AHA Science Advisory

Importance and Implementation of Training in Cardiopulmonary Resuscitation and Automated External Defibrillation in Schools

A Science Advisory From the American Heart Association

Endorsed by the American Academy of Pediatrics, the American College of Emergency Physicians, the National Association of School Nurses and the Society of State Directors of Health, Physical Education and Recreation

Diana M. Cave, RN, MSN, CEN, Chair; Tom P. Aufderheide, MD, FAHA; Jeff Beeson, MD; Alison Ellison, BSN; Andrew Gregory, MD; Mary Fran Hazinski, RN, MSN, FAHA; Loren F. Hiratzka, MD, FAHA; Keith G. Lurie, MD; Laurie J. Morrison, MD, MSc; Vincent N. Mosesso, Jr, MD; Vinay Nadkarni, MD, FAHA; Jerald Potts, PhD, FAHA; Ricardo A. Samson, MD; Michael R. Sayre, MD, FAHA; Stephen M. Schexnayder, MD; on behalf of the American Heart Association Emergency Cardiovascular Care Committee, Council on Cardiopulmonary, Critical Care, Perioperative and Resuscitation, Council on Cardiovascular Diseases in the Young, Council on Cardiovascular Nursing, Council on Clinical Cardiology, and Advocacy Coordinating Committee

In 2003, the International Liaison Committee on Resuscitation published a consensus document on education in resuscitation that strongly recommended that “…instruction in CPR [cardiopulmonary resuscitation] be incorporated as a standard part of the school curriculum.”¹ The next year the American Heart Association (AHA) recommended that schools “…establish a goal to train every teacher in CPR and first aid and train all students in CPR” as part of their preparation for a response to medical emergencies on campus.²

Since that time, there has been an increased interest in legislation that would mandate that school curricula include training in CPR or CPR and automated external defibrillation. Laws or curriculum content standards in 36 states (as of the 2009–2010 school year) now encourage the inclusion of CPR training programs in school curricula. The language in those laws and standards varies greatly, ranging from a suggestion that students “recognize” the steps of CPR to a requirement for certification in CPR. Not surprisingly, then, implementation is not uniform among states, even those whose laws or standards encourage CPR training in schools in the strongest language. This statement recommends that training in CPR and familiarization with automated external defibrillators (AEDs) should be required elements of secondary school curricula and provides the rationale for implementation of CPR training, as well as guidance in overcoming barriers to implementation.

Background

Sudden cardiac arrest is a leading cause of death in the United States and Canada. It is estimated that each year emergency medical services are called for cardiac arrest resuscitation approximately 420,000 times in the United States, and 173,000 of these call attempts result in cardiac arrest. Three out of four of these cardiac arrests occur outside of health care facilities, and only one out of five of those call attempts results in return of spontaneous circulation and discharge from the hospital. Of the approximately 300,000 people who experience cardiac arrest annually in the United States, about 12% survive to hospital discharge. The majority of post-somatic survivors have minimal or no neurologic impairment. Thus it is likely that if more individuals were trained to recognize the signs of cardiac arrest and to begin CPR promptly, a significant number of individuals might be discharged neurologically intact.

In 2000, the Healthy People 2010 objective was set to increase survival from cardiac arrest to 5% of all cardiac arrests occurring in the United States. This objective was achieved in 2005, when the survival rate was 5.3%. It is suggested that automated external defibrillation (AED) training and the use of AEDs by trained individuals in cardiac arrest situations might help to increase this rate even further. The American Heart Association (AHA) makes it a priority to train teachers in CPR and first aid, and to include CPR and AED training in school curricula. The American Heart Association has developed a series of recommendations aimed at increasing the number of individuals trained to recognize the signs of cardiac arrest and to begin CPR promptly. The statements were approved by the American Heart Association Science Advisory and Coordinating Committee on September 3, 2010. A copy of the statement is available at http://circ.ahajournals.org/content/full/10.1161/CIR.0b013e31820b5328/DC1. A link to the “Permission Request Form” appears on the right side of the page.
medical services (EMS) personnel assess 294,851 (quasi-confidence intervals, 236,063 to 325,007) out-of-hospital cardiac arrests (OHCA) in the United States. Survival, which is defined as being discharged alive from the hospital, varies widely by region (3.0% to 16.3%; median, 8.4%), but the overall average rate of survival to discharge from the hospital is estimated to be 7.6% to 7.9%. Provision of bystander CPR is known to be a critical determinant of survival from OHCA.4–13 The SOS Kanto investigators13 documented an odds ratio of 2.4 (95% confidence interval, 1.6 to 3.4) for a favorable 30-day neurological outcome associated with victims who received any form of bystander CPR with or without ventilation. A meta-analysis by Sasson et al4 shows that the relative impact of bystander CPR can be even higher, depending on the baseline survival (that of victims not receiving CPR) in a community: an odds ratio of 1.23 (95% confidence interval, 0.71 to 2.11) in the studies with the highest baseline survival rates to 5.01 (95% confidence interval, 2.57 to 9.78) in the studies with the lowest baseline rates. The same meta-analysis also expressed the impact of bystander CPR in terms of the number of victims needed to treated with bystander CPR to save one life and it too varied with baseline survival rates: needed to treated was 24 in areas with high baseline survival rates and 36 with the lowest baseline survival. Even though the potential benefit of this relatively simple intervention is clear, in many areas of the United States and Canada, fewer than 1 in 3 victims of OHCA receive this lifesaving help from a bystander.3,14

Many cardiac arrests are precipitated by lethal heart arrhythmias that can be reversed only by delivery of a shock to the victim’s chest with a defibrillator. The sooner the shock is delivered, the higher the probability of the victim’s survival. If no other care is provided, the chance of survival from OHCA decreases by 7% to 10% for every minute of delay.6 Effective CPR can prolong the window of opportunity for successful defibrillation,9 but it is the shock, not CPR, that will reverse the lethal arrhythmia.

