeling with radiofrequency backscatter intravascular ultrasound in segments with low, intermediate, and high WSS in patients with nonobstructive coronary artery disease. The findings of this study demonstrate that low coronary WSS is associated with plaque progression and constrictive remodeling and that high WSS is associated with plaque regression, expansive remodeling, and transformation of plaque composition to a more vulnerable phenotype. These data add to our understanding of the relationship between WSS, intravascular ultrasound–defined plaque burden and composition, and vascular remodeling in patients with coronary artery disease. In addition, combining such in vivo hemodynamic profiling with anatomic evaluation of vascular remodeling, plaque burden and composition, cap thickness, and plaque deformation may be incremental in prediction of plaque progression and transformation. In concert with systemic risk stratification, multimodality imaging can potentially identify focal coronary segments at high risk for future coronary events that could be approached by intensified regional or systemic therapies to alter the hemodynamic environment and subsequent pathobiological consequences.
Coronary Artery Wall Shear Stress Is Associated With Progression and Transformation of Atherosclerotic Plaque and Arterial Remodeling in Patients With Coronary Artery Disease

Circulation. 2011;124:779-788; originally published online July 25, 2011;
doi: 10.1161/CIRCULATIONAHA.111.021824
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2011 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/124/7/779

Data Supplement (unedited) at:
http://circ.ahajournals.org/content/suppl/2016/04/13/CIRCULATIONAHA.111.021824.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation_ is online at:
http://circ.ahajournals.org/subscriptions/
Les forces de cisaillement s’exerçant sur les parois des artères coronaires contribuent à la progression et à la transformation des plaques d’athérosclérose ainsi qu’au remodelage artériel chez les patients coronariens

Habib Samady, MD ; Parham Eshtehardi, MD ; Michael C. McDaniel, MD ; Jin Suo, PhD ; Saurabh S. Dhawan, MD ; Charles Maynard, PhD ; Lucas H. Timmins, PhD ; Arshed A. Quyyumi, MD ; Don P. Giddens, PhD

Contexte—Certaines études expérimentales semblent indiquer que les forces de cisaillement pariétales (FCP) favorisent le développement des plaques d’athérosclérose lorsqu’elles sont faibles et contribuent à déstabiliser les plaques lorsqu’elles sont élevées. Nous avons donc émis l’hypothèse selon laquelle, chez les patients coronariens, les segments coronaires soumis à de faibles FCP seraient sujets à une progression des plaques, alors que, au niveau des segments subissant d’importantes FCP, le processus de progression intéresserait le noyau nécrotique et s’accompagnerait d’une involution du tissu fibreuse.

Méthodes et résultats—Chez 20 patients coronariens, une échographie intravasculaire avec analyse par radiofréquence (technique également désignée sous le nom d'histologie virtuelle par échographie intravasculaire) a été pratiquée à l’inclusion et 6 mois plus tard : une modélisation de la dynamique computationnelle des fluides a également été réalisée afin de calculer les FCP. Pour chacun des segments coronaires analysés par cette technique d'histologie virtuelle (n = 2 249), l’aire et la composition des plaques ainsi que le profil de remodelage artériel ont été estimés en employant cette technique de manière à pouvoir ensuite effectuer des comparaisons entre les segments selon que les FCP qui s’exerçaient sur eux étaient faibles, intermédiaires ou élevées. Comparativement aux segments artériels soumis à des FCP de degré intermédiaire, ceux au niveau desquels les FCP étaient faibles ont été sujets à une augmentation de l’aire des plaques (p = 0,027) et de la taille de leur noyau nécrotique (p <0,001), alors que, dans le cas des segments soumis à de fortes FCP, il a été constaté une augmentation du noyau nécrotique (p <0,001) et des dépôts calciques (p <0,001) avec, parallèlement, régression de l’aire de leur lumière (p <0,001) ; de leur côté, les segments soumis à d’importantes FCP ont présenté des augmentations de leur lumière (p <0,001) et de l’aire de leur lumière (p <0,001). Du fait de ces remaniements, les segments soumis à de faibles FCP ont présenté une tendance plus marquée à être l’objet d’un remodelage de type constrictif comparativement aux segments exposés à des FCP élevées (73 % versus 30 % ; p = 0,06), ceux-ci ayant été davantage enclins que les premiers à connaître un remodelage de type expansif excessif (42 % contre 15 % ; p = 0,16).

Conclusions—Comparativement aux segments coronaires au niveau desquels s’exercent des FCP de degré intermédiaire, ceux soumis à de faibles FCP présentent une évolution marquée par une progression plus importante de la superficie des plaques et de la taille de leur noyau nécrotique et d’un remodelage de type constrictif, alors que les segments soumis à des FCP élevées sont davantage enclins à présenter une augmentation de la taille du noyau nécrotique et des dépôts calciques, une involution des tissus fibres et fibro-graisseux et un remodelage de type expansif excessif, ce qui est en faveur d’une évolution vers un phénotype de vulnérabilité accru.

Mots clés : athérosclérose | maladie coronaire | hémodynamique | échographie intravasculaire, interventionnelle | forces de cisaillement pariétales

Reçu le 23 janvier 2011 ; accepté le 9 mai 2011.

Unité de Cardiologie, Service de Médecine, Faculté de Médecine de l’Université Emory, Atlanta, Géorgie, États-Unis (H.S., P.E., M.C.M., S.S.D., L.H.T., A.A.Q.) ; Département de Technologie Biomédicale Wallace H. Coulter, Institut de Technologie de Géorgie et Université Emory, Atlanta, Géorgie, États-Unis (L.S., L.H.T., D.P.G.) ; et Département de la Santé, Université de Washington, Seattle, Washington, États-Unis (C.M.).
Correspondance : Habib Samady, MD, FACC, FSCAI, Professor of Medicine, Emory University School of Medicine, 1365 Clifton Rd, Ste F606, Atlanta, GA 30322, États-Unis
E-mail : hsamady@emory.edu
© 2011 American Heart Association, Inc.

Circulation est disponible sur http://circ.ahajournals.org
Bien que les facteurs de risque cardiovasculaire soient reconnus responsables d’inflammation systémique, de stress oxydatif et de dysfonction endothéliale, il est également établi que le degré de progression des plaques d’athérosclérose coronaire varie fortement selon leur localisation. Cela étant, il demeure difficile de prévoir comment évoluera une plaque au niveau d’un segment coronaire donné.

Les différences de forces de cisaillement pariétales (FCP) ont été identifiées comme jouant un rôle dans les variations de localisation et la physiopathologie des lésions d’athérosclérose coronaire. Des modèles expérimentaux et des études cliniques pilotes ont montré que l’existence de FCP de faible intensité confère aux cellules endothéliales un phénotype prothrombogène et induit localement un processus d’athérosclérose et un remodelage vasculaire. Il a, par ailleurs, été établi que, qu’elles soient faibles ou élevées, les FCP agissent sur les cellules endothéliales en les conduisant à produire des métalloprotéases matricielles et de la plasmin, susceptibles de déstabiliser la chape fibreuse des plaques.

