CLINICIAN UPDATE

Syndrome X and Microvascular Coronary Dysfunction

C. Noel Bairey Merz, MD; Carl J. Pepine, MD

Case presentation: A 44-year-old woman is referred for worsening chest pain since 2007, with abnormal stress testing in May 2008, followed by coronary angiography in June 2008. She had several prior hospitalizations to evaluate possible myocardial infarction, and 1 with an elevated troponin level in 2001. She has a history of breast cancer in 2007. She currently reports daily exertional substernal chest pain that radiates to her left arm and hand that is relieved with rest. She works as an undercover police officer, frequently has to chase suspects, and is concerned about being able to do her job. A review of cardiac risk factors is negative. She takes tamoxifen with vitamins, and her physical examination and resting ECG are normal. Review of the prior coronary angiography confirms absence of obstructive coronary artery disease and normal left ventricular function.

To further evaluate the basis for her symptoms, she underwent coronary reactivity testing (CRT), which demonstrated a limited coronary flow reserve (CFR) to adenosine and coronary blood flow reserve (Figure 1) as well as coronary artery constriction with acetylcholine, indicative of endothelial dysfunction (Figure 2). Adenosine stress cardiac magnetic resonance imaging was consistent with microvascular coronary dysfunction (MCD; Figure 3).

MCD Is a High-Risk Subset of Cardiac Syndrome X

Management of patients with angina and evidence of myocardial ischemia on stress testing without obstructive coronary artery disease by angiography (previously referred to as cardiac syndrome X, or CSX) is a challenge. Patients with this syndrome may have persistent chest pain, evidence of angina, and ischemic-type ST-segment depression or noninvasive perfusion or wall-motion abnormality during stress testing. Common knowledge based on early reports suggested a benign prognosis; however, data from the National Heart, Lung, and Blood Institute (NHLBI)–Women’s Ischemia Syndrome Evaluation (WISE) document that up to 50% of these patients may have MCD, which is associated with an adverse prognosis. On the basis of the WISE experience, the largest and most completely investigated cohort with midlife women and this syndrome, patients with MCD frequently have atherosclerosis on intravascular coronary ultrasound and face a 2.5% annual adverse cardiac event rate, which includes myocardial infarction, stroke, hospitalization for congestive heart failure, and sudden cardiac death. Thus, MCD appears to be a high-risk subgroup within CSX.

In the absence of obstructive coronary artery disease, the small arteries and arterioles downstream from epicardial coronary arteries are the major sites of resistance to myocardial blood flow. The structure and function of these microvessels have a role in myocardial perfusion and its regional distribution within the myocardium and transmurally. Microvascular dysfunction may include the following, alone or in combination: (1) Altered resting vascular smooth muscle tone secondary to either endothelial or smooth muscle cell dysfunction; (2) altered responses to constrictor or dilator stimuli; (3) reduced number of arterioles and capillaries (eg, rarefaction); and (4) structural alterations that contribute to decreased lumen size, increased wall-to-lumen ratio, increased stiffness, and remodeling. Myocardial capillary rarefaction has been described in dilated cardiomyopathy and cardiac transplant vasculopathy and is present in noncardiac vessels in both hypertension and CSX. Recently, it has been shown that vascular smooth muscle...
Invasive Diagnosis of MCD

Therapeutic success hinges on diagnostic certainty. For risk stratification and planning an optimal management strategy, CRT with intracoronary infusions of adenosine, acetylcholine, and nitroglycerin to assess microvascular and macrovascular (epicardial) endothelial and nonendothelial function should be considered in subjects with signs and symptoms of ischemia when no obstructive coronary artery disease is found. With a standard adenosine-Doppler wire protocol, as is used for CFR measurement, quantitative and qualitative coronary angiography, and intracoronary acetylcholine and nitroglycerin, possible mechanistic pathways for MCD can be assessed. The benefit of this diagnostic testing probably outweighs the risk of diagnostic uncertainty and absence of risk reduction therapy. However, potentially serious complications such as coronary artery dissection can occur, so CRT should be performed only by experienced interventional cardiologists in appropriate at-risk subjects. It is also important to understand that CFR, the principal non–endothelium-dependent CRT measure, is influenced by myocardial oxygen demand. Therefore, measures of CFR must account for heart rate, blood pressure, and left ventricular filling pressure and contractility.

Our patient has evidence of endothelial dysfunction of her epicardial coronaries (eg, constriction to acetylcholine). This dysfunction likely extends to the microvasculature, and she also has evidence of arteriolar dysfunction (eg, low CFR with adenosine). Her epicardial coronary dilator response to exogenous nitroglycerin appears normal.

