Understanding Saphenous Vein Graft Patency

Joseph F. Sabik III, MD

Saphenous vein was the conduit used in the first series of coronary surgery, and, with the exception of revascularization of the left anterior descending coronary artery, it remains the most commonly used conduit. There are several reasons for this. First, because of its relatively large diameter and wall characteristics, it is technically easy to use; second, it is plentiful, and therefore can be used to perform multiple grafts; third, it is long and can reach any coronary artery; and fourth, it is easily harvested. However, its durability and longevity are not ideal. One year after coronary surgery, 10% to 20% of saphenous vein grafts fail. From 1 to 5 years, an additional 5% to 10% fail, and from 6 to 10 years, an additional 20% to 25% fail. At 10 years, only about half of saphenous vein grafts are patent, and of those, only half are free of angiographic arteriosclerosis.

Saphenous vein graft failure during the first year of surgery is due to technical errors, thrombosis, and intimal hyperplasia. All saphenous vein grafts experience endothelial damage during harvesting and initial exposure to arterial pressure. This intimal injury leads to platelet adherence that may result in graft thrombosis and acute occlusion. Platelet adherence to the intimal surface is also the initial event in the development of intimal hyperplasia. After adhering to the intima, platelets release mitogenic proteins, stimulating smooth muscle cell migration, resulting in intimal proliferation and hyperplasia. After a year from surgery, arteriosclerosis is responsible for further saphenous vein graft failure. Mural thrombi and intimal hyperplasia are the early stages of vein graft arteriosclerosis. With time, lipid becomes incorporated in these areas of intimal hyperplasia, resulting in arteriosclerotic plaque, and eventual graft stenosis or occlusion.

This intimal injury leads to platelet adherence that may result in graft thrombosis and acute occlusion. Platelet adherence to the intimal surface is also the initial event in the development of intimal hyperplasia. After adhering to the intima, platelets release mitogenic proteins, stimulating smooth muscle cell migration, resulting in intimal proliferation and hyperplasia. After a year from surgery, arteriosclerosis is responsible for further saphenous vein graft failure. Mural thrombi and intimal hyperplasia are the early stages of vein graft arteriosclerosis. With time, lipid becomes incorporated in these areas of intimal hyperplasia, resulting in arteriosclerotic plaque, and eventual graft stenosis or occlusion.

The Study

In the current issue of Circulation, Mehta and colleagues compared 1-year saphenous vein graft failure (defined as ≥75% angiographic stenosis or occlusion) and 5-year clinical events (composite of death, myocardial infarction, or repeat revascularization) among patients in the Project of Ex-Vivo Vein Graft Engineering via Transfection (PREVENT) IV randomized trial who received saphenous vein grafts with either single or multiple distal anastomoses during coronary artery bypass surgery. Principal findings were (1) saphenous vein grafts with multiple distal anastomoses were more likely to fail at 1 year, and (2) the 5-year clinical event rate was higher in patients receiving saphenous vein grafts with multiple distal anastomoses. The authors conclude that, whenever possible, saphenous vein grafts should be performed with single distal anastomoses.

This study has several strengths. First, angiography was performed systematically, independent of clinical status. Most studies comparing coronary artery bypass graft patency are observational and optimistic. Gift patency data from these studies are obtained from patients undergoing angiography for clinical indications, usually recurrent ischemia. This will bias graft patency rates lower. Second, the study was a large multicenter one, with graft data from >10 US sites. Most graft patency reports are obtained from small, single-center studies. Third, a large number of patients returned for angiography at 12 to 18 months; and fourth, a high proportion of patients who were scheduled to undergo follow-up angiography actually returned for it.