Le profil de remodelage athéromateux ainsi que sur le degré de progression des plaques d’athérosclérose ainsi que sur le profil de remodelage artériel. Nous avons émis l’hypothèse selon laquelle les segments coronaires soumis à des faibles FCP seraient sujets à une progression des plaques et à un remodelage de type constrictif, alors que, dans le cas des segments soumis à des fortes FCP, le processus de progression intéresserait le noyau nécrotique et s’accompagnerait d’une invasion du tissu fibreux et d’un remodelage de type expansif excès, cela témoignant d’une vulnérabilité accrue des plaques. Afin de vérifier cette hypothèse, nous avons donc eu recours à l’histologie virtuelle par échographie intravasculaire (HV-EIV) pour étudier de façon prospective les modifications intervenues au cours du temps dans la superficie et la composition des plaques ainsi qu’en termes de remodelage au niveau des segments coronaires selon qu’ils étaient soumis à des FCP faibles, intermédiaires ou élevées, chez des patients atteints de coronaropathies non occlusives qui recevaient un traitement médical optimal.

Méthodes

Population de l’étude
L’étude a porté sur 20 patients adressés en salle de cathétérisme cardiaque de l’Hôpital Universitaire Emory entre décembre 2007 et janvier 2009 en raison d’une épure d’effort non invasive anormale ou d’un syndrome angineux stable et chez lesquels il avait été décelé la présence d’une lésion non occlusive réclamant une exploration physiologique invasive. Les critères d’exclusion comprenaient l’infarctus du myocarde, l’existence d’un choc cardio-génique ou d’une instabilité hémodynamique, la nécessité de traiter la lésion considérée par revascularisation percutanée ou chirurgicale, les antécédents de pontage aorto-coronaire, la présence d’une valvulopathie cardiaque sévère, l’existence d’une circulation collatérale coronaire visible, l’incapacité du patient à fournir son consentement éclairé et l’existence d’une créatininémie supérieure à 1,5 mg/dl, d’une affection hépatique ou d’une hémpathie ayant une traduction clinique notable.

Une histologie virtuelle par échographie intravasculaire avec analyse par radiofréquence (HV-EIV) a été pratiquée chez tous les patients à leur entrée dans l’étude et 6 mois plus tard ; une modélisation de la dynamique computationnelle des fluides (DCF) a également été réalisée à l’inclusion afin de calculer les FCP. Les patients ont tous fait l’objet d’une évaluation de leur profil lipide à l’entrée de l’étude et au terme du suivi et leurs facteurs de risque cardiovasculaire ont été pris en charge par l’instauration d’un traitement médical optimal, comprenant, entre autre, la prise journalière de 80 mg d’atorvastatine. Les patients éligibles ont tous fourni leur consentement éclairé par écrit. L’étude a été approuvée par le comité d’éthique institutionnel de l’Université Emory.

Coronarographie et bilan physiologique
Une coronarographie biplan a été pratiquée chez chacun des patients au moyen d’un arceau d’angiographie biplan Philips Integris (Philips Medical Systems, Andover, Massachusetts, Etats-Unis). L’angle formé entre les deux plans de coupe a été choisi de manière à visualiser le segment artériel de référence ainsi qu’un minimum de trois marqueurs horizontaux et de trois marqueurs verticaux au sein de la boîte de calibration dans chaque incidence. Lors du cathétérisme coronaire, un cathéter-guide de 6F a été introduit dans l’orifice de l’artère coronaire cible. A un bolus intraveineux de 50 U/kg d’heparine non fractionnée a été administrée au patient. La fraction de réserve coronaire et le flux de réserve coronaire ont été déterminés au moyen d’un guide Doppler de mesure de la pression et de la vitesse du flux calibré 0,014 pouce (ComboWire, Volcano Corp, Rancho Cordova, Californie, Etats-Unis). Après avoir pousé le ComboWire jusqu’à l’extrémité du cathéter-guide, on a attendu que les pressions intra-aortique et au sein du guide Doppler s’équilibrent. Le guide a été avancé jusqu’à la portion proximale non tortueuse du vaisseau à une distance minimale de 5 mm des plus grosses ramifications angiographiques (diamètre >2 mm) afin de mesurer la vitesse d’entrée. Le ComboWire a ensuite été pousé dans la portion distale du vaisseau pour mesurer la vitesse de sortie. Après cela, de l’adénosine a été perfusée par voie intraveineuse à raison de 140 µg/kg/min pendant 3 minutes de manière à induire une hyperémie coronaire maximale afin de mesurer la fraction de réserve coronaire et le flux de réserve coronaire. La fraction de réserve coronaire a été définie comme étant le rapport de la pression moyenne dans le segment coronaire distal à la pression intra-aortique pendant la phase d’hyperémie ; le flux de réserve coronaire a été défini comme étant le rapport de la vitesse maximale moyenne en phase hyperémique à sa valeur basale.

Pour nous assurer de la reproductibilité des mesures de vitesse coronaire utilisées dans les modèles de DCF pour calculer les FCP, dans un sous-groupe de 10 patients, nous avons effectué chez chaque sujet deux mesures distinctes de la vitesse maximale moyenne du flux Doppler au niveau de trois sites différents, ce qui a fourni un total de 60 mesures. Cela nous a permis de vérifier que la reproductibilité des mesures de vitesse maximale moyenne était tout à fait satisfaisante (coefficient de corrélation/concordance : 0,979 ; intervalle de confiance [IC] à 95 % : 0,966 à 0,988).

Acquisition et analyse des images en échelle de gris et en histologie virtuelle par échographie intravasculaire
L’acquisition d’images d’EIV a été effectuée après injection intra-coronaire de 200 µg de trinitrine au moyen d’une sonde à commande de phase Eagle Eye Gold de 20 MHz et d’un système d’imagerie s5 (Volcano Corp). La sonde d’EIV a été placée en position la plus distale possible en utilisant une ramification fiduciaire comme point de départ. Un retrait motorisé automatisé (0,5 mm/s) de la sonde a ensuite été effectué afin d’acquérir des images d’EIV en continu jusqu’au cathéter-guide placé dans l’artère, de manière à explorer la...
portion proximale du vaisseau sur une longueur de 60 mm. Les images d’EIV en échelle de gris synchronisées sur l’ECG et les signaux de radiofréquence ont été acquis et stockés en vue de leur analyse en différé. L’acquisition des signaux de radiofréquence des images d’EIV a été réalisée lors du pic de l’onde R. Une approche angiographique a été employée pour représenter la position initiale de la sonde d’EIV et ses rapports avec les repères anatomiques avoisinants tels que les branches diagonales ou septales. La reconstruction volumétrique en différé et l’analyse de l’intégralité du segment ainsi recomposé ont été réalisées par un seul et même investigateur rompu à ces méthodes et qui ignorait les données cliniques des patients ainsi que leur statut en matière de FCP, selon les modalités décrites dans le document de consensus clinique sur l’EIV publié par l’American College of Cardiology16 et en utilisant un logiciel d’analyse d’images Volcano version 3.0 (Volcano Corp).