People who are not healthcare professionals can provide lifesaving shocks with an AED. AEDs are designed for use by the general public so that defibrillation can be delivered before EMS personnel arrive at the scene. AEDs can increasingly be found in the workplace, other public locations, and schools. In the Public Access Defibrillation trial,15,16 survival rates for victims of OHCA doubled in areas where AEDs were available and cardiac arrest emergency response plans were implemented. No inappropriate shocks and no failures to shock when indicated were reported from that 3-year study, in which 260 presumed cardiac arrests occurred at 622 facilities with AEDs (95% upper bound for probability of inappropriate shock or failure to shock=0.0012).16 Other studies have also demonstrated survival rates much higher (from 47.6% to 53.0%) than the estimated overall average rate of survival from OHCA (7.9%), using a variety of strategies for early defibrillation in which AEDs were used by responders who were not healthcare professionals.15,17–19

In recognition of the effectiveness of this technology, advocacy groups have lobbied state legislators to mandate programs to raise public awareness of the importance of CPR and the use of AEDs to increase the percentage of the population trained in their use. Many of the resulting legislative and policy efforts have focused on CPR and AED education and training in schools (see Table 3 and the Appendix for summaries of existing state legislation and curriculum content standards). This science advisory presents evidence to support those efforts and recommends that training in CPR and familiarization with AEDs should be required elements of secondary school curricula.

Rationale for Teaching CPR to Secondary School Students

In 2003, the International Liaison Committee on Resuscitation strongly recommended that CPR training be incorporated into the standard school curriculum.1 That recommendation was based in part on the opinion that over the long term, children trained in CPR contribute significantly to the number of adults trained in CPR in the community. The expected direct benefit of increasing the number of people trained to perform CPR is to increase the likelihood that a victim of OHCA promptly receives CPR. This assumes that bystanders trained in CPR are more likely to take action than those who are not trained, an assumption that is supported by data from a study that interviewed bystanders at the scene of OHCA.14 Any previous training in CPR was shown to be a strong predictor of whether bystanders acted to provide CPR to the victim, as was CPR training within the previous 5 years (Figure 1).

Pelinka et al20 also observed an effect of first aid training (including CPR) on the incidence and quality of bystander performance of critical first aid skills (correct extrication, positioning, and control of hemorrhage) to help victims of trauma in actual emergencies. When compared with bystanders who were not trained in first aid, the skills performance of bystanders who had received first aid training increased with the level of training (basic, advanced, and professional) they...
reduced, and the number of victims who did not receive care decreased.

Increasing the percentage of the population trained in CPR is an integral part of an overall strategy to improve community response to OHCA. Schools provide excellent access to a large part of the community: among 5- to 14-year-olds, compliance with required attendance is nearly universal at 97.4%; among 15- to 19-year-olds, compliance is 76.5%. Therefore, over time, a significant percentage of the overall community will receive training. Programs in which students can share materials used in school-based programs at home with family members can further increase the program’s yield in terms of the total number of members of the community trained per unit of class time expended.

Short-Term Impact: Adolescents as Potential Rescuers

The potential benefit of training secondary school students in CPR differs from that of training adults in CPR. In the short term, children are not as likely as adults to witness an OHCA and potentially help a victim because of the relatively low risk of OHCA associated with their age group. Lotfi et al. published an analysis of the incidence of EMS-treated, nontraumatic OHCA in schools in Seattle/King County, WA, over 15 years (from January 1, 1990, to December 31, 2005). They estimated an incidence of OHCA (per 100 000 person-school-years) of 0.18, 0.19, and 0.15 for elementary, middle, and high school students, respectively, and 4.51 per 100 000 person-years for faculty and staff. Other studies documenting voluntary reports of OHCA among high school athletes suggest an incidence ranging from 0.28 to 1 death per 100 000 athletes annually nationwide, compared with the estimated overall incidence of OHCA in the United States of 96.8 per 100 000 people annually.

Although the risk of an OHCA event occurring in a school is relatively low, the emotional costs associated with the sudden death of a child are enormous. Increasing the percentage of students, staff, and faculty trained in CPR increases the likelihood of someone promptly initiating time-critical CPR for a victim of OHCA.

In addition, a child trained in CPR could be present at the scene of a medical emergency requiring CPR in a location other than school. For example, a 2003 retail market analysis estimates that the average American teenager (12 to 17 years old) spends 58 hours per month in shopping malls. Becker et al. identified large shopping malls as having the third highest incidence rate of OHCA (0.6 events annually per facility) of 23 categories of commercial and civic establishments examined in the Seattle/King County, WA, area. Children of secondary school age may also encounter respiratory or cardiovascular emergencies as caregivers of younger children (eg, siblings).

Long-Term Impact: Training for the Future

No longitudinal research has specifically assessed the impact of school-based CPR training on the probability that students trained in CPR will provide CPR as adults if they encounter a victim of OHCA. Many published studies of retention of CPR psychomotor skills suggest that early training can contribute to higher skill levels later. However, these studies vary in measures and results. In one of the longest-term CPR skills—retention studies undertaken, half of adults who received conventional 1-time training in CPR performed satisfactorily in manikin-based assessments at 12 months in the critical skill of chest compressions: hand placement, 47%; compression depth, 44%; and compression rate, 59%. Similar or worse levels of performance were observed in other studies of populations that would be expected to have a higher than normal probability of encountering a cardiac arrest victim: parents of infants, medical students, and family members of cardiac patients.

Several studies have reported performance of CPR psychomotor skills by school-age children at a variety of post-training times. Hill et al. assessed CPR skills among 10- and 11-year-olds who performed CPR (at compression-ventilation ratios of 15:2 and 30:2) 2 months after initial training. Their performance of chest compressions at a compression-ventilation ratio of 30:2 over 3 minutes was not ideal: only 22% to 26% of students achieved an average compression depth of ≥38 mm. Moore et al. reported that 11- and 12-year-olds who had been trained to give mouth-to-mouth rescue breathing 5 years earlier performed significantly better than their peers who had not received training, but the authors estimated that only 37% of the group who had received training might have been able to sustain life in an actual emergency. One recent study compared skills retention among schoolchildren with that of adults 3 months after training using the same self-directed training system. The data show that adults had a higher overall score (57.5% versus 50% of the possible total score using the Cardiff Test™). That difference may be partly due to a difference in physical size, as evidenced by the lower percentage of children with a mean compression depth in the target range of 40 to 55 mm (30% of children versus 61% of adults).