The findings of this study make surgical sense. Technical failure is a known cause of early bypass graft failure, and saphenous vein grafts with multiple distal anastomoses present more opportunity for technical misadventure. Each anastomosis must be done perfectly, and the length and lie of the saphenous vein graft between each distal anastomosis must be estimated correctly to prevent graft failure. Getting this length and lie right can be difficult because of changes in heart size and saphenous vein graft length. During on-pump arrested-heart surgery, the heart is flaccid and empty for the construction of the distal anastomoses. The vein is also unpressurized and contracted. After being weaned from cardiopulmonary bypass, the full heart increases in size and the pressurized saphenous vein graft increases in length. These changes must be taken into account to prevent the kinking (if the graft is too long) or flattening (if the graft is too short) of the saphenous vein graft. Although getting the graft length correct for saphenous vein grafts with single anastomoses is also critical, the relatively long length of graft between the aortic proximal anastomoses and distal coronary anastomoses allows for a wider margin of error in length before graft kinking or flattening. The shorter distances between distal anastomoses in saphenous vein grafts with multiple distal anastomoses result in much less tolerance to errors in estimation of graft length.

It is also consistent that the clinical event rate of death, myocardial infarction, or repeat revascularization was higher in patients having saphenous vein grafts with multiple distal anastomoses. The effectiveness of coronary artery bypass surgery is related directly to graft patency. Because graft failure was higher in saphenous vein grafts with multiple distal anastomoses, clinical outcomes would be expected to
be worse in patients with saphenous vein grafts with multiple
distal anastomoses.

This study also has several weaknesses. Although the
angiographic and clinical results come from patients enrolled
in the randomized PREVENT IV study, this substudy is
observational. The decision regarding whether a single sa-
phenous vein graft was used to revascularize one coronary
artery or multiple coronary arteries was left to the discretion
of the surgeon. Patients were not randomly assigned to
receive saphenous vein grafts with either single or multiple
distal anastomoses. A limited multivariate analysis was used
to account for differences in patient factors that may have
accounted for differences in the 2 groups; however, many
factors are difficult to adjust for, and some would likely
influence a surgeon’s decision regarding whether to perform
single or multiple distal anastomoses with a single saphenous
vein graft.

Two situations in which single saphenous vein grafts are
preferentially used with multiple distal anastomoses are when
there is limited saphenous vein and when there are poor
distal coronary artery targets. Saphenous vein is often limited and
of poor quality in patients with either large varicose or small
sclerosed saphenous veins. In these patients, although most of
their vein is not suitable, it is possible to find segments that
are usable. In these situations, it may be necessary to perform
multiple distal anastomoses with the best segments of saphen-
ous vein. Although this vein is usable, it is often not ideal.
These less than ideal veins are prone to graft failure, and this
practice would be expected to bias against the patency of saphen-ous vein grafts with multiple distal anastomoses.

Similarly, when the coronary arteries are small with poor
runoff, to improve graft patency a surgeon will preferentially
perform multiple distal anastomoses with a single graft. It is
believed that, by sequencing multiple small coronary arteries
with poor runoff, bypass graft blood flow can be maximized,
resulting in a bypass graft that is more likely than individual
grafts to remain open. This would also bias against saphenous
vein grafts with multiple distal anastomoses, because bypass
grafts to coronary arteries with poor runoff have lower
patency.

Mehta and colleagues did adjust for target vessel and graft
quality in the analysis and reported similar findings in the 2
groups. However, the surgical bias of using sequential grafts
when conduit is limited and coronary artery targets are poor
is unlikely to be completely adjusted for and probably contributed to some of the lower patency observed in saphen-
ous vein grafts with multiple distal anastomoses. The higher
clinical event rate at 5 years may also be due in part to the
patient characteristics associated with surgeon bias for using
grafts with multiple distal anastomoses.