Des mesures portant sur les aires transversales de la limitante élastique externe (LEE), de la plaque (plaque et média : LEE moins lumière artérielle) et de la lumière artérielle ont été effectuées pour chaque image échographique acquise (épaisseur : 0,5 mm), désignée dans la présente analyse sous le terme de « segment échographique ». La masse de la plaque a été calculée en divisant l’aire par celle de la LEE. Pour évaluer la composition des plaques, nous avons mesuré les aires absolues et relatives (en pourcentage) des différents constituants objectivés par l’HV-EIV (tissu fibro-graisseux, tissu fibrocœur, noyau nécrotique et dépôts calciques) pour chacun des segments échographiques.17–19 Les images d’EIV acquises à l’entrée dans l’étude et au terme du suivi ont été examinées côte à côte sur un écran et enregistrées conjointement. L’extrémité distale du segment cible a été établie par la présence d’une ramification de référence reproductible. Pour chaque segment défini par l’EIV, nous avons calculé les variations intervenues dans les aires de la LEE, de la lumière artérielle, de la plaque et des quatre éléments constitutifs de cette dernière (noyau nécrotique, calcifications, tissu fibro-élastique et tissu fibro-graisseux) ainsi que dans la masse de la plaque en retranchant les valeurs originales de celles relevées au terme du suivi. Une analyse intra-observateur a été effectuée par un évaluateur expérimenté sur des échantillons aléatoires de 10 patients (n = 886 images) à un minimum de deux semaines d’intervalle, ce qui a confirmé la bonne reproductibilité des mesures de l’aire des plaques (coefficient de corrélation/ concordance : 0,968 ; IC à 95% : 0,965 à 0,971) et de celle des noyaux nécrotiques (coefficient de corrélation/concordance : 0,978 ; IC à 95% : 0,976 à 0,980).

Différentes nomenclatures ont été publiées dans la littérature pour décrire les profils de remodelage artériel. Dans cette étude, nous avons qualifié les trois types de remodelage possibles d’expansif excessif, compensatoire et contractil comme stipulé dans les documents de consensus cliniques élaborés par les experts cliniques de l’American College of Cardiology et de la Société Européenne de Cardiologie concernant les normes d’acquisition, de mesure et de publication des résultats d’EIV.16,20 Le remodelage interne au cours du temps a été défini comme expansif excessif (ce type étant également qualifié de surcompensatoire), compensatoire (type également nommé expansif compensatoire ou incomplètement compensatoire) ou contractil.16,20,22 Sur la base des documents de consensus rédigés par les experts cliniques sur l’EIV, le coefficient de remodelage au cours du temps a été calculé pour chaque image d’HV-EIV sous forme du ∆ de l’aire de la LEE (obtenu en retranchant la valeur initiale de cette dernière de celle mesurée au terme du suivi). Le remodelage a été considéré comme positif lorsque ce ∆ était positif et comme contractil (négo) si le ∆ était négatif. De plus, pour les segments ayant présenté un remodelage positif, celui-ci a été subdivisé en expansif excessif (cela traduisant le fait que la valeur obtenue en divisant le ∆ de l’aire de la LEE par celle de l’aire de la plaque [calculé en retranchant la valeur originelle de cette dernière de celle mesurée au terme du suivi] était supérieure à 1) et en compensatoire (cela signifiant que la valeur obtenue en divisant le ∆ de l’aire de la LEE par celle de l’aire de la plaque était comprise entre 0 et 1).16,20,21

Modélisation de la dynamique computationnelle des fluides et analyse des forces de cisaillement pariétales
Le cheminement physique tridimensionnel (3D) de la sonde d’EIV au cours du processus de retrait a été établi à partir des projections angiographiques biplan correspondantes acquises avant ce dernier. Les images biplan ont été enregistrées conjointement en utilisant une plate-forme spécialement conçue à cet effet, placée sous le patient et qui comportait des repères spatiaux permettant de définir avec précision les localisations géométriques 3D même lorsque la sonde était en position excentrée dans la lumière du vaisseau. La reconstruction 3D de l’axe central de la sonde a servi de base pour reconstruire la géométrie (Figure 1). La position 3D de chaque image d’EIV synchronisée sur l’ECG a été déterminée à partir de la reconstruction de trajecatoire de la sonde et de sa vitesse de retrait. Après avoir procédé à l’ajustement des images par rotation, chacune d’elles a été alignée perpendiculairement à l’axe central de la sonde. Après reconstruction de la principale artère cible (l’artère interventriculaire antérieure), nous avons ajouté les autres rameaux artériels en nous appuyant sur les informations fournies par l’angiographie et par les images d’EIV. Les points délimitant chacune des images ont été reliés par des courbes de fonction spline afin de reconstruire la géométrie 3D de la lumière artérielle. La surface reconstruite en 3D

![Figure 1. La coronarographie biplan permet de définir la trajectoire tridimensionnelle (3D) de la sonde d’échographie intravasculaire (EIV). Le vaisseau, sa lumière et les limites de la plaque sont reconstruits à partir de l’EIV, puis ces images sont alignées le long du trajet 3D de la sonde afin de reconstruire la géométrie 3D de l’artère coronaire. Les vorticité d’entrée et de sortie sont saisies dans le modèle de dynamique computationnelle des fluides (DCF) de manière à pouvoir calculer les valeurs des forces de cisaillement pariétales (FCP).](image-url)
a été maillée au moyen de l’application CFD-GEOM (CFD Research Corp, Huntsville, Alabama, Etats-Unis), puis la structure ainsi obtenue a été importée dans le solveur commercial CFD-ACE (CFD Research Corp).

Les conditions limites d’entrée et de sortie ont été exprimées sous la forme d’une série de profils de vécocités déterminés au moyen de la sonde Doppler. L’hypothèse que nous avons formulée quant à la vécocité d’entrée était que la vécocité au niveau du profil d’embout atteindrait 80 % de la vécocité maximale mesurée au sein du volume d’échantillonnage de l’écho-Doppler (ce qui correspond aux valeurs maximales du spectre Doppler). Ce profil a été appliqué à chaque temps du cycle pulsatile défini à partir des mesures effectuées sur une succession de cycles stables. La section d’entrée a été augmentée au niveau de la portion proximale de telle sorte que la longueur d’entrée soit égale à 1,5 fois le diamètre du vaisseau, cela pour permettre un passage sans à-coups dans le domaine computationnel. Nous avons considéré que le fluide (sang) était de type newtonien incompressible (constante de vécocité corélée avec le degré de contrainte de cisaillement). Il a été établi que, dans les artères coronaires, le sang ne se comporte comme un fluide newtonien qu’autant que le flux pulsatile répond à un nombre de Reynolds modéré (coefficient traduisant le degré de vécocité).22 Les forces de cisaillement s’exerçant sur la paroi dépendent à la fois de la vécocité du fluide considéré et du gradient du profil de vécocité perpendicular à la surface du vaisseau. Comme, dans les fluides newtoniens, la vécocité demeure constante, c’est la vécocité qui régit essentiellement les FCP. Après avoir calculé le champ du flux pulsatile dans la zone concernée, nous avons estimé les FCP en fonction du temps au cours du cycle cardiaque ainsi que leur localisation spatiale autour de la lumière artérielle,23,24 évaluation dont le haut degré de reproductibilité a précédemment été démontré. Nous avons ensuite calculé la moyenne temporelle de l’intensité des FCP tout au long du cycle pulsatile en chaque point de la circonférence et pour chaque localisation axiale (ou coupe transversale), puis nous avons calculé la moyenne circonférentielle de ces valeurs. Cela permet d’obtenir, pour chacune des localisations axiales, la valeur moyenne de l’intensité des FCP dans l’espace et le temps. La Figure 2 présente un exemple de profil de FCP avec superposition des données de l’HV-EIV.