Until further longitudinal studies of school-age trainees have been conducted, long-term degradation of psychomotor skills should be considered a potential problem common to all age groups and should serve as a challenge to researchers to identify more effective training strategies. Concerns over long-term skills retention, however, should not preclude current efforts to train any specific age range (assuming that trainees are at an age when they are likely to be physically capable). The evidence shows that previous training, at any interval before there is a need to use the skills learned, will increase the likelihood that a bystander will provide appropriate care to a victim.

Several behavioral studies help define the long-term benefits of prospective training for medical emergencies and complement the findings from actual emergencies reported by Swor et al and Pelinka et al. Many of those studies address the multidimensional barriers that prevent bystanders from helping in actual emergencies. Some have shown that prospective training (“induced competence”) as an experimental variable significantly reduced psychosocial barriers to exhibiting “helping behavior” (in this case, providing first
assisted CPR.40,41 Calls related to medical emergencies now include “dispatcher-directed emergency dispatch protocols for operators answering CAD calls.”

The odds ratio of implementing CPR accounted for more than half of all incidents of bystander CPR performed for adult OHCA handled by EMS personnel in the Seattle/King County area from July 1, 2000, to June 30, 2002 (Figure 2). The odds ratio of implementing CPR “spontaneously” (CPR was initiated without instructions from the EMS dispatcher); dark green indicates the percentage of cardiac arrests in which bystanders performed CPR “spontaneously” (CPR was initiated without instructions from the EMS dispatcher); and red indicates the percentage of cardiac arrests in which bystanders did not perform CPR. Disp. Assist indicates dispatcher assistance. Data shown are adapted from (A) Swor et al44 with permission of the publisher, copyright © 2006, Society for Academic Emergency Medicine; (B) SOS-Kanto Study Group13 with permission of the publisher, copyright © 2007, Elsevier; and (C) Hauff et al40 with permission of the publisher, copyright © 2003, American College of Emergency Physicians.

Yet these studies reveal an important concept, as described by Pantin and Carver,37 that has relevance to the longer term. Specific knowledge of “what to do” is required for a bystander to take the final step in a multistep decision-making process that leads to effective direct action (eg, performing CPR). Training also facilitates an even earlier critical step in that process, a bystander’s initial interpretation of the situation. By sensitizing trainees to the need for immediate intervention when presented with a specific medical emergency, training increases the likelihood that a bystander will interpret the situation appropriately and will at least take effective indirect action to help, such as calling 9-1-1 (an action that does not require mastery of a psychomotor skill).37

In many instances, in a real emergency, the indirect action of calling 9-1-1 would allow the bystander to receive instructions for performing CPR from the 9-1-1 dispatcher. This in turn can increase the chance that the victim will receive bystander CPR. Hauff et al40 reported that dispatcher-assisted CPR accounted for more than half of all incidents of bystander CPR performed for adult OHCA handled by EMS personnel in the Seattle/King County area from July 1, 2000, to June 30, 2002 (Figure 2). The odds ratio of implementing telephone CPR for the eligible patients in this study was as high as 1.39 (the interquartile 25th to 75th range) for longer (9-minute) basic life support response intervals. Many standard emergency dispatch protocols for operators answering calls related to medical emergencies now include “dispatcher-assisted CPR.”40,41

Rationale for Including AED Awareness or Skills Training With CPR Training for School-Age Children

In 2000, the Cardiac Arrest Survival Act (Public Law 106-505) was signed into federal law. The intent of Cardiac Arrest Survival Act was to reduce barriers to the placement and use of AEDs in public areas and thus improve systems of care for OHCA in the community. Since passage of Cardiac Arrest Survival Act, all 50 states have implemented legislation promoting lay rescuer programs and providing “Good Samaritan” protection for lay rescuers who use AEDs.42 AEDs are now available in many public locations such as airports, shopping malls, exercise facilities, and federal buildings,49 thus increasing the likelihood that a bystander will have direct access to an AED or that a second bystander will get an AED from a nearby location and bring it to the side of a cardiac arrest victim. To help an unresponsive victim, though, a bystander must know the purpose of an AED and understand how it functions. Otherwise, indecision and discussion with other bystanders could delay or even prevent the use of the AED altogether. It is reasonable, then, that all CPR training should explain the purpose and basic function of an AED to all trainees regardless of age.

The AHA encourages the inclusion of AED skills practice during CPR training. Furthermore, the AHA recommends the use of an AED or AED trainer when the CPR training is part of an overall response plan at a specific location where AEDs have been installed, including schools. The AHA has previously recommended that, where AEDs have been implemented as part of a school’s medical emergency response plan, CPR and AED training should be provided to any anticipated rescuer.43

Recommendations for Implementing CPR or CPR/AED Training in Schools

Target Audience

Targeting the appropriate student population is of foremost importance. Students’ physical size is a major consideration in this respect. Jones et al44 assessed the physical ability of schoolchildren in Cardiff, Wales, to achieve adequate chest compression depth for an adult victim. The children in the study ranged in age from 9 through 14 years; only the 13- to 14-year-olds performed chest compressions as well as adults. Achieving the target compression depth in adult victims of cardiac arrest requires the application of about 50 kg.45 In the United States, the 50th percentile weights of boys and girls become ≥50 kg at 165.5 months (13.8 years) and 170.5 months (14.2 years), respectively. According to the 2017 Institute of Medicine report, the decile of the body mass of 12- to 14-year-olds in their study ranged in age from 9 through 14 years; only the 13- to 14-year-olds performed chest compressions as well as adults. Achieving the target compression depth in adult victims of cardiac arrest requires the application of about 50 kg.45 In the United States, the 50th percentile weights of boys and girls become ≥50 kg at 165.5 months (13.8 years) and 170.5 months (14.2 years), respectively.46 Flexion at the hip joints contributes to the total force generated when a person performs chest compressions during CPR.47 Therefore, a total body mass of <50 kg does not by definition limit a person’s ability to perform compressions but would necessitate much more exertion from that person than someone with greater body mass. As mentioned above, data from Isbye et al22 suggest that the body mass of 12- to 14-year-olds in their study may in part account for their lower average compression depth compared with adults who used the same self-directed training kits (manikin and video). Given the impor-
tance of delivering high-quality compressions and the possibility that trainees, who are physically unable to perform those compressions to the desired standard during training, might become discouraged or disinterested, it is reasonable to limit practice of adult CPR chest compression skills to children in middle school (~13 years old) and older.