Noninvasive Diagnosis of MCD

Although evidence of abnormal myocardial perfusion secondary to abnormal CRT can be detected noninvasively by single-photon emission computed tomography, positron emission testing, and stress cardiac magnetic resonance imaging, the sensitivity and specificity of these measures remain incompletely characterized. The reference standard for diagnosis of MCD remains the invasive CRT. An ongoing NHLBI-sponsored WISE Ancillary Study is investigating the utility of cardiac magnetic resonance imaging for diagnosis and prognosis (risk assessment) of MCD in women. If preliminary reports are confirmed, cardiac magnetic resonance imaging will be the only method currently applicable for clinical use to evaluate the transmural distribution (eg, endocardial versus epicardial) of coronary blood flow.

Treatment of CSX and MCD

Current angina/CSX guidelines do not specifically address MCD. Treatment should focus on 2 main goals: (1) Antiatherosclerosis and antiischemia
Abnormal cardiac nociception
Angina
Abnormal smooth muscle function (Prinzmetal angina)
Abnormal endothelial function
Microvascular coronary dysfunction
Ischemia, and No Obstructive Coronary Artery Disease

<table>
<thead>
<tr>
<th>Microvascular coronary dysfunction</th>
<th>Abnormal endothelial function</th>
<th>Angiotensin-converting enzyme inhibitors</th>
<th>Statins</th>
<th>L-Arginine supplementation</th>
<th>Aerobic exercise</th>
<th>Enhanced external counterpulsation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrates</td>
<td>Abnormal nonendothelial function</td>
<td>β-blockers/α-β-blockers</td>
<td>Calcium antagonists</td>
<td>Nitrites</td>
<td>Abnormal smooth muscle function (Prinzmetal angina)</td>
<td>Cognitive behavioral therapy</td>
</tr>
</tbody>
</table>

Reprinted from Mehta and Merz²⁰ with permission.

Figure 3. Adenosine stress perfusion base-ventricle cardiac magnetic resonance imaging (left) and rest perfusion base-ventricle cardiac magnetic resonance imaging (right). Arrows indicate areas of reduced myocardial perfusion, worsened during stress (left).

therapy to reduce adverse cardiac event risk and (2) relief of angina to improve quality of life. Because of the high prevalence of coronary atherosclerosis and adverse prognosis observed in these subjects, we also incorporate the National Cholesterol Education Program expert panel’s guidelines (Adult Treatment Panel III)¹⁹ for therapeutic lifestyle change,²⁰ low-dose aspirin, and statin therapy in these patients as coronary heart disease equivalents.

Trial evidence supports use of β-blockers, angiotensin-converting enzyme inhibitors, nitrates, calcium antagonists, ranolazine, xanthine derivatives such as aminophylline, enhanced external counterpulsation, cognitive behavioral therapy, low-dose tricyclic antidepressants, and neurostimulation to improve angina symptoms, stress test parameters, and endothelial function (Table). Notably, the α-blocker doxazosin is not beneficial, and its association with increased stroke and heart failure risk in ALLHAT (the Antihypertensive and Lipid-Lowering treatment to prevent Heart Attack Trial) should exclude this agent even if the woman has hypertension. Low-dose hormone therapy¹ does not appear to be effective, and L-arginine supplementation had an adverse effect in postmyocardial infarction patients, despite improving signs and symptoms in a CSX population. Diltiazem fails to improve CFR in these patients. However, β-blockers consistently demonstrate superiority over nitrates and calcium antagonists in randomized clinical trials. An exploratory WISE Ancillary Trial testing sildenafl in this patient group suggested improved CFR.

Conclusions

Among subjects with CSX, defined as persistent chest symptoms that suggest angina, evidence of ischemia, and no obstructive coronary artery disease, MCD is highly prevalent and is associated with an adverse prognosis. CRT remains the reference standard for diagnosis; noninvasive testing for MCD is currently under investigation and appears promising. Therapeutic lifestyle change, low-dose aspirin, and lipid-lowering therapy are recommended because of the high prevalence of coronary atherosclerosis and elevated risk of adverse cardiovascular events. Limited trial evidence suggests that use of antiseemia and antianginal therapy, most consistently with β-blockers, may improve symptoms, stress test parameters, and endothelial and/or microvascular coronary function. Although large outcome trials are being planned in MCD subjects, sufficient but evolving data exist to incorporate specific recommendations for this population into existing angina and acute coronary syndrome guidelines. Key points for the clinician include recognition of ischemia and deployment of guideline-endorsed therapy for angina and reduction of cardiac risk factors.

Case Follow-Up and Disposition

The patient was prescribed simvastatin 40 mg by mouth every day, aspirin 81 mg by mouth every day, carvedilol 6.25 mg by mouth twice daily, and sublingual nitroglycerin 0.4 mg as needed and before physical exertion. At 2-year follow-up, she reports decreased symptoms, has maintained her job, and has had no further hospitalizations for angina or suspected acute coronary syndrome.