Bien que les FCP constituent un paramètre continu et dynamique, pour les besoins de l’étude et en nous appuyant sur les données antérieurement recueillies à partir de cultures cellulaires, de travaux expérimentaux et chez l’Homme, nous avons défini les FCP inférieures à 10 dynes/cm² comme étant de faible intensité, celles comprises entre 10 et 25 dynes/cm² comme étant de degré intermédiaire et celles atteignant 25 dynes/cm² ou plus comme étant élevées.12,20

Analyse statistique

Les variables continues sont exprimées sous forme de moyennes associées, selon les besoins, de leur écart type ou de leurs bornes interquartiles ; les variables catégorielles sont présentées sous forme de nombres et de pourcentages. L’agrégation des segments artériels d’un même patient introduit une erreur corrélée. Pour pallier cet écueil, nous avons effectué une ANOVA à effets aléatoires portant sur les variables continues dépendantes telles que la modification de l’aire de plaque et sur les FCP, celles-ci constituant la variable catégorielle indépendante objet de l’étude. Pour les variables indépendantes comportant plus de deux catégories, nous avons employé la méthode de Scheffé afin d’ajuster les valeurs de p en fonction des comparaisons multiples. Lorsqu’il y avait coexistence de variables catégorielles dépendantes et indépendantes, nous avons eu recours à une analyse par régression logistique et à l’estimateur de variance Huber-White pour ajuster les valeurs de p en fonction de l’agrégation des lésions chez un même patient. Nous nous sommes appuyés sur le coefficient de corrélation/concordance pour évaluer la reproductibilité des mesures d’EIV et de vécocité.27,28 Les analyses ont été réalisées au moyen de programmes SAS version 9.2 (SAS Institute Inc.), SPSS version 18.0 et Stata version 11.1. Les valeurs de p inférieures à 0,05 ont été considérées comme statistiquement significatives.

Résultats

Les artères interventriculaires antérieures ont été évaluées chez 20 patients. Le Tableau 1 résume les caractéristiques démographiques et cliniques initiales de la population de l’étude. Sur les 2 249 images d’HV-EIV (médiane : 120 ; bornes interquartiles : 80 à 133 images par artère) qui ont été analysées, 205 segments artériels étaient le siège de FCP faibles, 1 034 de FCP de degré intermédiaire et 1 010 de FCP élevées. Les valeurs moyennes des FCP d’intensités faible, intermédiaire et élevée étaient respectivement de 5,7 ± 2,5, de 18,3 ± 4,7 et de 43,9 ± 21,4 dynes/cm². Le Tableau 2 résume les données des EIV en échelle de gris et des HV-EIV pratiquées à l’entrée dans l’étude, stratifiées par catégorie de FCP.

Forces de cisaillement pariétales et modifications de l’aire des plaques et de leur composition évaluée en histologie virtuelle par échographie intravasculaire

Comparativement à leur état initial, les segments soumis à de faibles FCP ont été sujets à une progression de l’aire des plaques présentes (p = 0,028), alors que ceux sur lesquels s’exerçaient des FCP de degré intermédiaire ou élevé ont présenté une régression de l’aire des plaques (respectivement p = 0,009 et p <0,001). La Figure 3 montre des exemples de modifications de l’aire des plaques et de leur composition évaluée par HV-EIV intervenues entre l’inclusion et la fin du suivi au sein de segments artériels selon l’intensité des FCP auxquelles ils étaient soumis.

Forces de cisaillement pariétales de faible intensité

Au cours des 6 mois de suivi, les plaques situées sur les segments coronaires soumis à des FCP de faible degré ont augmenté de taille (+0,12 ± 0,78 mm²), alors qu’il y a eu
régression de celles qui siégeaient sur les segments soumis à des FCP de degré intermédiaire (−0,09 ± 1,16 mm² ; p = 0,027) ou à des FCP élevées (−0,16 ± 1,17 mm² ; p = 0,002) (Figure 4A). De même, les segments exposés à de faibles FCP ont présenté une augmentation de leur masse en plaque (3,39 ± 6,06 %) comparativement à ceux sur lesquels s’exerçaient des FCP de degré intermédiaire (−0,13 ± 6,34 % ; p <0,001) ou de forte intensité (−1,34 ± 6,93 % ; p <0,001).

L’étude des modifications de la composition des plaques établie par HV-EIV a montré que l’aire du noyau nécrotique avait davantage augmenté au niveau des segments sur lesquels s’exerçaient de faibles FCP que de ceux qui étaient soumis à des FCP de degré intermédiaire (0,15 ± 0,26 mm² contre −0,03 ± 0,44 mm² ; p = 0,001 ; Figure 4B). Aucune différence significative n’a toutefois été relevée entre ces deux types de segments artériels quant aux modifications ayant affecté les autres éléments constitutifs des plaques étudiés par HV-EIV. La comparaison entre les segments artériels respectivement exposés à des FCP d’intensités faible et élevée en termes de modifications intervenues dans la composition des plaques est traitée ci-après dans le sous-chapitre « Forces de cisaillement pariétales d’intensité élevée ».

Forces de cisaillement pariétales de degré intermédiaire

Au cours du suivi, les segments coronaires qui étaient soumis à des FCP de degré intermédiaire ont été marqués par une légère régression de l’aire des plaques (−0,09 ± 1,16 mm² ; p <0,001), la composition de ces dernières en HV-EIV n’ayant que peu varié (Figure 4A et 4B).

Forces de cisaillement pariétales d’intensité élevée

La comparaison entre les segments artériels respectivement soumis à des FCP de degré élevé et intermédiaire a montré que ces derniers n’avaient pas présenté de différence significative en termes d’évolution de l’aire des plaques (−0,16 ± 1,17 mm² contre −0,09 ± 1,16 mm² ; p = 0,38 ; Figure 4A). En revanche, l’étude de la composition des plaques par HV-EIV a révélé que, comparativement aux segments exposés à des FCP de degré intermédiaire, ceux sur lesquels s’exerçaient des fortes FCP ont été le siège d’augmentations plus marquées de l’aire du noyau nécrotique (0,09 ± 0,51 mm² contre −0,03 ± 0,44 mm² ; p <0,001) et de celle des dépôts calciques (0,08 ± 0,34 mm² contre 0,00 ± 0,26 mm² ; p <0,001), ainsi que de régressions significativement supérieures de l’aire du tissu fibreux (−0,21 ± 0,83 mm² contre 0,00 ± 0,85 mm² ; p <0,001) et de celle du tissu fibro-graisseux (−0,14 ± 0,44 mm² contre 0,01 ± 0,32 mm² ; p <0,001 ; Figure 4B).