Critical Teaching Points in CPR Training
The core skills of conventional CPR (for adults, children, and infants) and hands-only CPR (for adult victims of witnessed cardiac arrest) are outlined in Part 4 of the 2010 AHA Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiac Care and the 2008 AHA advisory statement on hands-only CPR, respectively. Any program designed to teach conventional CPR for adult, child, or infant victims or hands-only CPR should include the core skills described there. The most critical of those skills, recognition of the emergency (“interpretation”) and provision of high-quality chest compressions, deserve further emphasis.

Recognition of the Emergency
The multistep decision-making process of effecting a response includes appropriate interpretation of the situation, or recognition of the emergency. Bystanders must recognize the nature and severity of the victim’s condition. When uncertainty or ambiguity in an emergency situation increases, the probability of a bystander taking action decreases.38,50,51 CPR recognition of the emergency (“interpretation”) and provision of high-quality chest compressions, deserve further emphasis.

Critical Teaching Points in AED Awareness or AED Skills Training
AEDs are simple and easy to use. When the AED is turned on, it provides voice prompts and visual cues to guide the user through all the appropriate steps. Gundry and colleagues used a mock simulation of cardiac arrest to familiarize sixth-grade students who had no previous training with the use of an AED. They compared time to defibrillation, pad placement, and compliance with AED prompts to stand clear of the patient during shock delivery between the sixth graders and emergency medical technicians and paramedics. The mean time to defibrillation was 90 seconds for the sixth graders and 67 seconds for the professionals. Both the sixth graders and professionals were able to place the pads correctly and stand clear of the patient during shock delivery. Lawson et al. assessed third graders’ use of an AED after explaining only the mechanics of peeling off the backing from the pads. Those students successfully used the AED on a manikin but, after a 2-minute, one-on-one orientation, their performance was significantly faster in a second trial. These studies dramatize the ease of AED use by even the very young and, in the latter instance, minimally trained users.

The findings from these studies are also consistent with other findings that AED use primarily requires only cognitive knowledge. The only psychomotor skills required to use an AED are to turn on the device and correctly place the pads on the victim’s bare chest. Minimal training exercises have been shown to adequately improve performance of this skill. One step that users often fail to perform properly during simulated use of an AED is checking to make sure that no one is touching the patient (“clearing the patient”) during the 2 critical stages of rhythm analysis and
that include AED skills practice emphasize reinforcing the
skills practice but no testing
- Program optimized for schools
- Skills practice and testing
- Skills testing can also be performed by a skills evaluator or by use of an authorized computerized manikin system
- Individual, self-contained training kit, each with O2 and manikin
- Training can be conducted in a group with a facilitator (peer, staff, or faculty)
- Allows use at home by others
- Skills practice but no testing
- Same as CPR Anytime except that E-learning cognitive component and skills testing are added
- Skills testing can be performed by a skills evaluator (as is assumed in this example) or by use of an authorized computerized manikin system

CPR indicates cardiopulmonary resuscitation; AHA, American Heart Association; AED, automated external defibrillator.

*Approximate cost is based on analysis of training 200 students per year with 2 instructors over 3 years. Total includes approximate costs associated with maintenance of instructor/evaluator certification of staff or faculty where applicable; equipment purchase and maintenance; reusable training materials; training materials meant for individual or 1-time use; and cost of self-directed training products where applicable (based on volume pricing). Reuse of books is not recommended, but approximate costs, based on the assumption that books are to be reused, are provided in parentheses.

NOTE: These are approximations of total costs for use in comparing these strategies only. Actual costs will vary. These approximations are not necessarily representative of expenses incurred by or charged by commercial providers of health and safety training.

shock delivery.77,80 It is recommended that training programs that include AED skills practice emphasize reinforcing the
skills of pad placement and clearing the patient.81
If a school does not provide skills training in the use of an AED during its CPR course, it is recommended that as a minimum the course should explain

- The purpose of AEDs: When available, an AED should be used with CPR by the general public to help a victim who is unresponsive and has absent or abnormal breathing (i.e., only gasping).
- The simplicity and safety of AED use: While CPR is in progress, turn on the AED and follow the instructions. Stop CPR only when instructed to do so.

Training Program Length
The recommended minimum length for a CPR training course in schools varies according to several factors, as follows:

- Mode of delivery (self-directed learning versus a traditional classroom course and inclusion of cognitive components to enhance psychomotor skills training)
- Number of sessions: whether the course is conducted in 1 session or over several sessions staged over time
- Certification: whether or not certification is desired (which requires more time for a final skills test)
- Student-to-manikin ratio
- Total time allowed for each trainee to practice psychomotor skills
- Additional topics or practice (child CPR, infant CPR, AED skills practice, relief of airway obstruction)

Several studies have demonstrated that trainees, including schoolchildren, can achieve acceptable levels of skills proficiency in adult CPR in ≤30 minutes through a self-directed video-based program.81–83 The lesson plan for a typical CPR classroom course designed for schools and led by an instructor requires at least 2 or 3 hours if infant CPR is included.84 Examples of total time required for various training strategies are shown in Table 1.

Training Strategies
CPR training (with a psychomotor skills component) is most commonly delivered by 1 of 3 different methods: traditional instructor-led courses, traditional peer-led courses, and video-based self-directed training (no instructor). A facilitator is typically present when self-directed video-based training is used in a group setting. These methods have been compared in the literature. Peer-led and video-based training have been shown to be at least as effective as traditional instructor-led courses.81,85–91 All 3 methods have been successfully implemented in schools.86,92–94
Some advantages have been noted for peer-led and video-based training that are worth consideration when planning a school program. Peer-led training generally reduces the demand for instructors, which can simplify logistics and reduce costs.85-87 Likewise, self-directed video-based training eliminates the need for CPR instructors. Some of these programs, such as the video-based training kit described by Isbye et al92 have the additional advantage of a short training time (\textasciitilde 22 minutes) and can be used at home by others.

