Colchicine for the Prevention of Postoperative Atrial Fibrillation
A New Indication for a Very Old Drug?

David R. Van Wagoner, PhD

Atrial fibrillation after cardiac surgery (postoperative atrial fibrillation [POAF]) is a common problem, affecting 10% to 50% of all cardiac surgery patients, with the risks of POAF increasing as a function of patient age and the complexity of the surgery performed. POAF is associated with increased length of hospital stay, increased risk of comorbid conditions, and increased risk of mortality. Because surgeries that do not directly manipulate the heart (lung resection, etc) are also associated with POAF, it is clear that factors beyond atrial trauma and ischemia have a significant role in the development of POAF. Among these, surgery-related pericardial inflammatory processes, autonomic disturbance, and changes in plasma volume regulation are plausible mechanisms.

Many different drug classes have been evaluated for their potential to lower the incidence of POAF (amiodarone, statins, angiotensin-converting enzyme inhibitors, omega-3 fatty acids, antioxidants, etc), but few, if any, of these agents have efficacy supported by the results of randomized, multicenter, double-blind, placebo-controlled clinical trials. In this issue of Circulation, Imazio and colleagues present a sub-study of the recently completed Colchicine for the Prevention of the Postpericardiotomy Syndrome (COPPS) trial, a randomized multicenter trial in which the prophylactic use of colchicine (initiated on postoperative day 3) was evaluated. The primary end point of the COPPS study was a reduction of the incidence of postpericardiotomy syndrome (characterized by pleuritic chest pain, friction rub, pleural and pericardial effusions). As a secondary end point, the authors evaluated the impact of treatment on the combined rate of disease-related hospitalization, cardiac tamponade, constrictive pericarditis, and relapses. Colchicine demonstrated efficacy for both the primary end point (reduction of postpericardiotomy syndrome from 21.1% to 8.9%; $P=0.002$) and the secondary end point (0.6% versus 5.0%; $P=0.024$).

In the POAF substudy, Imazio and colleagues have assessed the impact of colchicine treatment on the incidence of POAF occurring between postoperative day 3 (after treatment onset) and 1 month after surgery. In their analysis, increased left atrial size, surgery other than coronary artery bypass graft surgery, and the presence of pericardial effusion were associated with increased risk of POAF; in contrast, use of perioperative β-blockers and colchicine treatment were protective. Baseline characteristics of the control and colchicine-treated patient groups were balanced, but the patients on colchicine had a reduced incidence of POAF (12.0% versus 22.0%; $P=0.021$), with a shorter in-hospital stay ($P=0.04$) and shorter stay in rehabilitation ($P=0.009$). There was no difference in the incidence of death or stroke (1.2% in both groups), and side effects were similar in the control and placebo-treated groups. These results are promising, and suggest that colchicine may be useful in the prevention of POAF. However, as acknowledged by the authors, there are some important caveats. In this study, 43% of the POAF episodes documented occurred before the onset of colchicine treatment. Because the study drug was not initiated until postoperative day 3, it is unclear whether colchicine would be equally effective in suppressing the earlier episodes of AF. Clinical studies have shown that the peak incidence of AF occurs on postoperative days 2 to 3, a time that is well correlated with the peak of plasma levels of C-reactive protein, an acute-phase reactant and sensitive marker of systemic inflammation. Circulating white cell counts are frequently elevated in patients who experience POAF. Imazio and colleagues have not reported the impact of colchicine treatment on either plasma C-reactive protein levels or leukocyte counts.

In animal studies, experimental sterile pericarditis (created with epicardial application of talc and gauze) has been used to create a reliable substrate for the induction of AF and atrial flutter. In this model, treatment with prednisone lowered postoperative plasma C-reactive protein levels, decreased pericardial adhesions, and significantly attenuated the inducibility of AF on postoperative days 3 to 4. Histological analysis revealed a reduction of neutrophil infiltration and epicardial injury. Experimental sterile pericarditis is characterized by profound epicardial neutrophil infiltration, which promotes gap junction remodeling. Areas with significant neutrophil infiltration displayed necrotic changes and had a lower abundance of connexins 40 and 43. Consistent with this observation, atrial myeloperoxidase levels (which reflect neutrophil/macrophage infiltration) were associated with conduction slowing and conduction hetero-

The opinions expressed in this article are not necessarily those of the editors or of the American Heart Association.