An important factor influencing bypass graft patency is
target coronary artery. Bypass grafts performed to the left
anterior descending coronary artery have the best patency;
those performed to diagonals, circumflex branches, and the
posterior descending artery have an intermediate patency; and
those performed to the main right coronary artery have the
worst patency. Mehta and colleagues do not mention
adjustment of graft patency by target vessel grafted. This may
de be due to the difficulty in adjudicating grafts with multiple
distal anastomoses. Other important patient characteristics
and factors not adjusted for in their graft failure analysis
include sex, diabetes mellitus, patient age, surgeon, and
institution. Females, patients with diabetes, and younger
patients have been shown to have lower bypass graft pa-
tency, and individual surgeon or institution bias toward
single or sequential saphenous vein grafting may have con-
tributed to their findings.

In evaluating the patency of saphenous vein grafts with
multiple distal anastomoses, it is important to consider the
sequential grafting technique. It is believed that the best
sequential graft patencies are obtained by placing the last
distal anastomosis of the sequential graft to the coronary
artery with the greatest runoff. Smaller coronary arteries with
poor runoff are Anastomosed to the graft more proximally.
This technique ensures the greatest amount of blood flow
throughout the graft, therefore increasing the likelihood of the
entire graft remaining open. This method is in contrast to one
in which the small coronary arteries with poor runoff are
anastomosed at the distal end of the sequential graft. With this
technique, blood flow distally will be low, increasing the
likelihood of graft failure. In this study, there is no consid-
eration of how these different techniques affect patency of
saphenous vein grafts with multiple distal anastomoses. It
would therefore be interesting, if the data permitted the
authors to do it, to perform a hierarchical mixed-model
analysis that started with individual distal anastomoses (coro-
nary vessel, position of anastomosis in sequence—starting
with terminal end-to-side and working backward along the
conduit—quality of coronary vessel at anastomosis, and
degree of stenosis at 1-year angiography). The next level in
the hierarchy would be each conduit (single or multiple
distals), then patient, then surgeon/institution. This analytic
strategy would avoid penalizing an entire sequential graft for
stenosis of, say, the first and smallest vessel of the sequence
and would add important information to our understanding of
sequential graft patency.

Clinical Inferences

This study by Mehta and colleagues, along with previous
publications from the PREVENT IV trial, are a sobering
reminder of the Achilles’ heel of saphenous vein grafts—their
less than ideal patency rate. In the present study, we are
reminded of the necessity of doing technically perfect coro-
nary artery bypass surgery. Whether saphenous vein grafts
are performed with single or multiple distal anastomoses,
they must be done technically perfectly, with care taken to get
the anastomoses, graft lengths, and lies correct.

In addition, despite PREVENT IV being a contemporary
trial with modern surgical techniques and medications, sa-
phenous vein graft failure is among the highest ever reported,
with 1-year failure of 40% to 50%. This is alarming and
suggests that, in addition to technical excellence in bypass
grafting, further progress must be made in preventing both
intimal injury during vein harvesting and exposure to arterial
pressure, and platelet adherence and its resulting influence on
the development of intimal hyperplasia and arteriosclerosis.

These findings also underscore the overuse of saphenous
vein grafts and underuse of arterial grafts in coronary surgery.
in the United States. Internal thoracic artery grafts were used in only 92% of patients in this trial, and in only 90% of those undergoing saphenous vein grafts with multiple distal anastomoses. This is despite the reported clinical benefits of single and bilateral internal thoracic artery grafting,19–21 a result of their superior patency compared with saphenous vein grafts.2,22 In the United States, 95% of patients undergoing primary coronary surgery receive single internal thoracic artery grafting, and only 4% receive bilateral internal thoracic artery grafts (Society of Thoracic Surgeons Database). To further improve the results of coronary surgery, more arterial grafting should be performed.

Disclosures

None.

References


Key Words: Editorials ■ anastomosis ■ bypass graft ■ CABG ■ outcomes ■ saphenous vein graft
Understanding Saphenous Vein Graft Patency
Joseph F. Sabik III

Circulation. 2011;124:273-275
doi: 10.1161/CIRCULATIONAHA.111.039842

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/124/3/273

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/