The characteristics of some instructor-led and self-directed training program strategies that could be used in schools are summarized in Table 1.

Course delivery is shown in 2 sample formats: a traditional instructor-led course, with or without certification, and a self-directed video-based course, with or without certification. Sample courses, course content, and costs are shown for each format. In model 1, all costs are paid by the school; in model 2, the school pays for all books, supplies, and equipment but uses volunteer instructors (student peers or others); model 3 assumes that the school pays only for supplies and equipment. All samples fulfill minimum criteria for CPR training in secondary schools recommended in this statement. This information does not represent the full range of acceptable options for course content and delivery available from the AHA or other organizations. N/A indicates not applicable.

Data are adapted from the American Heart Association 2010 Course Matrix84 and Heartsaver CPR in Schools How-to Guide.\textcopyright 95

Home use of self-directed skills training kits multiplies by \textasciitilde 3-fold the total number of people trained in the community per unit of class time dedicated to the program and greatly expands the age distribution of those trained.92

As described above, use of an AED largely depends on cognitive knowledge, and therefore training can be easily provided online or through an e-learning strategy. When coupled with a self-directed CPR psychomotor skills training component, CPR/AED training can be fully self-directed.79 If certification is desired, an instructor, a skills evaluator, or an approved electronic CPR manikin system is required.

Choice of a specific delivery method for CPR training should depend on the ultimate objectives of the program as discussed above (awareness versus skills training, certification by a recognized authority, AED use, or outreach to students’ family and friends), and administrative issues as discussed below.

Program Administration

The challenges of implementing CPR or CPR/AED training in schools go beyond choosing specific program content. A 2003 report from Reder and Quan characterizing high school CPR training programs in the state of Washington provides a useful summary of the barriers to teaching CPR and strategies to overcome those barriers.96

Sixty-five percent of responding high schools provided CPR training to some proportion of their students. The reasons most frequently cited as the “most significant” barrier to providing training were time to teach CPR in the curriculum (24% [36/148]), lack of funds (16% [24/148]), and instructor scheduling difficulties (17% [25/148]). It is noteworthy that the same 3 factors were most commonly rated as significant barriers among head teachers in secondary schools in Barcelona, Spain (high and medium ratings were combined in that study).97 Since the Reder and Quan survey was conducted, changes in recommendations and training options for CPR have mitigated some barriers that were identified, but unfortunately there have also been changes in the US educational system that heighten barriers, such as funding and time. Nonetheless, the barriers noted in the Reder and Quan study remain relevant and provide a useful framework for the following discussion of program administration.

Time

The additional class time required to teach CPR was cited most often (24% of the time) as the most significant barrier to providing training among the Washington state high schools that responded to the Reder and Quan survey.96 Since then, class time has become even more precious, because initiatives have been legislated to improve students’ academic performance and increase the accountability of schools, the most notable example being The No Child Left Behind Act of 2001.98

In the same survey, a large majority (74% [98/132]) of the responding schools that offered training in CPR incorporated that training in health courses. In 48% of schools that require students to perform “community service” for graduation, CPR training would fulfill that requirement. Both strategies, alone or combined, are reasonable ways to efficiently include CPR training in the school curriculum. Further efficiency can be gained though the use of video-based, self-directed training programs that can deliver psychomotor skills training in CPR and use of AEDs to students in <30 minutes23,83 and online or other e-learning programs that can deliver the cognitive domain of CPR and AED training in an average of 35 minutes.79

Funding

Among the Washington state high schools that responded to Reder and Quan’s survey, funding was 1 of the 3 factors most often cited as the most significant barriers to implementation of CPR training in schools.96 It remains a challenge today. Even where CPR training has been mandated by state legislatures, there has been no commensurate allocation of funding to support those programs.8 Interestingly, Massachusetts legislation encourages rather than mandates CPR training in schools, yet it offers funding for such training when included in a health education program.100

An informal survey conducted by AHA staff shows that schools that provide CPR training often rely heavily on external resources rather than on their own budgets to fund training. External funding or assistance often takes the form of collaborations between schools and private entities, such as foundations, civic organizations, or businesses, or between schools and other public agencies, such as fire departments or...
Instructor Training and Scheduling
Like time and funding, this factor was 1 of the 3 barriers most often cited as most significant by the Washington state high schools that responded to the Reder and Quan survey.96 The

Internal/external (Public-private collaboration)

The cost of using self-directed skills training kits should also be considered in the wider context of the potential to increase training among students’ friends and families, which yields even greater improvement in the capacity of a community to respond to victims of OHCA.

Integration of self-directed components may reduce the cost of maintaining instructor certification of staff or faculty and mitigate some logistic challenges but will likely increase the per-student cost of training because of the additional cost of online or other e-learning programs and self-directed CPR skills training kits. The cost of using self-directed skills training kits should also be considered in the wider context of the potential to increase training among students’ friends and families, which yields even greater improvement in the capacity of a community to respond to victims of OHCA.

Instructor Training and Scheduling
Like time and funding, this factor was 1 of the 3 barriers most often cited as most significant by the Washington state high schools that responded to the Reder and Quan survey.96 The

use of certified instructors to conduct CPR training is particularly important in traditional instructor-led training courses or when certification is desired (for example, when students need CPR certification as a job requirement).

This barrier can be addressed by opting to use “outside” instructors for instructor-led training courses. Outsourcing training to a commercial entity may or may not increase overall costs compared with maintaining the instructor status of some staff and faculty. The use of volunteer instructors almost certainly will reduce program costs (Table 1).

Since the Reder and Quan survey, another option has evolved that does not remove, but in part lowers the certified instructor barrier. The AHA now offers the certified CPR Skills Evaluator option, which requires ~8 to 12 fewer hours of training than that required for certification as a CPR instructor.101 The skills evaluator may perform skills testing for certification of trainees but may not conduct the training program. Use of skills evaluators in a large school or multiple schools within a district may mitigate the logistic challenges and costs of providing CPR training that leads to certification.