From the Cleveland Clinic, Departments of Molecular Cardiology and Cardiovascular Medicine, and Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH.

Correspondence to David R. Van Wagoner, PhD, Cleveland Clinic, Department of Molecular Cardiology, M/S NE-61, 9500 Euclid Ave, Cleveland, OH 44195. E-mail vanwagd@ccf.org (Circulation. 2011;124:2281-2282.) © 2011 American Heart Association, Inc.

Circulation is available at http://circ.ahajournals.org
DOI: 10.1161/CIRCULATIONAHA.111.057075
geneity in another canine cardiac surgery model. In this model as well, prednisone attenuated atrial myeloperoxidase levels, changes in conduction pattern and velocity, and the inducibility of AF. Myeloperoxidase is an oxidant-generating enzyme that consumes nitric oxide. Myeloperoxidase promotes matrix metalloproteinase activity, oxidant generation, fibroblast proliferation, and extracellular matrix production (interstitial atrial fibrosis)—important elements of the substrate for AF. In a translational study, it was observed that whereas control mice infused with angiotensin II developed extensive leukocyte infiltration and atrial fibrosis and had inducible AF, myeloperoxidase-deficient knockout mice developed less fibrosis and were protected from AF.

Plant extracts containing colchicine have been used to treat gout-associated arthritis for nearly 4000 years, and gout remains the primary indication for the use of colchicine. Colchicine blocks microtubule assembly and can actively disrupt microtubules. Microtubules have a significant role in numerous cellular cytoskeletal and intracellular transport activities. One of the most potent actions of colchicine (at nanomolar concentrations) is suppression of the release of a chemotactic factor from neutrophil lysosomes. As a result, colchicine attenuates neutrophil activation, endothelial cell adhesion, and migration to injured tissues. On the basis of the above preclinical studies and insights into the biological activity of colchicine, it is not unexpected that colchicine, an agent with potent anti-inflammatory activity, may have a significant antiarrhythmic effect in postsurgical patients.

In addition to the potential effects of colchicine on neutrophil activation/migration/infiltration, colchicine may have relevant effects on atrial myocytes. Microtubules regulate the localization and interaction of adrenergic receptors and adenylyl cyclase in caveolae (specialized lipid domains in the cell membrane). As a result, microtubules modulate the phosphorylation of calcium channels and likely affect the response of the atria to autonomic stimulation. Because autonomic balance is altered in the postsurgical state, agents that attenuate sympathetic activity (e.g., β-adrenergic receptor blockers or colchicine) or increase parasympathetic activity may decrease the risk of calcium overload–induced ectopy, which contributes to the initiation of POAF.

POAF has important clinical consequences (including increased risk of stroke and other embolic conditions) and is associated with a significant economic burden on the healthcare system. The results of the post hoc substudy presented in this issue by Imazio et al. and colleagues are promising. It will be of great interest for the authors or others to prospectively evaluate the utility of perioperative colchicine treatment (beginning at the time of surgery or before) as a prophylactic approach that can reduce the morbidity associated with this very common postsurgical complication. If colchicine is effective in preventing POAF, this treatment would constitute an important new indication for the use of a very old drug.

Sources of Funding

Funding was provided by the Fondation Leducq European North American Atrial Fibrillation Alliance (CVD-07-03) and the National Institutes of Health/National Heart, Lung, and Blood Institute (HL90620).

Disclosures

None.

References

Colchicine for the Prevention of Postoperative Atrial Fibrillation: A New Indication for a Very Old Drug?
David R. Van Wagoner

Circulation. 2011;124:2281-2282
doi: 10.1161/CIRCULATIONAHA.111.057075

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2011 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/124/21/2281

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation_ is online at:
http://circ.ahajournals.org/subscriptions/