La comparaison des modifications de la composition des plaques respectivement intervenues au sein des segments...
importantes de l’état calcique et du tissu fibreux ont toutes trois augmentées au cours du suivi des augmentations plus significatives par l’extension des plaques et de leur noyau nécrotique, alors que les segments sur lesquels s’exerçaient des FCP de faible intensité (42 % contre 15 % ; p = 0,16), bien que la différence n’ait pas été statistiquement significative (Figure 5).

Discussion

Ceci est la première étude prospective menée pour évaluer l’influence exercée par les FCP coronaires sur la progression des plaques d’athérosclérose, l’évolution de leur composition en HV-EIV et le remodelage artériel chez les patients coronariens recevant un traitement médical optimal. Nous avons constaté que, comparativement aux segments coronaires soumis à des FCP de degré intermédiaire, ceux qui n’étaient exposés qu’à de faibles FCP ont connu une évolution marquée par l’extension des plaques et de leur noyau nécrotique, alors que les segments sur lesquels s’exerçaient de fortes FCP ont présenté une augmentation de la taille des plaques et de leur noyau fibreux et fibro-graisseux, objectivée par l’HV-EIV. De plus, comparativement aux segments soumis à des FCP de degré intermédiaire, ceux exposés à des forces de cisaillement plus fortement organisées sur l’aire de leur LEE et de celle de leur lumière, cela s’étant accompagné d’une plus forte tendance à la survenue d’un remodelage de type contrictif, alors que les segments soumis à des FCP élevées ont présenté des augmentations significativement plus marquées de l’aire de leur LEE et de celle de leur lumière artérielle dans les trois types de segments a montré que, au cours du suivi, la première avait davantage diminué de l’aire du tissu fibreux (-0,21 ± 0,83 mm² contre 0,14 ± 0,56 mm² ; p <0,001) et de celle du tissu fibro-graisseux (-0,14 ± 0,44 mm² contre 0,01 ± 0,09 mm² ; p <0,001) ainsi que d’une augmentation de l’aire des dépôts calciques (0,08 ± 0,34 mm² contre 0,03 ± 0,09 mm² ; p = 0,03) (Figure 4B). Aucune différence significative n’a été notée entre ces deux types de segments artériels quant aux modifications intervenues dans l’aire du noyau nécrotique (0,09 ± 0,51 mm² contre 0,15 ± 0,26 mm² ; p = 0,2).

Forces de cisaillement pariétales et remodelage artériel

L’analyse des modifications dont avaient été l’objet l’aire de la LEE et celle de la lumière artérielle dans les trois types de segments a montré que, au cours du suivi, la première avait davantage diminué de l’aire du tissu fibreux (-0,21 ± 0,83 mm² contre 0,14 ± 0,56 mm² ; p <0,001) et de celle du tissu fibro-graisseux (-0,14 ± 0,44 mm² contre 0,01 ± 0,09 mm² ; p <0,001) ainsi que d’une augmentation de l’aire des dépôts calciques (0,08 ± 0,34 mm² contre 0,03 ± 0,09 mm² ; p = 0,03) (Figure 4B). Aucune différence significative n’a été notée entre ces deux types de segments artériels quant aux modifications intervenues dans l’aire du noyau nécrotique (0,09 ± 0,51 mm² contre 0,15 ± 0,26 mm² ; p = 0,2).

Les forces de cisaillement ont été classées en trois groupes : FCP faibles (6,77 dynes/cm²), FCP de degré intermédiaire (15,81 dynes/cm²) et FCP élevées (51,72 dynes/cm²). Les aires de la plaque, du noyau nécrotique et des dépôts calciques ont été mesurées à l’inclusion et au suivi. Le remodelage a été évalué par l’HV-EIV et par l’histologie virtuelle.

<table>
<thead>
<tr>
<th>FCP faibles (6,77 dynes/cm²)</th>
<th>FCP de degré intermédiaire (15,81 dynes/cm²)</th>
<th>FCP élevées (51,72 dynes/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aire de la plaque : 6,4 mm²</td>
<td>9,9 mm²</td>
<td>12,2 mm²</td>
</tr>
<tr>
<td>Aire du noyau nécrotique : 1,9 mm²</td>
<td>2,5 mm²</td>
<td>1,5 mm²</td>
</tr>
<tr>
<td>Aire des dépôts calciques : 0,2 mm²</td>
<td>0,2 mm²</td>
<td>0,4 mm²</td>
</tr>
<tr>
<td>Aire du tissu fibreux : 1,6 mm²</td>
<td>2,5 mm²</td>
<td>3,3 mm²</td>
</tr>
<tr>
<td>Aire du tissu fibro-graisseux : 0 mm²</td>
<td>1,0 mm²</td>
<td>4,0 mm²</td>
</tr>
<tr>
<td>Aire totale de la plaque : 8,9 mm²</td>
<td>9,0 mm²</td>
<td>10,1 mm²</td>
</tr>
</tbody>
</table>

Figure 3. Exemples de modifications de l’aire des plaques et de leur composition évaluée en histologie virtuelle par échographie intravasculaire intervenues entre l’inclusion et la fin du suivi au sein de segments artériels selon l’intensité des forces de cisaillement pariétales (FCP) qui s’exerçaient initialement sur eux.

Dans le cas du segment soumis à des FCP faibles, on constate que les aires respectives de la plaque, du noyau nécrotique et du tissu fibreux ont toutes trois augmentées lors de l’évolution du segment exposé à des FCP de degré intermédiaire a été marquée par une régression de l’aire totale de la plaque, alors que celle du segment sur lequel s’exerçaient de fortes FCP s’est traduite par une régression de l’aire totale de la plaque, mais aussi par une progression de l’aire du noyau nécrotique et de celle des dépôts calciques.
la LEE et de la lumière artérielle et ont été davantage enclins à connaître un remodelage de type expansif excessif.

L'originalité de ce travail tient à plusieurs raisons. Premièrement, il s’agit de la plus vaste étude menée à ce jour chez l’Homme sur les FCP, l’évolution des plaques et de leur composition documentée par l’HV-EIV ainsi que sur le remodelage des artères coronaires in vivo. Deuxièmement, contrairement à la seule étude\(^{10}\) précédemment entreprise pour explorer le rôle des FCP s’exerçant sur les artères coronaires humaines (laquelle n’avait pas pris en compte les données relatives aux zones de division et s’était appuyée sur la mesure angiographique du débit sanguin théorique), notre travail a fait appel à des reconstructions 3D des artères coronaires qui incluaient les zones de division et à des mesures de la vélocité du flux sanguin réalisées au moyen d’une sonde Doppler. Nous pensons que ces différences de méthodologie nous ont permis de calculer les FCP avec une plus grande précision (Figure 2). Troisièmement, notre étude est la première à avoir utilisé la technique d’EIV par radiofréquence avec dispersion des signaux dans la paroi artérielle (HV-EIV) pour explorer le lien existant entre les FCP originelles et les modifications de la composition des plaques. Enfin, comme les patients de notre cohorte présentaient des lésions coronaires plus importantes que ceux de la précédente étude sur les coronopathies humaines,\(^ {10}\) nous avons pu étudier non seulement la relation existant entre la présence de FCP de faible intensité et l’évolution des plaques en HV-EIV, mais aussi le lien unissant l’existence de FCP élevées aux modifications de la taille et de la composition des plaques chez les patients bénéficiant d’un traitement médical optimal tel qu’il est proposé de nos jours.