Sources of Funding

This work was supported by contracts from the NHLBI (Nos. N01-HV-68161, N01-HV-68162, N01-HV-68163, and N01-HV-68164); a General Clinical Research Centers grant (MO1-RR00425) from the National Center for Research Resources; and grants from the Gustavus and Louis Pfeiffer Research Foundation, Denville, NJ, the Women’s Guild of Cedars-Sinai Medical Center, Los Angeles, CA, the Edythe L. Broad Women’s Heart Research Center, Cedars-Sinai Medical Center, Los Angeles, CA, and the Barbra Streisand Women’s Cardiovascular Research and Education Program, Cedars-Sinai Medical Center, Los Angeles, CA. Dr Pepine is supported by NIH/NHLBI grants 5 U01 HL087366-04, 5 R01 HL091005-03, 5 R01...
Disclosures
Dr Bairey Merz has received research grants from the WISE (NIH/NHLBI 5 R01 HL090957); honoraria from the Women-Heart Coalition, Los Robles Medical Center, Monterey Community Hospital, Pimeda, Los Angeles OB-GYN Society, and the North American Menopause Society; and consulting fees from the NHLBI. Dr Pepine has received research grants from WISE (NIH/NHLBI U01 HL6489 and NIH/NHLBI 5 R01 HL090957).

References

Syndrome X and Microvascular Coronary Dysfunction
C. Noel Bairey Merz and Carl J. Pepine

Circulation. 2011;124:1477-1480
doi: 10.1161/CIRCULATIONAHA.110.974212
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2011 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/124/13/1477

Data Supplement (unedited) at:
http://circ.ahajournals.org/content/suppl/2013/10/02/124.13.1477.DC1
http://circ.ahajournals.org/content/suppl/2016/04/13/124.13.1477.DC2

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/
Síndrome X y disfunción coronaria microvascular

C. Noel Bairey Merz, MD; Carl J. Pepine, MD

Presentation del caso. Una mujer de 44 años es remitida por un dolor torácico que ha venido empeorando desde 2007, con una prueba de esfuerzo anormal, en mayo de 2008, tras la cual, en junio de 2008, se le practicó una angiografía coronaria. Previamente, la paciente había sido hospitalizada varias veces para evaluar un posible infarto de miocardio, y en una ocasión, en el año 2001, se había observado una elevación del nivel de troponina. Tenía antecedentes de cáncer de mama en 2007. En la actualidad refiere presentar diariamente un dolor retrosternal con el esfuerzo, que irradia al brazo y la mano izquierdas y que cede con el reposo. Trabaja de policía secreta, con frecuencia tiene que perseguir a sospechosos, y le preocupa poder continuar trabajando. La búsqueda de factores de riesgo cardiacos da resultados negativos. Toma tamoxifeno junto con vitamina, y la exploración física y el ECG en reposo son normales. El examen de la angiografía coronaria previa confirma la ausencia de enfermedad coronaria obstructiva y la existencia de una función ventricular izquierda normal.

Para evaluar mejor el origen de los síntomas, se realizó una prueba de vaso-reactividad coronaria (PRC), que puso de manifiesto una reserva de flujo coronario (RFC) limitada frente a la adenosina; y una reserva de flujo coronario (Figura 1), así como una constrictión arterial coronaria, con la acetilcolina, indicativas de una disfunción endotelial (Figura 2). La resonancia magnética cardíaca de estrés con adenosina fue compatible con una disfunción coronaria microvascular (DCM; Figura 3).

La DCM define un subgrupo de alto riesgo para el síndrome X cardiaco

El manejo de los pacientes con angina y evidencia de isquemia miocárdica en las pruebas de estrés, sin enfermedad coronaria oclusiva en la angiografía (a lo que anteriormente se denominaba síndrome X cardiaco o SXC) constituye un verdadero reto. Los pacientes con este síndrome pueden presentar un dolor torácico persistente, signos de angina y depresión del segmento ST de tipo isquémico o una perfusión no invasiva o anomalías del movimiento de la pared durante la prueba de estrés. El conocimiento general, basado en los primeros artículos, sugirió un pronóstico benigno; sin embargo, los datos del documento del National Heart, Lung, and Blood Institute (NHLBI)-Women’s Ischemia Syndrome Evaluation (WISE) ponen de manifiesto que hasta un 50% de estos pacientes pueden presentar una DCM, la cual se asocia a un mal pronóstico1. Según la experiencia del WISE1, la cohorte más amplia y la investigada de manera más completa, formada por mujeres de mediana edad con este síndrome, las pacientes con DCM presentan con frecuencia aterosclerosis en la ecografía intravascular coronaria2 y se ven afectadas por una tasa anual de eventos cardiacos del 2,5%, que incluye episodios de infarto de miocardio, ictus, hospitalización por insuficiencia cardíaca congestiva y muerte súbita cardíaca3,4. Así pues, la DCM parece definir un subgrupo de alto riesgo dentro del SXC.

