According to Samuel Johnson, “It is as foolish to make experiments on the constancy of a friend as on the chastity of a wife.” Despite this sage admonition, Cheng et al challenge the fidelity of traditional algorithms for estimation of cardiovascular risk based on the quality of symptoms suspicious of angina, asserting that they seriously overstate the actual prevalence of disease. They base their conclusion on a study of some 14,000 patients referred for clinically indicated noninvasive coronary computed tomographic angiography (CCTA) and enrolled in Coronary CT Angiography Evaluation for Clinical Outcomes: An International Multicenter Registry (CONFIRM). Symptoms were elicited largely through a self-administered patient questionnaire and categorized in a manner similar (but not identical) to that used in a number of cardiovascular guidelines.

In a nutshell, the CONFIRM investigators observed that the prevalence of CCTA disease did not correlate well with the presence or type of symptoms. Asymptomatic patients stratified by age and sex had essentially the same prevalence of disease as similarly stratified patients with nonanginal discomfort, atypical angina, or typical angina. Though noting that their population was limited by the use of a self-administered patient questionnaire and categorized in a manner similar (but not identical) to that used in a number of cardiovascular guidelines.

At the risk of seeming to construct a straw man argument, ask yourself, “Do symptoms matter?” Is a patient with chest pain more likely to have coronary disease than an asymptomatic patient? Assuming you answered this question in the affirmative, what CONFIRM says is only that noninvasive computed tomography, is likely to be misled by this careless turn of phrase. A computer tomographic image is no more the equivalent of a conventional angiographic image than is a low-resolution scintigram the equivalent of a high-resolution sonogram. Different nets catch different fish.

Without performing a direct comparison of CCTA and conventional angiography in a subgroup of the study population, there is no telling what the magnitude of ascertainment bias was in CONFIRM. Historical comparisons are notoriously unreliable. Even so, previous comparisons of CCTA with conventional angiography reveal substantial variability. A recent study by several of the CONFIRM investigators disclosed pairwise standardized variations (SD/mean) of 113%, 158%, and 193% among 3 blinded observers reading 221 scans despite superficially impressive statistically significant correlation coefficients.

There is little doubt that anatomically severe disease is associated with more extreme clinical manifestations of ischemia than is anatomically mild disease. We are not told, however, if any of the patients in CONFIRM underwent historical evaluation, risk factor assessment, or stress testing by their physicians before being referred for anatomic verification. This is important because ischemic symptoms act through their conditional association with the severity of disease. The more severe the disease, the more extreme the clinical manifestations. If patients with more extreme manifestations of ischemia (and therefore more severe disease) were preferentially referred for invasive angiography, whereas patients with less extreme manifestations of ischemia (and therefore less severe disease) were preferentially referred for noninvasive angiography—a practice readily justified as the exercise of good clinical judgment—the
resultant verification bias would be sufficient to account for the poor correlation between symptoms and CCTA disease. In fact, 25% of the study population (3 of the 12 participating centers) was excluded because information to characterize the patients’ symptoms was absent, and an additional 17% of the patients (3368/19 703) in the 9 remaining centers were excluded because the information was incomplete. The resultant distribution of symptoms is therefore very different from that reported for the traditional algorithm. On the low end of the spectrum, almost 5000 of the CONFIRM patients (33%) were asymptomatic, and no reason is given why CCTA was considered clinically indicated in these patients. Were the referring physicians using CCTA as a cavalier screening test (something they would never do with invasive coronary angiography)? On the high end of the spectrum, many fewer patients were classified as having typical angina. Among the 9355 symptomatic patients in CONFIRM (including the 1249 patients with dyspnea who would be classified as having nonanginal discomfort by the traditional algorithm), only 17% had typical angina, 56% had atypical angina, and 27% had nonanginal discomfort based on the patient questionnaire. In contrast, among the 13 109 symptomatic patients on which the traditional algorithm was based, 34% had typical angina, 39% had atypical angina, and 27% had nonanginal discomfort based on the physicians’ historical assessments.