Faibles forces de cisaillement pariétales, progression des plaques et remodelage constrictif

Des études in vitro et chez l’animal ont montré que l’existence de FCP de faible degré favorise le développement de l’athérosclérose car elles abolissent l’alignement physiologique des cellules endothéliales dans le sens du courant sanguin et augmentent l’accumulation de lipoproteïnes de faibles densité (LDL), la prolifération des cellules musculaires lisses, la migration des macrophages et l’inflammation ; de plus, elles diminuent la protection conférée par le monoxyde d’azote à l’égard de l’athérosclérose et favorisent le stress oxydatif.\(^ {8,25,28}\) En utilisant un modèle de souris ApoE\(^ {−}\), nous avons montré, à l’instar d’autres investigateurs, que l’existence de faibles FCP au niveau aortique va de pair avec l’augmentation de l’expression de la molécule d’adhésion vasculaire de type 1 et de la formation de plaques d’athérosclérose riches en lipides.\(^ {7,28}\) De plus, dans un modèle de ligature partielle de l’artère carotide chez la souris, nous avions constaté que les sites sur lesquels s’exerçaient des FCP de faible degré ou fluctuantes étaient le siège d’une expression accrue des gènes promoteurs d’athérosclérose, d’une inhibition de ceux ayant un rôle protecteur vis-à-vis de cette dernière, d’une dysfonction endothéliale et d’un développement rapide de lésions d’athérosclérose.\(^ {6}\) Peu d’études longitudinales ont été entreprises pour explorer le rôle joué par les FCP de faible intensité dans la progression de l’athérosclérose coronaire. Dans une étude menée chez le porc diabétique hyperlipidémique,\(^ {8,28}\) Chatzizisis

Figure 5. Fréquence des différents profils de remodelage des segments artériels soumis à des forces de cisaillement pariétales (FCP) de degré faible, intermédiaire ou élevé. La valeur de p mentionnée se rapporte à la comparaison des fréquences de survenue des trois types de remodelage dans les trois catégories de FCP.
et al ont montré que l'évolution des segments coronaires qui étaient originellement soumis à des FCP minimales avait été marquée par le développement de plaques lipidiques plus volumineuses, cela s'étant accompagné d'une inflammation et de lésions fibro-athéromateuses. Cette même équipe a récemment montré que les sites sur lesquels s'étaient exercées de faibles FCP avaient secondairement connu une raréfaction de leur revêtement endothélial, une colonisation accrue par les cellules inflammatoires activées et une importante augmentation de l'expression et de l'activité des enzymes de dégradation de la matrice extracellulaire, cela ayant favorisé la formation de plaques d'athérosclérose à chape fibreuse mince.13 Dans la seule étude précédemment menée chez l'Homme, la progression des plaques a été plus marquée et le remodelage plus constrictif au niveau des segments artériels exposés à des FCP de faible degré que dans les autres segments.10,11 Bien que cela ait été un important argument en faveur du concept selon lequel l'existence de FCP faibles serait de nature à favoriser la progression des plaques d’athérosclérose chez l'Homme, cette étude chez 13 patients porteurs de lésions coronaires minimes n'a pas comporté d'évaluation des modifications de la composition des plaques liées aux FCP. Nos observations, qui portent sur un plus grand nombre de patients atteints de coronaropathies plus sévères, démontrent que les FCP de faible intensité favorisent l'extension des plaques chez les patients bénéficiant d'un traitement médical optimal et mettent en lumière les modifications que ces faibles FCP induisent au niveau de la composition des plaques analysées par HV-EIV.

Cette étude montre que, bien que ces patients coronariens aient reçu un traitement par statine à forte dose, les segments coronaires soumis à de faibles FCP ont connu, dans un temps relativement court (6 mois), une plus forte augmentation de la taille des plaques d'athérosclérose que ceux sur lesquels s'exerçaient des FCP de degré intermédiaire ou élevé. Cette progression des plaques est intervenue dans les segments exposés à de faibles FCP alors que les plaques initialement présentes étaient moins évolutives que celles situées sur les segments qui étaient soumis à des FCP de degré intermédiaire ou élevé.

Nous avons observé que l'augmentation de taille des plaques siègent sur les segments exposés à de faibles FCP avait essentiellement découlé de l'accroissement proportionnellement supérieur du noyau nécrotique et du tissu fibreux, documenté par l'HV-EIV. En accord avec ces observations cliniques, l'augmentation de taille des noyaux nécrotiques au sein des segments artériels soumis à de faibles FCP a également été rapportée dans deux précédentes études sur l'histopathologie des artères coronaires et carotides chez l'animal.7,30 Plusieurs mécanismes peuvent contribuer à l'augmentation du noyau nécrotique et du tissu fibreux induite par les FCP de faible intensité au niveau des plaques d’athérosclérose. Il a été démontré que ces faibles FCP modifient la conformation des cellules endothéliales, élargissent les jonctions communicantes, augmentent la perméabilité membranaire des cellules endothéliales à l'égard des LDL32–34 et stimulent l'expression des gènes codant pour les récepteurs aux LDL, la cholestérol synthétase et l'acide gras synthétase.2,35 L'allongement du temps de présence des particules de LDL à la surface de l'endothélium des segments artériels exposés à de faibles FCP favorise la captation accrue de ces particules.26,37 L'accroissement du tissu fibreux dans les zones soumises à de faibles FCP, tel qu'il a été observé dans cette étude, pourrait être imputable à l'effet démontré exercé par de telles FCP sur la migration des cellules musculaires lisses de la média vers l'intima et à la prolifération de ces cellules en réponse au facteur de croissance d'origine plaquettaire, à l'endothélie de type 1 et au facteur de croissance de l'endothélium vasculaire.2,7,13,15,20,40

Outre la progression accrue des plaques d’athérosclérose, nous avons constaté que, dans les segments qui étaient soumis à de faibles FCP, l’aire de la LEE avait significativement diminué au cours du suivi, de sorte que la fréquence des remodelages de type constrictif a été plus élevée au niveau de ces segments que de ceux sur lesquels s’exerçaient des FCP de degré intermédiaire ou haut. Il est possible que le remodelage constrictif observé dans les segments à FCP faibles découle d’une rupture infraclinique des plaques avec constitution secondaire d’une fibre et d’une cicatrice au niveau de ces dernières. Toutefois, une autre théorie avancée est que le remodelage constrictif dont sont l’objet les segments soumis à de faibles FCP constituerait un mécanisme adaptatif visant à ramener localement les FCP à un niveau plus physiologique, ayant un effet vasculoprotecteur.5 Bien que des études animales aient montré que les FCP de faible degré induisent des remodelages de type variable,6,7,30 la seule étude prospective précédemment menée chez l’Homme a objectivé un lien entre l’existence de faibles FCP coronaires le développement d’un remodelage de type constrictif, en conformité avec nos propres observations.10

Forces de cisaillement pariétales de haut degré, transformation des plaques et remodelage expansif excessif