En ausencia de enfermedad coronaria obstructiva, las arterias pequeñas y arteriolas distales de las arterias coronarias epicárdicas son los principales lugares de resistencia al flujo sanguíneo miocárdico. La estructura y la función de estos microvasos desempeñan un papel en la perfusión miocárdica y en su distribución regional en el miocardio y transmuralmente. La disfunción microvascular puede incluir lo siguiente, de manera aislada o en combinación: (1) alteración del...
Reserva de flujo coronario (RFC) =

\[
\frac{\text{Velocidad máxima media máxima (VMMM)}}{\text{Velocidad máxima media basal (VMME)}}
\]

Reserve de flujo sanguíneo coronario (FSC) =

\[
\frac{3,1487 \times (\text{diámetro arterial coronario en mm/2})}{2 \times (\text{velocidad máxima media/2})} \frac{\text{máximo}}{\text{basal}}
\]

Figura 1. Ondas de velocidad del flujo sanguíneo por Doppler intracoronario en respuesta a la adenosina y la acetilcolina intracoronarias. La reserva de flujo coronario (RFC) es el cociente entre las velocidades máximas medidas antes y después de la adenosina. La reserva de flujo sanguíneo coronario (FSC) es el cociente entre el FSC máximo medido antes y después de acetilcolina.

Tono del músculo liso vascular en reposo como consecuencia de una disfunción endotelial o de las células de músculo liso; (2) alteración de las respuestas a los estímulos constrictores o dilatadores; (3) reducción del número de arteriolas y capilares (por ejemplo, rarefacción); y (4) alteraciones estructurales que contribuyen a reducir el tamaño de la luz, aumento de la relación pared/luz, aumento de la rigidez y remodelado. La rarefacción capilar miocárdica se ha descrito en la miocardiopatía dilatada y en la vasculopatía del trasplante cardiaco, y está presente en los vasos sanguíneos no cardíacos tanto en la hipertensión como en el SXC. Recientemente se ha demostrado que las células del músculo liso vascular ejercen una profunda influencia en la biología de las células endoteliales, lo cual sugiere una interacción reguladora que anteriormente no se había apreciado. Las anomalías de la microcirculación coronaria son factores determinantes importantes del pronóstico en los síndromes coronarios agudos y crónicos, así como en la diabetes, la miocardiopatía hipertrófica y la vasculopatía del trasplante cardíaco y en el SXC según nuestros estudios en el WISE.

Diagnóstico invasivo de la DCM

El éxito terapéutico gira alrededor de la certezza diagnóstica. Para la estratificación del riesgo y la planificación de una estrategia terapéutica óptima, debe contemplarse el uso de la PRC con infusiones intracoronarias de adenosina, acetilcolina y nitroglicerina, para evaluar la función endotelial y no endotelial microvascular y macrovascular (epicárdica), en los individuos que presentan signos y síntomas de isquemia, cuando no se identifica una enfermedad coronaria obstructiva. Con un protocolo de adenosina-Doppler estándar, tal como se utiliza para la determinación de la RFC, una coronariografía cuantitativa y cualitativa, y la administración intracoronaria de acetilcolina y nitroglicerina, pueden evaluarse las posibles vías de producción de la DCM. El beneficio aportado por esta prueba diagnóstica compensa probablemente el riesgo de una incertidumbre diagnóstica y la ausencia de tratamiento para reducción del riesgo. Sin embargo, pueden producirse complicaciones potencialmente graves, como la disección arterial coronaria, por lo que la PRC sólo debe ser realizada por cardiólogos intervencionistas experimentados y en los adecuados individuos en riesgo. También es importante tener presente que la RFC, el principal parámetro no dependiente del endotelio medido en la PRC, se ve influido por la demanda de oxígeno miocárdico. En consecuencia, las determinaciones de la RFC deben tener en cuenta la frecuencia cardíaca, la presión arterial y la presión de llenado y la contractilidad del ventrículo izquierdo.

Nuestra paciente presenta datos de disfunción endotelial en las coronarias epicárdicas (por ejemplo, congestión frente a la acetilcolina). Esta disfunción se extiende probablemente a los vasos de la microcirculación, y la paciente presenta también signos de disfunción arterial (por ejemplo, RFC baja con la adenosina). Su respuesta dilatadora coronaria epicárdica a la nitroglicerina exógena parece normal.

Figura 2. La acetilcolina (ACH) intracoronaria muestra una constricción de las arterias coronarias (flecha) y la angiografía coronaria con nitroglicerina (NTG) intracoronaria muestra una dilatación.
Diagnóstico no invasivo de la DCM
Aunque la evidencia de una perfusión miocárdica anormal secundaria a una PRC anormal puede detectarse con métodos no invasivos mediante tomografía computarizada de emisión fotónica única, pruebas de emisión de positrones y resonancia magnética cardíaca de estrés, la sensibilidad y especificidad de estos métodos de valoración no han sido todavía completamente caracterizados. El patrón de referencia para el diagnóstico de la DCM continúa siendo la PRC invasiva. En el WISE Ancillary Study que se está realizando actualmente bajo el patrocinio del NHLBI, se investiga la utilidad de la resonancia magnética cardíaca en el diagnóstico y el establecimiento del pronóstico (evaluación del riesgo) de la DCM en las mujeres. Si los informes preliminares se confirman, la resonancia magnética cardíaca será el único método actualmente aplicable en el uso clínico para evaluar la distribución transmural (por ejemplo, endocárdico frente a epicárdico) del flujo sanguíneo coronario.