Skills evaluators may also be used to certify students who have completed their cognitive and psychomotor training through self-directed programs. Although such a strategy can significantly lower the instructor certification barrier, it may come at a substantially greater cost compared with traditional training because of the cost of self-directed skills training kits (Table 1).

Class Scheduling
In the Reder and Quan survey, class scheduling was cited by some schools (9%) as the most significant barrier to imple-
Current Status of Legislation and Education Content Standards Mandating CPR or CPR/AED Training in Schools

An Internet-based search of existing state legislation and relevant documents from state departments of education was conducted by AHA staff in September 2009 and updated in February 2010 to identify requirements and recommendations for teaching CPR to the general student population. The results of that search are summarized in Table 3. Details can be found in the Appendix, which is available online, with states grouped by the language in their legislation or curriculum content standards, annotated with relevant standards and legislation identifiers (where they could be found in this search). Links are provided to all states’ curriculum content standards or relevant legislation. Excerpts of documents in which teaching CPR to the general student population is mentioned are also provided.

Thirty-six states currently have legislation, state department of education curriculum content standards, or frameworks that refer to teaching CPR in schools. Most of those relevant state standards reflect the principle expressed by Standard 7 of the National Health Education Standards: “Students will demonstrate the ability to practice health-enhancing behaviors and avoid or reduce health risks.” Only 6 states explicitly require CPR training courses that routinely include skills practice. In those states, schools are required to provide CPR training as part of the mandatory health education curriculum for all students. In the other 30 states, laws or curriculum content standards describe training expectations for students in a variety of less rigorous ways. Seventeen states refer to students “demonstrating” their CPR skills as the goal of the class lesson, and in other states students are expected to simply “describe,” “know,” “understand,” or “recognize” the steps of CPR. In the remaining 14 states and the District of Columbia, CPR training in schools is not mentioned in legislation or curriculum content standards.

Only 2 states have legislation that addresses funding. Massachusetts State Administrative Code, Part I, Title XII, Chapter 71, Section 1, directly addresses the costs incurred by some schools by stating that “The department of education shall pay for the cost of any such instruction in cardiopulmonary resuscitation… [in the event that]… a school committee shall pay for the cost of any such instruction in cardiopulmonary resuscitation.” In Iowa, legislation containing the General Accreditation Standards for schools indirectly addresses funding by including language that is “permissive” of a collaborative model of implementation: one using volunteer instructors. It states “A course that leads to certification in CPR may be taught during the school day by either a school or school district employee or by a volunteer, as long as the person is certified to teach a course that leads to certification in CPR.”

No other instance of states mitigating the “unfunded mandate” dilemma was found in this search.

It is the recommendation of the AHA that training in CPR be a requirement for graduation from secondary schools. Specific essential components that define acceptable CPR training have been detailed above and are summarized in the next section. State legislation and educational content standards should unequivocally require and provide for the meaningful support and enforcement of a requirement for CPR training for graduation.
Table 3. Results of a Search of State Legislation Referring to Teaching CPR to the General Student Population

A. Recommends a Type of Training Course That Would Require Skills Practice (Mandatory for Graduation)

<table>
<thead>
<tr>
<th>State</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alabama</td>
<td>Code of Alabama, 1975, §16-40-8</td>
</tr>
<tr>
<td>Indiana</td>
<td>Administrative Rule, 511 IAC 6.1-5-4</td>
</tr>
<tr>
<td>Iowa</td>
<td>Ch 12, General Accreditation Standards, 281-12.5(20)</td>
</tr>
<tr>
<td>Louisiana</td>
<td>Standard (health) §309, B 741:2.105.09, B 741:2.105.15</td>
</tr>
<tr>
<td>North Carolina</td>
<td>Healthful Living Goal 2.03 (grade 8)</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>Statute §16-22-15 R16-21-SCHO - §5.1.2</td>
</tr>
</tbody>
</table>

B. Recommends CPR Certification But Without Explicit or Implicit Mention of Training That Includes Skills Practice

<table>
<thead>
<tr>
<th>State</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nebraska</td>
<td>Health Education Frameworks 3.5c</td>
</tr>
<tr>
<td>Oklahoma</td>
<td>SB 618 Department of Health Standards for School Health</td>
</tr>
<tr>
<td>Tennessee</td>
<td>Standard No.: 5.6 Safety & First-Aid</td>
</tr>
</tbody>
</table>

C. Student Must Demonstrate CPR Skills

<table>
<thead>
<tr>
<th>State</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arizona</td>
<td>Standard 3 3CH-P5. PO 2.</td>
</tr>
<tr>
<td>California</td>
<td>Standard 7: 7.3.S</td>
</tr>
<tr>
<td>Connecticut</td>
<td>CT Framework: K-12 Content Standard 2</td>
</tr>
<tr>
<td>Florida</td>
<td>Statute 1003.43 Content Standard PE.912.M.1.17</td>
</tr>
<tr>
<td>Hawaii</td>
<td>HCR163 Benchmark HE.6-8.1.4</td>
</tr>
<tr>
<td>Illinois</td>
<td>Performance Standard 22A.4c</td>
</tr>
<tr>
<td>Kentucky</td>
<td>Standard for “Practical Living” Safety section</td>
</tr>
<tr>
<td>Maryland</td>
<td>Standard (health) 5.0 A.1.b</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>General law 71.1</td>
</tr>
<tr>
<td>Minnesota</td>
<td>HPE-QTN Grade 10. Standard 4</td>
</tr>
<tr>
<td>Missouri</td>
<td>Ch 167 Pupils and Special Services Section 167.624</td>
</tr>
<tr>
<td>Texas</td>
<td>TEKS §115.23. Hill Ed b.5.G (grade 7–8)</td>
</tr>
<tr>
<td>Utah</td>
<td>Health Education I & II Standard 4.2.b</td>
</tr>
<tr>
<td>Vermont</td>
<td>Standards (health) HE1 b (Grades 7–8) HE1 a (Grades 9–12)</td>
</tr>
<tr>
<td>Virginia</td>
<td>Standard (health) 10.3 (Grade 10) 9.3 (Grade 9)</td>
</tr>
<tr>
<td>Washington</td>
<td>Standards (health) 2.4.2 (Grades 7–12)</td>
</tr>
<tr>
<td>West Virginia</td>
<td>Board of Education Policy 2520.5: HE.7.1.05 & HE.8.1.05</td>
</tr>
</tbody>
</table>