This shift in distribution suggests that CONFIRM physicians preferentially referred those with less severe symptoms for CCTA and those with more severe symptoms to alternative management strategies, including invasive coronary angiography. This verification bias is even more pronounced when differences in the defining characteristics for typical angina are considered. The traditional algorithm defines typical angina to be substernal in location, but CONFIRM includes jaw pain and arm pain in the definition. In the absence of a substernal component, these latter locations are considered atypical in the traditional algorithm. Consequently, an unknown number of patients with typical angina in CONFIRM would be classified as having atypical angina according to the traditional algorithm. Accordingly, fewer than 17% of the symptomatic patients in CONFIRM had typical angina—less than half the number in the studies on which the traditional algorithm was based. Are we overdiagnosing the disease by our history taking, or are we underdiagnosing the disease by our testing? Bayes theorem helps answer this question. Just as it tells us that the predictive accuracy of any test is conditioned on the overall prevalence of disease in the population tested, it also tells us that test accuracy is conditioned on the overall frequency of abnormal responses in the population tested, those in whom disease status is verified and those in whom it is not. As is well known by several of the CONFIRM investigators, a test will perform as advertised only if it is applied to patients similar to those in whom its accuracy was first determined, those tested for similar reasons and under similar circumstances. This is clearly not the case here.

The CONFIRM investigators do not tell us how many patients were initially considered candidates for inclusion in the study, but did not then undergo CCTA. Patients undergoing CCTA based on an unspecified clinical suspicion of coronary disease, however, are very different from traditional patients undergoing stress testing and subsequent coronary angiography based on that testing. The latter referrals might also be biased in favor of positive test responders, but this is likely to have occurred much less often decades ago, with electrocardiographic stress testing as the gatekeeper to coronary bypass surgery, than more recently, with stress imaging procedures as the gatekeeper for percutaneous coronary intervention. Different nets catch different fish.

What else might explain the inability of symptoms to predict disease prevalence in this study? According to Bayes theorem (which states that the posterior odds for disease equal the prior odds times the likelihood ratio of the test observation), there are only 3 ways for this to happen (the Table). Under scenario A, the prior odds must fall and the likelihood ratio must rise in concert to offset that fall. We can readily see how the prior odds would be lower in asymptomatic patients, but not how
the likelihood ratio of the test would be higher. Asymptom-
atic patients with disease are more likely to have mild disease
(that is why they are asymptomatic). Because a test is less
able to detect mild disease than severe disease, its likelihood
ratio in asymptomatic patients should be lower, not higher.
An analogous argument can be posited for patients with
usual angina. Under scenario C, the prior odds are expected
to be higher, but this means that the likelihood ratio must be
lower if the posterior odds are to remain the same, and this is
counter to observations showing the likelihood ratio to be
higher in patients with more severe (and therefore more
symptomatic) disease. Finally, under scenario B, the posterior
odds can remain the same if neither the prior odds nor the
likelihood ratio change with symptom class, but this runs
counter to numerous studies showing that prior odds and
likelihood ratios are both higher in symptomatic versus
asymptomatic patients. The only rational way to explain the
counterintuitive observations in CONFIRM is to indict the
method used to select the study population and to characterize
their symptoms. In the end, symptoms do matter, but they
cannot be elicited accurately by questionnaire. That’s the role
of an experienced clinician. Different nets catch different
fish.6

Material harm can come of the misunderstandings engen-
dered by the paradoxical observations in CONFIRM. If
studies such as this were used to undermine the value of the
clinical history in the minds of clinicians, suggesting instead
that CCTA can serve as an accurate and efficient replacement
for more conventional clinical evaluation, then patients with
ischemic symptoms, who might otherwise benefit from pre-
ventive cardiovascular care and effective antianginal manage-
ment, could well go undetected and untreated.

On the other hand, the traditional algorithm should not be
used indiscriminately for the assessment of cardiovascular
risk. It was developed in patients undergoing cardiovascular
stress testing and (current guidelines notwithstanding) is not
applicable to the general population undergoing risk factor
screening or to patients with suspected acute ischemic
syndromes.