Tratamiento del SXC y la DCM
Las guías actuales sobre angina/SXC no abordan específicamente la DCM. El tratamiento debe centrarse en 2 objetivos principales: (1) tratamiento antiaterosclerótico y antianginoso para reducir el riesgo de eventos cardíacos y (2) alivio de la angina para mejorar la calidad de vida. Dada la elevada prevalencia de la aterosclerosis coronaria y el pronóstico adverso observado en estos pacientes, nosotros incorporamos también las guías de práctica clínica del panel de expertos del National Cholesterol Education Program (Adult Treatment Panel III) relativa al cambio de estilo de vida, ácido acetilsalicílico a dosis bajas, y tratamientos con estatinas en estos pacientes como equivalentes a la enfermedad coronaria.

La evidencia aportada por los ensayos clínicos respalda el uso de betabloqueantes, inhibidores de la enzima de conversión de la angiotensina, nitratos, calcioantagonistas, ranolazina, derivados de xantina como aminofilina, contrapulsación externa mejorada, terapia cognitivo-conductual, antidepresivos tricíclicos en dosis bajas y neuroestimulación para mejorar los síntomas de angina, los parámetros de la prueba de estrés y la función endotelial (Tabla). Es de destacar que el alfabloqueante, doxazosina, no aporta un efecto beneficioso, y su asociación con un aumento del riesgo de ictus e insuficiencia cardíaca en el ensayo ALLHAT (Antihypertensive and Lipid-Lowering treatment to prevent Heart Attack Trial) debe hacer que se descarte el uso de este fármaco aun cuando la paciente presente hipertensión. La hormonoterapia a dosis bajas no parece resultar eficaz y los suplementos de L-arginina tuvieron un efecto adverso en pacientes que habían sufrido un infarto de miocardio, a pesar de mejorar los signos y síntomas en una población con SXC. Diltiazem no mejora la RFC en estos pacientes. Sin embargo, los betabloqueantes muestran de manera uniforme una superioridad respecto a los nitratos y los calcioantagonistas en los ensayos clínicos aleatorizados. En el examen exploratorio del WISE Ancillary Trial, en el que se evaluó el uso de sildenafil en este grupo de pacientes, se sugirió una mejora de la RFC.

Conclusiones
En los pacientes con un SXC, definido por la presencia de síntomas torácicos persistentes que sugieren angina, evidencia de isquemia y ausencia de enfermedad coronaria obstructiva, la DCM tiene una elevada prevalencia y se asocia a un pronóstico adverso. La PRC continúa siendo el patrón de referencia para el diagnóstico; actualmente se encuentran en fase de investigación exploraciones no invasivas para determinar la DCM que parecen prometedoras. Se recomienda el cambio de estilo de vida terapéutico, el empleo de ácido acetilsalicílico a dosis...
bajos y el tratamiento hipolipemiante, dada la elevada prevalencia de aterosclerosis coronaria y el aumento del riesgo de eventos cardiovasculares. La evidencia limitada proporcionada por los ensayos clínicos sugiere que el empleo de un tratamiento antiinflamatorio y antiangiatal, y de manera consistente con betabloqueantes, puede mejorar los síntomas, los parámetros de las pruebas de estrés y la función coronaria endotelial y/o microvascular. Aunque están planificando ensayos clínicos de gran tamaño con variables de valoración clínica en los pacientes con DCM, existen ya datos suficientes, aunque en evolución, para poder incorporar recomendaciones específicas para esta población en las guías sobre la angina y el síndrome coronario agudo. Los puntos clave para el clínico incluyen la identificación de la isquemia y la aplicación del tratamiento avalado por las guías para la angina y la reducción de los factores de riesgo cardiaco.

Seguimiento y desenlace del caso
Se prescribió a la paciente simvastatina 40 mg por vía oral al día, ácido acetilsalicílico 81 mg por vía oral al día, carvedilol 6,25 mg por vía oral dos veces al día, y nitroglicerina 0,4 mg sublingual según fuera necesario y antes de realizar un ejercicio físico. En el seguimiento realizado a los 2 años, la paciente refiere una disminución de los síntomas, ha conservado su trabajo y no ha tenido que ser hospitalizada de nuevo por angina o por sospecha de síndrome coronario agudo.

Fuentes de financiación
Este trabajo fue financiado mediante contratos del NHLBI (números N01-HV-68161, N01-HV-68162, N01-HV-68163 y N01-HV-68164); una subvención de los General Clinical Research Centers (M01-RR00425) del National Center for Research Resources; y subvenciones de la Gustavus y Louis Pfeiffer Research Foundation, Denville, NJ, el Women’s Guild of Cedars-Sinai Medical Center, Los Angeles, CA, la Edythe L. Broad Women’s Heart Research Fellowship, Cedars-Sinai Medical Center, Los Angeles, CA, y el Barbra Streisand Women’s Cardiovascular Research and Education Program, Cedars-Sinai Medical Center, Los Angeles, CA. El Dr. Pepine cuenta con el apoyo de las subvenciones de NIH/NHLBI 5 U01 HL087366-04, 5 R01 HL091005-03, 5 R01 HL090957-03, y 2 U01 GM074492-06; la subvención de NIH/AG (National Institute on Aging) 3 U01 AG022376-05A2S1; y la subvención de NIH/National Center for Research Resources 5 UL1 RR029890-02.