D. Student Must Describe, Know, Understand, or Recognize Steps of CPR

<table>
<thead>
<tr>
<th>State</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arkansas</td>
<td>Content Standard 10 HW 10.6.10</td>
</tr>
<tr>
<td>Georgia</td>
<td>QCC Standard 43</td>
</tr>
<tr>
<td>Maine</td>
<td>Standard Chapter 127 Health & Physical Education</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>Standards Injury Prevention (High School)</td>
</tr>
<tr>
<td>New Jersey</td>
<td>Standards (health) 2.1A & 2.1F</td>
</tr>
<tr>
<td>New York</td>
<td>Standards Guidance Document ORH.C.4</td>
</tr>
<tr>
<td>North Dakota</td>
<td>Health Content and Achievement Standard 2:9-12.2.7 (grades 9–12)</td>
</tr>
<tr>
<td>Oregon</td>
<td>Standards Maps High School</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>Standard 10.3.12(B)</td>
</tr>
<tr>
<td>South Carolina</td>
<td>Standards (health) I-5.1.2 & I-7.1.2</td>
</tr>
</tbody>
</table>

E. No Mention of CPR

<table>
<thead>
<tr>
<th>State</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alaska</td>
<td>Nevada</td>
</tr>
<tr>
<td>Colorado</td>
<td>New Mexico</td>
</tr>
<tr>
<td>Delaware</td>
<td>Ohio</td>
</tr>
<tr>
<td>Idaho</td>
<td>South Dakota</td>
</tr>
<tr>
<td>Kansas</td>
<td>Washington, DC</td>
</tr>
<tr>
<td>Michigan</td>
<td>Wisconsin</td>
</tr>
<tr>
<td>Mississippi</td>
<td>Wyoming</td>
</tr>
<tr>
<td>Montana</td>
<td></td>
</tr>
</tbody>
</table>

The search results are grouped as follows: (A) Six states require CPR training, including skills practice, as part of mandatory health education. (B) Three states recommend CPR training that leads to certification but do not require inclusion of skills practice during training. (C) Seventeen states recommend CPR training that requires students to “demonstrate” their CPR skills. (D) Ten states recommend CPR training that enables students to “describe,” “know,” “understand,” or “recognize” the steps of CPR. (E) In 14 states and the District of Columbia, there is no mention of CPR training in schools in legislation or curriculum content standards. CPR indicates cardiopulmonary resuscitation. See also supplemental data located at http://circ.ahajournals.org/cgi/content/full/10.1161/CIR.0b013e31820b5328/DC1.
The AHA makes the following recommendations for CPR training in schools.

Primary Recommendations†

CPR training (as defined below) should be required for graduation from secondary school (Class I; Level of Evidence B). CPR training that is meant to comply with this mandate should at minimum:

- Conform to the core teaching objectives for lay provider training described in the most current AHA Guidelines for CPR and ECC (including any interim updates), with special emphasis on:
 - Recognizing the need to initiate CPR (including cautions that “gasping” is not “normal breathing”) (Class I; Level of Evidence A).
 - Performing high-quality chest compressions with minimal interruptions (Class I; Level of Evidence B).
- Provide an opportunity to practice and master psychomotor skills related to CPR by use of an appropriate surrogate for the victim.
- Make students aware of the purpose of an AED and the ease and safety of using an AED.

Secondary Recommendations

In schools that provide a CPR training program that includes AED skills practice (a CPR/AED course), students should be given an opportunity to practice and master all steps of CPR and AED use (Class I; Level of Evidence B), with special emphasis on:

- Minimal interruptions in performance of CPR
- Correct application of pads to an appropriate surrogate for the human thorax
- Proper “clearing” of the patient (checking to see that no one makes contact with the patient) when so instructed by the AED.

Appendix

The online data supplements for this advisory contain a supplement to Table 3 with excerpts from and links to state legislation and curriculum content standards and also state data mapped to National Health Education Standards (NHES).

Another useful link is the Be the Beat Web site, which was developed by the AHA as part of its youth CPR awareness campaign. It contains activities for children as well as lesson plans for integrating those activities into school CPR awareness and training programs.

Table 4. Applying Classification of Recommendations and Level of Evidence

<table>
<thead>
<tr>
<th>LEVEL A</th>
<th>Multiple populations evaluated†</th>
<th>Data derived from multiple randomized clinical trials or meta-analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommendation</td>
<td>Procedure or treatment is useful/effective</td>
<td>Sufficient evidence from multiple randomized trials or meta-analyses</td>
</tr>
</tbody>
</table>

LEVEL B

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Procedure or treatment is useful/effective</th>
<th>Evidence from single randomized trials or nonrandomized studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommendation</td>
<td>Procedure or treatment is useful/effective</td>
<td>Some conflicting evidence from single randomized trials or nonrandomized studies</td>
</tr>
</tbody>
</table>

LEVEL C

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Procedure or treatment is useful/effective</th>
<th>Only expert opinion, case studies, or standard of care</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommendation</td>
<td>Procedure or treatment is useful/effective</td>
<td>Only diverging expert opinion, case studies, or standard of care</td>
</tr>
</tbody>
</table>

†The system (Table 4) used in this section for classifying recommendations and the level of evidence supporting them are consistent with those first described in Anderson et al. 105
Disclosures