Bien que l’administration d’une statine à forte dose soit connue pour entraîner une régression significative des plaques d’athérosclérose dans leur globalité,41,42 une modification de leur composition,43–45 et une amélioration du pronostic clinique chez les patients coronariens,46 les taux de décès et d’infarctus du myocarde demeurent néanmoins élevés parmi ces derniers. Nous démontrerons pour la première fois chez des patients coronariens traités par statines que les plaques siègent sur les segments soumis à des FCP élevées sont sujettes à d’importantes augmentations de leur noyau nécrotique et de leur teneur en calcium ainsi qu’à une régression des tissus fibreux et fibro-graisseux (ces modifications ayant été mises en évidence par HV-EIV), cela s’accompagnant d’un épaisseissement de la LEE (en rapport avec un remodelage expansif excessif), ce qui témoigne d’une transformation phénoménologique caractéristique des plaques vulnérables.47

De fait, une récente étude portant sur l’histoire naturelle des plaques d’athérosclérose a établi la valeur pronostique de la vulnérabilité d’une plaque documentée par l’HV-EIV.48 En accord avec cette observation, certains ont également suggéré que l’existence de FCP élevées favoriserait la rupture et la thrombose des plaques d’athérosclérose évolutées présentes sur les artères coronaires49,50 et les carotides31,52 chez l’Homme.
Les données d’une étude post-mortem sur des carotides humaines montrent que les segments artériels soumis à des FCP élevés se caractérisent par une augmentation des infiltrats macrophagiques et par un taux plus élevé de ruptures de plaques.53

Dans la présente étude, les segments artériels soumis à de fortes FCP présentaient des masses de plaque suffisantes (45,5 ± 15,9 %) pour provoquer une accélération de l’écoulement sanguin et des FCP élevées sans altérer le débit (valeur médiane de la fraction de réserve coronaire égale à 0,90, aucune valeur n’ayant été inférieure à 0,75). La relation mise en évidence entre l’existence initiale de segments soumis à des FCP élevées et de lésions sans incidence sur l’écoulement sanguin et l’évolution longitudinale de ces segments vers un phénotype de vulnérabilité accrue confortent le concept selon lequel les plaques vulnérables tendraient à exercer une charge importante sans pour autant altérer le flux sanguin.47,54

Le rôle joué par les FCP de haut niveau dans l’évolution des plaques vers un phénotype de vulnérabilité est conforté par les travaux expérimentaux. On sait, en effet, que de telles FCP conduisent les cellules endothéliales à produire de la plasmine, qui dissout la matrice de protéoglycans.11,12 Les FCP élevées provoquent également une augmentation de la production de facteur de croissance transformant β et de monoxyde d’azote par les cellules endothéliales, ce qui inhibe encore plus la prolifération des cellules musculaires lisses et induit leur apoptose.14,15,55 Ces remaniements ont non seulement pour effet de réduire la teneur totale en tissu fibreux, mais aussi d’amincir la chape fibreuse, ce qui peut rendre la plaque plus encline à se rompre.15,54 Il a, de plus, été établi que les FCP de haut degré contribuent à l’expansion des dépôts calciques et du noyau nécrotique, comme cela a été observé dans la présente étude. Dans un travail mené sur des cellules endothéliales issues de greffons aorto-iliaques de babouin, les segments soumis à des FCP élevées ont été le siège d’une expression accrue de protéine morphogénique osseuse de type 4, dont on sait qu’elle favorise l’inflammation et la calcification des vaisseaux.51 De plus, l’existence de fortes FCP est à même de stimuler la production de métalloprotéases par les macrophages, ce qui pourrait contribuer à un remodelage positif, tel qu’il s’est manifesté dans la présente étude par l’augmentation de l’aire de la LEE dans les zones exposées à des FCP élevées.45,57 Les données d’études animales tendent à indiquer que les segments artériels sur lesquels s’exercent des FCP de haut niveau seraient couramment soumis à d’importantes contraintes mécaniques,56 ce qui peut contribuer à affaiblir la chape fibreuse des plaques et, donc, à provoquer la rupture de ces dernières. Des études in vitro ont également montré que l’activation, l’adhésion et l’agrégation des plaquettes sont plus marquées dans les zones artérielles soumises à des FCP élevées en aval d’une sténose.58 Considérées dans leur globalité, ces études mécanistes confortent la notion selon laquelle l’existence de FCP de haut degré favoriseraient l’évolution des plaques d’athérosclérose vers un phénotype de vulnérabilité.

Le remodelage expansif qui, dans la présente étude, a été observé au cours du temps au niveau des segments soumis à des FCP élevées peut être en partie assimilé à un élargissement physiologique du vaisseau à caractère adaptatif, car visant à préserver la lumière artérielle et à ramener par la suite les FCP à un niveau plus physiologique et vasculoprotecteur. En effet, l’interaction entre les FCP et le remodelage est éminemment dynamique, comme l’ont montré des études expérimentales, et pourraient être encore plus complexes chez les patients coronariens. La conception qui prévaut pour l’heure est que le remodelage artériel est modulé par un ensemble de facteurs systémiques, génétiques et hémodynamiques locaux et répond de façon dynamique à la progression des plaques d’athérosclérose et à l’altération que cela entraîne au niveau de l’environnement hémodynamique local.2,8,35,39,60

Limites de l’étude

Les résultats de cette étude doivent être interprétés en tenant compte du fait que celle-ci présente plusieurs limites. En premier lieu, l’agrégation de multiples segments artériels d’un même patient a introduit une erreur corrélée. Nous avons toutefois eu recours à des méthodes statistiques appropriées pour ajuster nos données en conséquence. Deuxièmement, il est extrêmement difficile d’effectuer l’enregistrement conjoint précis des images d’EIV acquises pour un même segment artériel à deux temps d’évaluation différents ; cela étant, toutes les interprétations d’EIV ont été réalisées par un même investigator expérimenté qui a soigneusement identifié et utilisé les mêmes repères anatomiques, comme décrit au chapitre « Méthodes ». Troisièmement, les données relatives à la composition des plaques ont été celles fournies par l’HV-EIV. Assurément, la meilleure technique pour évaluer la composition d’une plaque d’athérosclérose est l’histologie réelle. Cette approche est toutefois irréalisable sur des artères coronaires in vivo. Les seules techniques aujourd’hui disponibles pour des études cliniques sur la composition des plaques coronaires sont l’EIV par radiofréquence avec dispersion des signaux dans la paroi telle qu’elle est réalisée par les systèmes VH-IVUS (Volcano Corp) et iMAP (Boston Scientific) et la tomographie en cohérence optique (qui, toutefois, n’offre pas une pénétration tissulaire suffisante pour permettre l’étude transmurale des plaques dans tous les cas). Les limites de l’HV-EIV concernant l’évaluation de la composition des plaques tiennent au nombre réduit d’études ayant corrélé cette technique avec l’histologie réelle et aux résultats cliniques limités. De fait, une étude récente ayant porté sur un modèle d’athérosclérose porcine n’a pas objectivé de corrélation entre les mesures de la taille du noyau nécrotique effectuées par HV-EIV et par analyse histologique effective, ce qui jette un doute sur la capacité de la première à décoder les plaques fibro-athéromateuses à chape mince.61 Plusieurs études ont toutefois évalué la fiabilité de l’HV-EIV comparativement à l’histologie coronaire humaine ex vivo37,62 et à des spécimens d’athérectomie coronaire directionnelle in vivo,63 ce dont il ressort que la capacité prédictive de cette technique a été comprise entre 87 et 97 %. De plus, une vaste étude récemment publiée a montré que les données fournies par une HV-EIV complétée d’une EIV en échelle de gris permettait d’anticiper une évolution clinique défavorable.48 Quatrièmement, la prescription d’un traitement par statine à forte dose a pu constituer un facteur de confusion dans notre étude. Toutefois, tous les patients (et, donc, les segments coronaires qui étaient initialement soumis à des FCP
Samady et al Forces de cisaillement pariétales coronaires et athérosclérose 187