Declaraciones de conflictos de intereses
El Dr. Bairey Merz ha recibido subvenciones de investigación de WISE (NHLBI 5 R01 HL090957); honorarios de la Women-Heart Coalition, Los Robles Medical Center, Monterey Community Hospital, Primed, Los Angeles OB-GYN Society, y la North American Menopause Society; y pagos por consultoría del NHLBI. El Dr. Pepine ha recibido subvenciones de investigación de WISE (NHLBI/U01 HL6489 y NIH/NHLBI 5 R01 HL090957).

Bibliografía
Syndrome X cardiaque et dysfonction coronaire microvasculaire

C. Noel Bairey Merz, MD ; Carl J. Pepine, MD

Observation clinique : Une femme de 44 ans est adressée par son médecin pour aggravation progressive d’une douleur thoracique présente depuis 2007, ayant conduit à pratiquer en mai 2008 une épreuve d’effort qui s’était révélée anormale, celle-ci ayant été suivie d’une coronarographie en juin 2008. Cette patiente avait précédemment été hospitalisée plusieurs fois pour rechercher un éventuel infarctus du myocarde, un taud élevé de troponine ayant été mis en évidence en 2001 à l’occasion d’une de ces hospitalisations. Un cancer du sein avait, par ailleurs, été découvert chez elle en 2007. Actuellement, elle présente quotidiennement une douleur thoracique rétrosternale d’effort qui irradie dans le bras et la main gauches et disparait au repos. Elle exerce la fonction d’agent de police, ce qui la conduit fréquemment à devoir poursuivre des suspects, de sorte que sa crainte est de ne plus pouvoir effectuer son travail. La recherche de facteurs de risque cardiovasculaire est négative. Cette femme prend du tamoxifène et des vitamines ; l’écho-Doppler intravasculaire met fréquemment en évidence la présence de lésions d’athérosclérose coronarienne et que le taux annuel d’événements coronaires atteint 2,5 %, ces événements consistant en des infarctus du myocarde, des accidents vasculaires cérébraux, des hospitalisations pour insuffisance cardiaque congestive et des morts subites.3,4 La DCM apparaît donc comme un sous-type à haut risque du SXC.

En l’absence de coronaropathie obstructive, les artères de faible calibre et les artérioles siègent en aval des artères coronaires epicardiques sont les principaux sites de résistance au flux sanguin myocardique. La structure et la fonction de ces microvaisseaux jouent un rôle dans la perfusion myocardique et sa distribution régionale au sein du myocarde et dans son épaisseur. La dysfonction microvasculaire peut se manifester par les anomalies ci-après, présentes isolément ou de façon conjointe : (1) une altération du tonus de repos des cellules musculaires lisses vasculaires secondaire à la dysfonction de ces dernières ou à celle des cellules endothéliales, (2) une réponse...
Réservation coronaire (RC) =
\[
\frac{\text{Pic moyen de vitesse après adénosine (PMVA)}}{\text{Pic moyen de vitesse à l'état basal (PMVB)}}
\]

Flux de réserve coronaire (FRC) =
\[
3.1487 \times (\text{diamètre du vaisseau coronarien en mm}^2) \\
2 \times (\text{pic moyen de vitesse}^2) \text{ après acétylcholine}
\]

Figure 1. Profils des ondes de vitesse du flux sanguin coronaire objectivés par le Doppler intracoronarien après injections intracoronariennes d’adénosine et d’acétylcholine. La réserve coronaire (RC) est le rapport des pics moyens de vitesse avant et après injection d’adénosine. Le flux de réserve coronaire (FRC) est le rapport des pics moyens de FRC mesurés avant et après injection d’acétylcholine.

Figure 2. Images coronaryographiques montrant la constiction des artères coronaires (flèche) induite par l’injection intracoronarienne d’acétylcholine (ACH) et la dilatation provoquée par l’injection intracoronarienne de trinitrine (TN).

Figure 3. Clichés d’imagerie par résonance magnétique cardiaque montrant la perfusion ventriculaire sous épreuve de stress à l’adénosine (à gauche) et à repos (à droite). Les flèches signalent les zones dans lesquelles la perfusion myocardique est diminuée, le trouble s’aggravant sous épreuve de stress (à gauche).

anormale aux stimuli contracteurs ou dilatateurs, (3) une diminution du nombre des artérioles et des capillaires (rarefaction) et (4) des anomalies structurales ayant pour effet de réduire le diamètre des lumières vasculaires, d’augmenter le rapport paroi/lumière, d’accroître la rigidité des vaisseaux et de provoquer leur remodélage. Une rarefaction des capillaires myocardiques a été décrite dans la cardiomyopathie dilatée et l’angio-pathie d’allogreffe cardiaque, mais elle peut également intéresser les vaisseaux non cardiaques dans un contexte d’hypertension artérielle ou de SXC.