Writing Group Disclosures

<table>
<thead>
<tr>
<th>Writing Group Member</th>
<th>Employment</th>
<th>Research Grant</th>
<th>Other Research Support</th>
<th>Speakers' Bureau/ Honorary</th>
<th>Expert Witness</th>
<th>Ownership Interest</th>
<th>Consultant/ Advisory Board</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diana M. Cave</td>
<td>Legacy Health System; Emanu Medical Center; Emergency Services; Level I Trauma Center; American Heart Association</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Tom P. Aufderheide</td>
<td>Medical College of Wisconsin University</td>
<td>Resuscitation Outcomes Consortium, Milwaukee Principal Investigator; NHLBI*; Neurological Emergency Treatment Trials (NETT) Network, Milwaukee Principal Investigator, NIH/DOD; Immediate Trail, Milwaukee Principal Investigator, NIH/B, ResQThal, Initial Principal Investigator, NIH/B</td>
<td>Zoll Medical*; Advanced Circulatory, Inc.; Zoll Medical</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Consultant for Medtronic, Inc.; Consultant to JoLife Inc.; Advisory Board, Take Heart America*; Citizen CPR Foundation, President*; Benechill, unpaid consultant*</td>
<td>None</td>
</tr>
<tr>
<td>Jeff Beeson</td>
<td>EPAB EMS</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Alison Ellison</td>
<td>Children’s Hospital of Atlanta</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Andrew Gregory</td>
<td>Vanderbilt University</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Expert witness to a very few patients of my own*</td>
<td>None</td>
</tr>
<tr>
<td>Mary Fran Hazinski</td>
<td>Vanderbilt University School of Nursing—Professor; AHA ECG Product Development—Senior Science Editor</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Loren F. Hiratzka</td>
<td>Cardiac Vascular and Thoracic Surgeons, Inc. (Cardio-thoracic and vascular surgical group) TriHealth, Inc</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Keith G. Lurie</td>
<td>Advanced Circulatory Systems Inc</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Inventor of the ResQPOD and may benefit from sales if device is discussed in article*</td>
<td>None</td>
</tr>
<tr>
<td>Laurie J. Morrison</td>
<td>Li Ka Shing Knowledge Institute, University of Toronto, Department of Medicine, Division of Emergency Services</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

Continued
Writing Group Disclosures, Continued

<table>
<thead>
<tr>
<th>Writing Group Member</th>
<th>Employment</th>
<th>Research Grant</th>
<th>Other Research Support</th>
<th>Speakers' Bureau/Honoraria</th>
<th>Expert Witness</th>
<th>Ownership Interest</th>
<th>Consultant/Advisory Board</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vincent N. Mosesso, Jr</td>
<td>University of Pittsburgh</td>
<td>PI for Autopulse Assisted Prehospital International Resuscitation Trial, subcontract from U of Washington to U of Pittsburgh, funded by Zoll Corporation†</td>
<td>Equipment loaned and supplies provided by 6 AED manufacturers for AED-related research*</td>
<td>Boston Scientific*</td>
<td>Expert witness for medical malpractice cases over the years, currently one case active, not related to CPR or cardiac arrest*</td>
<td>None</td>
<td>Medical director for Sudden Cardiac Arrest Association, nonprofit organization based in Washington, D.C†</td>
<td></td>
</tr>
<tr>
<td>Vinay Nadkarni</td>
<td>The Children’s Hospital, University of Pennsylvania</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Jerald Potts</td>
<td>American Heart Association</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Ricardo A. Samson</td>
<td>University of Arizona</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Michael R. Staye</td>
<td>Ohio State University</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Stephen M. Schexnayder</td>
<td>University of Arkansas for Medical Sciences</td>
<td>None</td>
<td>None</td>
<td>AstraZeneca*</td>
<td>Pediatric Clinics of North America*</td>
<td>Medical malpractice cases*</td>
<td>None</td>
<td>American Heart Association, Consultant*</td>
</tr>
</tbody>
</table>

This table represents the relationships of writing group members that may be perceived as actual or reasonably perceived conflicts of interest as reported on the Disclosure Questionnaire, which all members of the writing group are required to complete and submit. A relationship is considered to be “significant” if (a) the person receives $10,000 or more during any 12-month period, or 5% or more of the person’s gross income; or (b) the person owns 5% or more of the voting stock or share of the entity, or owns $10,000 or more of the fair market value of the entity. A relationship is considered to be “modest” if it is less than “significant” under the preceding definition.

*Significant.
†Significant.

Reviewer Disclosures

<table>
<thead>
<tr>
<th>Reviewer</th>
<th>Employment</th>
<th>Research Grant</th>
<th>Other Research Support</th>
<th>Speakers’ Bureau/Honoraria</th>
<th>Expert Witness</th>
<th>Ownership Interest</th>
<th>Consultant/Advisory Board</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ben J. Bobrow</td>
<td>Arizona Department of Health Services; Maricopa Medical Center</td>
<td>American Heart Association†; Medtronic†</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Dana Edelson</td>
<td>University of Chicago</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Comilla Sasson</td>
<td>University of Michigan</td>
<td>Robert Wood Johnson Foundation†</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

This table represents the relationships of reviewers that may be perceived as actual or reasonably perceived conflicts of interest as reported on the Disclosure Questionnaire, which all reviewers are required to complete and submit. A relationship is considered to be “Significant” if (a) the person receives $10,000 or more during any 12-month period, or 5% or more of the person’s gross income; or (b) the person owns 5% or more of the voting stock or share of the entity, or owns $10,000 or more of the fair market value of the entity. A relationship is considered to be “Modest” if it is less than “Significant” under the preceding definition.

*Significant.
†Significant.

References

Teenmark Survey 2003

Key Words: AHA Scientific Statements • cardiopulmonary resuscitation • defibrillation • heart arrest • resuscitation • schools
Importance and Implementation of Training in Cardiopulmonary Resuscitation and Automated External Defibrillation in Schools: A Science Advisory From the American Heart Association

Diana M. Cave, Tom P. Aufderheide, Jeff Beeson, Alison Ellison, Andrew Gregory, Mary Fran Hazinski, Loren F. Hiratzka, Keith G. Lurie, Laurie J. Morrison, Vincent N. Mosesso, Jr., Vinay Nadkarni, Jerald Potts, Ricardo A. Samson, Michael R. Sayre and Stephen M. Schexnayder

Circulation. 2011;123:691-706; originally published online January 10, 2011;
doi: 10.1161/CIR.0b013e31820b5328

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2011 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/123/6/691

Data Supplement (unedited) at:
http://circ.ahajournals.org/content/suppl/2011/01/07/CIR.0b013e31820b5328.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation_ is online at:
http://circ.ahajournals.org/subscriptions/