différentes) ont été exposés à la même dose de statine ; en outre, le taux moyen de LDL-cholestérol mesuré au cours du suivi a été de 70 mg/dl, ce qui représente la valeur cible couramment visée chez les patients atteints d’une maladie coronaire avérée.63 Nous considérons, dès lors, que les différences relevées en termes de taille et de composition des plaques découlaient des écarts de niveaux qui existaient entre les FCP à l’entrée dans l’étude. Enfin, cette étude n’établit aucun lien de causalité entre les altérations du profil de FCP, le développement des plaques et le processus conduisant à les rendre vulnérables. Il demeure très malaisé de mettre en évidence de tels liens de causalité dans l’athérosclérose coronaire humaine, de sorte que, malgré leurs limites intrinsèques, les modèles expérimentaux permettent de mieux appréhender les fondements mécanistes de ces liens de causalité. De plus vastes études prospectives, cliniques et portant sur l’histoire naturelle de la maladie sont également en cours pour tenter d’élucider les liens en question.

Conclusions
Chez les patients coronariens recevant un traitement médical optimal, les segments coronaires soumis à de faibles FCP sont le siège d’une progression plus importante des plaques d’athérosclérose présentes ainsi que d’un remodelage de type constrictif comparativement aux segments sur lesquels s’exercent des FCP de degré intermédiaire. Comparativement à ces derniers, les segments exposés à des FCP élevées se caractérisent en HV-EIV par une plus forte progression du noyau nécrotique et des dépôts calciques des plaques, une régression des éléments fibreux et fibro-graisseux et un remodelage de type expansif excessif, ce qui est en faveur d’une évolution vers un phénomène de vulnérabilité accru. Cette interaction complexe entre les FCP et le devenir des plaques met en lumière les facteurs biomécaniques susceptibles de jouer un rôle dans la progression et la transformation des plaques d’athérosclérose coronaire chez l’Homme.

Remerciements
Nous souhaitons remercier nos collègues du service de cardiologie interventionnelle de l’Université Emory, le personnel de la salle de cathétérisme et Andrew R. King pour leur collaboration à cette étude.

Sources de financement
Cette étude a été financée par le Wallace H. Coulter Translational/Clinical Research Seed Grant Program de l’Institut de Technologie de Géorgie et de l’Université Emory (Atlanta, Géorgie, Etats-Unis), par Pfizer Pharmaceuticals et par Volcano Corp.

Déclarations

Références
1188 Circulation
Mai 2012

on standards for acquisition, measurement and reporting of intra-
vascular ultrasound regression/progression studies. EuroIntervention.

Nissen SE. Static and serial assessments of coronary arterial remodeling
are discordant: an intravascular ultrasound analysis from the Reversal of
Atherosclerosis With Aggressive Lipid Lowering (REVERSAL) trial.

23. Jin S, Oshinsky J, Giddens DP. Effects of wall motion and compliance

24. Suo J, Oshinsky JN, Giddens DP. Blood flow patterns in the proximal
human upper limb follow-up study. Circulation: Atheroscleroplusque

25. Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role

G. Endothelial dysfunction, hemodynamic forces, and atherogenesis.

27. Lin LI. A concordance correlation coefficient to evaluate reproducibility.

28. Barakat AI, Davies PF. Mechanisms of shear stress transmission and

Effect of endothelial shear stress on the progression of coronary artery

30. Stone GW, Maehara A, Lansky AJ, de Broune B, Cristina E, Mintz GS,

31. Buchanan JR Jr, Kleinstreuer C, Truskey GA, Lei M. Relation between
of oscillatory and unidirectional flow environments on the expression
of endothelin and nitric oxide synthase in cultured endothelial cells.

32. Buchanan JR Jr, Kleinstreuer C, Truskey GA, Lei M. Relation between
of oscillatory and unidirectional flow environments on the expression
of endothelin and nitric oxide synthase in cultured endothelial cells.

34. Mattsson EJR, Kehlcr TR, Vergel SM, Clowes AW. Increased blood flow
1997;17:2245–2249.

35. Death AK, Nakha S, McGrath KC, Marritt SL, Yue DK, Jessup W,
Clermanger DJ. Nitroglycerin upregulates matrix metalloproteinase

PERSPECTIVE CLINIQUE

La progression de l’aïthéroclésrose au sein des artères coronaires humaines est régie par l’interaction entre les facteurs de risque systémiques et les contraintes hémodynamiques locales, dont, notamment, les forces de cisaillement pariétales (FCP). Des études menées sur cultures cellulaires et sur des modèles animaux ont montré que, lorsqu’il est exposé à des FCP de faible intensité, l’endothélium évolue vers un phénotype d’aïthéroclésrose, marqué par le développement local de plaques et d’un remodelage vasculaire. En nous appuyant sur une méthode exhaustive d’évaluation des FCP in vivo, nous avons procédé à l’étude prospective des modifications intervenues au cours du temps dans la taille et la composition des plaques coronaires ainsi qu’en termes de remodelage artériel au niveau des segments coronaires respectivement soumis à des FCP de degrés faible, intermédiaire et élevé chez des patients porteurs de lésions coronaires non occlusives, en ayant recours pour ce faire à l’échographie intravasculaire par radiofréquence avec dispersion des signaux dans la paroi. Il ressort de cette étude que l’existence de FCP coronaires de faible degré favorise la progression des plaques et la survenue d’un remodelage de type constrictif, alors que de fortes FCP contribuent à la régression des plaques, à un remodelage de type expansif et à faire évoluer la composition des plaques vers un phénotype de vulnérabilité accru. Ces observations permettent de mieux comprendre les liens qui unissent les FCP, la taille des plaques et leur composition telle qu’établie par l’échographie intravasculaire ainsi que le remodelage vasculaire chez les patients coronariens. En outre, la confrontation de ces données hémodynamiques in vivo à l’étude anatomique du remodelage vasculaire, de la taille et de la composition des plaques, de l’épaisseur de leur chape et de leur déformation peut permettre de mieux anticiper la progression et la transformation de ces plaques. Combinée à la stratification des risques systémiques, l’imagerie multimodale peut contribuer à l’identification des portions de l’arborisation coronaire exposées à un haut risque de futurs accidents et sur lesquelles il est possible d’agir par des traitements locaux ou généraux intensifiés afin de modifier l’environnement hémodynamique et de prévenir les complications biologiques futures.