Il a récemment été établi que les cellules musculaires lisses vasculaires interviennent puissamment dans la biologie des cellules endothéliales, ce qui semble témoigner de l’existence d’une interaction régulatrice qui n’avait pas été perçue jusqu’alors. Les troubles de la microcirculation coronaire exercent une importante influence pronostique dans les syndromes coronaires aigus et chroniques, mais aussi dans le diabète, la cardiomyopathie hypertrophique et l’angio-pathie coronaire d’allogreffe, ainsi que dans le SXC comme il ressort des données de l’étude WISE.

Diagnostic invasif de la DCM
Le succès du traitement est subordonné à l’acquisition d’une certitude diagnostique. Chez les individus présentant des signes et symptômes d’ischémie, la stratification des risques et l’élaboration de la stratégie de prise en charge optimale exigent une étude de la réactivité coronaire (ERC) fondée sur des perfusions intracoronariennes d’adénosine, d’acétylcholine et de trinitrine de manière à évaluer les fonctions endothéliale et non endothéliale des structures tant micro- que macro-vasculaires (épicardiques), après s’être assuré de l’absence de lesion coronaire obstructive. La mise en œuvre d’un protocole standard d’exploration par sonde Doppler et administration d’adénosine, tel qu’utilisé pour mesurer le FRC, dans les coronaryographies quantitatives et qualitatives et dans les épreuves par perfusion intracoronarienne d’acétylcholine et de trinitrine, permet d’explorer les possibles mécanismes à l’origine de la DCM. L’apport de cette enquête diagnostique l’emporte probablement sur les risques d’incertitude diagnostique et d’échec du traitement visant à réduire le risque. Toutefois, dans la mesure où elle peut être grevée de complications potentiellement graves...
Diagnostic non invasif de la DCM

Lorsque l’ERC s’avère anormale, il est possible de rechercher l’existence d’un trouble de la perfusion myocardique par une approche non invasive fondée sur la tomodensitométrie à émission de simples photons, la tomographie à émission de positons et l’imagerie par résonance magnétique cardiaque avec épreuve de stress 1; cela étant, la sensibilité et la spécificité de ces techniques ne sont pas encore parfaitement établies. La méthode de référence en matière de diagnostic d’une DCM demeure l’ERC invasive. Une étude ancillaire de WISE commanditée par le NHLBI des Etats-Unis est actuellement menée pour évaluer l’intérêt de l’imagerie par résonance magnétique cardiaque dans le diagnostic et le bilan pronostique (estimation du risque) de la DCM chez la femme. 14 Si les résultats préliminaires 14,16 sont confirmés, cette technique sera, pour l’heure, la seule utilisable en pratique clinique pour évaluer la distribution transmurale du flux sanguin coronary (en vue, par exemple, d’une étude comparative entre territoires endocardique et épicanrique).

Traitement du SXC et de la DCM

Les actuelles recommandations de prise en charge de l’angor et du SXC ne proposent pas d’attitude spécifique en ce qui concerne la DCM. 17,18 Le traitement doit viser deux objectifs principaux : (1) combattre l’athéroscorose et l’ischémie afin de réduire le risque de complication cardiaque et (2) abolir les symptômes angineux de manière à améliorer la qualité de vie du patient. En raison de la forte prévalence des lésions athérocoronaires et du mauvais pronostic rapportés chez ces individus, nous faisons également nôtres les recommandations formulées par le comité d’experts du National Cholesterol Education Program (Programme américain d’éducation sur le cholestérol) dans son 3ème rapport sur le traitement de l’adulte, 19 consistant en une mise en œuvre de mesures thérapeutiques visant à améliorer l’hygiène de vie, 20 cèlles-ci étant complétées par la prescription d’aspirine à faible dose et d’une statine en considérant que le trouble présenté par ces patients équivalait à une maladie coronaire.