In summary, the ascertainment bias resulting from use of
self-administered questionnaires and the verification bias
causd by the preferential referral of lower-risk patients to
CCTA and higher-risk patients to more aggressive alterna-
tives together act to distort the long-established association
between cardiovascular symptoms and disease prevalence. In
the final analysis, a self-administered questionnaire is not the
same as a physician’s history, anatomic screening is not the
same as functional testing, and noninvasive tomography is
not the same as invasive angiography. Different nets catch
different fish.6

Those beguiled into believing that symptoms do not matter
would do well to reflect on an apocryphal story about the
great physicist Niels Bohr. A young scientist visiting Bohr at
his home was surprised to see a horseshoe hanging over the
front door. “Professor,” he exclaimed, “surely you don’t
believe in that old superstition!” Bohr thought for a moment
and then replied, “They say it works whether you believe in
it or not.”

Disclosures
None.

References
1. Cheng VY, Berman DS, Rozanski A, Dunning AM, Achenbach S,
Al-Mallah M, Budoff MJ, Cademartiri F, Callister TQ, Chang HJ, Chin-
nayak K, Chow BJW, Delago A, Gomez M, Hadamitzky M, Hausleiter
J, Karlsberg RP, Kaufmann P, Lin FY, Maffei E, Raff G, Villines TC,
Shaw LJ, Min JK. Performance of the traditional age, sex, and angina
typically—based approach for estimating pre-test probability of angi-
ographically significant coronary artery disease in patients undergo-
ning coronary computed tomographic angiography: results from the mul-
tinational Coronary CT Angiography Evaluation for Clinical Outcomes: An
International Multicenter Registry (CONFIRM). Circulation. 2011;124:
2423–2432.
2. Diamond GA, Forrester JS. Analysis of probability as an aid in the
1350–1358.
3. Chaitman BR, Bourassa MG, Davis K, Rogers WJ, Tiyas DH, Berger R,
Kennedy JW, Fisher L, Judkins MP, Mock MB, Killip T. Angiographic
prevalence of high-risk coronary artery disease in patient subsets (CASS).
4. Diamond GA, Forrester JS. Improved interpretation of a continuous
variable in diagnostic testing: probabilistic analysis of scintigraphic rest
and exercise left ventricular ejection fractions for coronary disease
5. Zir LM, Miller SW, Dinsmore RE, Gilbert JP, Harthorne JW. Interob-
server variability in coronary angiography. Circulation. 1976;53:
627–631.
6. Diamond GA, Kaul S. Gone Fishing! On the “real world” accuracy of
computed tomographic coronary angiography. Comment on “Ontario
Multidetector Computed Tomographic Coronary Angiography Study.”
RM, Wu WC. Interobserver reliability in the assessment of coronary
stenosis by multidetector computed tomography. J Comput Assist
8. Ovrehus KA, Marwan M, Botker HE, Achenbach S, Norgaard BL. Repro-
ducibility of coronary plaque detection and characterization using low
radiation dose coronary computed tomographic angiography in patients
with intermediate likelihood of coronary artery disease (ReSCAN study).
9. Arbab-Zadeh A, Hoe J. Quantification of coronary arterial stenosis by
multidetector CT angiography in comparison with conventional angiog-
10. Pagal SI, Madaj P, Gupta M, Nair S, Hamirani YS, Min JK, Lin F,
Budoff MJ. Interobserver variations of plaque severity score and segment
stenosis score in coronary arteries using 64 slice multidetector computed
tomography: a substudy of the ACCURACY trial. J Cardiovasc Comput
The declining specificity of exercise radionuclide ventriculography.
HJC. Alternative referent standards for cardiac normality: implications

Keywords: Editorials ■ tomography ■ chest pain ■ diagnosis ■ epidemiology ■ history

Table. Alternative Ways for Posterior Odds to Remain Invariant

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Prior Odds</th>
<th>Likelihood Ratio</th>
<th>Posterior Odds</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>↓</td>
<td>↑</td>
<td>↔</td>
</tr>
<tr>
<td>B</td>
<td>↔</td>
<td>↔</td>
<td>↔</td>
</tr>
<tr>
<td>C</td>
<td>↑</td>
<td>↓</td>
<td>↔</td>
</tr>
</tbody>
</table>
Right Answer, Wrong Question: On the Clinical Relevance of the Cardiovascular History
George A. Diamond

Circulation. 2011;124:2377-2379
doi: 10.1161/CIRCULATIONAHA.111.068718
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2011 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/124/22/2377

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at: http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at: http://circ.ahajournals.org//subscriptions/