Les données des essais cliniques montrent que les bétabloquants, les inhibiteurs de l’enzyme de conversion de l’angiotensine, les dérivés nitrés, les inhibiteurs calciques, la ranolazine, les dérivés xanthiques tels que l’aminophylline, la contre-pulsion externe renforcée, la thérapie comportementale cognitive, les antidépresseurs tricycliques à faible dose et la neurostimulation périphérique des symptômes angineux, les paramètres de l’épreuve d’effort et la fonction endothéliale (Tableau). Il convient de noter que la doxazosine est dénuée d’effet bénéfique et que l’augmentation des risques d’accident vasculaire cérébral et d’insuffisance cardiaque qui lui a été imputée dans ALLHAT (Antihypertensive and Lipid-Lowering treatment to prevent Heart Attack Trial [évaluation des traitements anti-hypertenseur et hypolipémiant dans la prévention de l’infarctus du myocarde]) doit conduire à proscrire cet alpha-bloquant, y compris chez la femme hypertendue. L’hormonothérapie à faible dose1 semble inefficace et la supplémentation en L-arginine s’est révélée néfaste chez les patients en phase de post-infarctus, bien qu’elle ait amélioré les signes et symptômes dans une cohorte d’individus atteints de SXC. Le diabète n’améliore pas le FRC chez ces patients. En revanche, les bétabloquants ont régulièrement fait la preuve de leur supériorité par rapport aux dérivés nitrés et aux inhibiteurs calciques dans les essais cliniques randomisés. Un essai exploratoire mené dans la continuité de WISE en vue d’évaluer l’intérêt du sildénafil chez cette population de patients semblerait montrer que ce médicament améliore le FRC.

Conclusions

Chez les sujets présentant un SXC, défini par la présence de précordialgies persistantes évocatrices d’un angor et de symptômes ischémiques en l’absence de lésion coronaire obstructive, il existe très fréquemment une DCM.

Tableau. Traitement des patients angineux présentant des manifestations d’ischémie myocardique en l’absence de coronaropathie obstructive

<table>
<thead>
<tr>
<th>Symptômes</th>
<th>Traitement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dysfonction microvasculaire coronaire</td>
<td>Inhibiteurs de la pénétration de L-arginine</td>
</tr>
<tr>
<td>Trouble fonctionnel endothélial</td>
<td>Définition de L-arginine</td>
</tr>
<tr>
<td>Inhibiteurs de l’enzyme de conversion de l’angiotensine</td>
<td>Statines</td>
</tr>
<tr>
<td>Inhibiteurs calciques</td>
<td>Supplémentation en L-Arginine</td>
</tr>
<tr>
<td>Antidépresseurs tricycliques</td>
<td>Exercices aérobiés</td>
</tr>
<tr>
<td>Antiangineux/anti-ischémique</td>
<td>Contre-pulsion externe renforcée</td>
</tr>
<tr>
<td>Dérivés nitrés</td>
<td>Traitement fonctionnel non endothélial</td>
</tr>
<tr>
<td>Dérivés xanthiques</td>
<td>β-bloquants/α-β-bloquants</td>
</tr>
<tr>
<td>Trouble fonctionnel non endothélial</td>
<td>Antiangineux/anti-ischémiens</td>
</tr>
<tr>
<td>Ranalazine</td>
<td>Dérivés xanthiques</td>
</tr>
<tr>
<td>Dérivés nitrés</td>
<td>Traitement fonctionnel des cellules musculaires</td>
</tr>
<tr>
<td>Trouble de la nociception cardiaque</td>
<td>Inhibiteurs calciques</td>
</tr>
<tr>
<td>Antidépresseurs tricycliques à faible dose</td>
<td>Dérivés nitrés</td>
</tr>
<tr>
<td>Stimulations médullaires</td>
<td>Dérivés xanthiques</td>
</tr>
</tbody>
</table>
| Thérapie comportementale cognitive | Reproduction de Mehta et Merz19 avec l’autorisation des auteurs,
Sources de financement

Cette étude a été financée par des dotations du NHLBI des États-Unis (N° N01-HV-68161, N01-HV-68162, N01-HV-68163 et N01-HV8164), par une bourse des General Clinical Research Centers (M01-RR00425) du National Center for Research Resources des États-Unis et par des bourses de la Gustavus and Louis Pfeiffer Research Foundation (Denville, New Jersey, États-Unis) ainsi que de la Women’s Guild, de l’Edythe L. Broad Women’s Heart Research Fellowship et du Barbra Streisand Women’s Cardiovascular Research and Education Program qui sont tous trois rattachés au Cedars-Sinai Medical Center (Los Angeles, Californie, États-Unis). Le Dr Pepine a bénéficié de bourses des NIH/NHLBI (5 U01 HL087366-04, 5 R01 HL091005–03, 5 R01 HL090957–03 et 2 U01 GM074492–06), d’une dotation 3 U01 AG022376–05A2SI du National Institute on Aging et d’une bourse 5 UL1 RR028980–02 du National Center for Research Resources, qui sont deux divisions des National Institutes of Health.

Déclarations

Le Dr Bairey Merz a bénéficié de bourses de recherche dans le cadre de l’étude WISE (NIH/NHLBI 5 R01 HL090957) ; il a, par ailleurs, été rémunéré par la Women-Heart Coalition, le Centre Médical Los Robles, l’Hôpital Communautaire de Monterey, Primed, l’Association des Gynécologues-Obstétriciens de Los Angeles et la North American Menopause Society; il a également été rétribué en qualité de consultant par le NHLBI. Le Dr Pepine a bénéficié de bourses de recherche dans le cadre de l’étude WISE (NIH/NHLBI U01 HL6489 et NIH/NHLBI 5 R01 HL090957).

Références