CYP2C19 Genotype and Proton Pump Inhibitors in Clopidogrel-Treated Patients
Does It Take Two to Tango?

Michelle L. O’Donoghue, MD, MPH

The debate continues regarding the existence of an adverse interaction between proton pump inhibitors (PPIs) and clopidogrel. Concerns for a drug-drug interaction first emerged when experimental pharmacodynamic data indicated that omeprazole might diminish the in vitro antiplatelet effects of clopidogrel.1,2 These concerns were escalated when retrospective data from 2 large observational studies demonstrated that use of a PPI was associated with an increased risk of cardiovascular events for patients treated with clopidogrel.3,4 In response to these findings, the US Food and Drug Administration updated the drug’s label to warn that the effectiveness of clopidogrel is reduced when administered in combination with omeprazole.5 However, these findings have since been disputed by a growing number of analyses from clinical trial populations that have failed to show an increased risk of adverse outcomes when PPIs are administered in combination with clopidogrel.6–8 Furthermore, the results of the only randomized clinical trial to address this issue demonstrated similar cardiovascular risk regardless of whether subjects were assigned to clopidogrel alone or in combination with omeprazole.9

In light of the accumulating evidence that suggests that PPIs can be administered safely in combination with clopidogrel, one may wonder why this continues to be a topic of heated debate. There are several valid reasons that support these theoretical concerns. Clopidogrel is a prodrug that requires hepatic biotransformation that involves 2 CYP2C19-dependent steps to form its active metabolite.10 In turn, PPIs variably inhibit CYP2C19 enzyme activity.11 As well, genetic polymorphisms that naturally confer reduced CYP2C19 enzyme activity are associated with an increased risk of cardiovascular events in clopidogrel-treated patients,12 thereby supporting the concept that the isoenzyme is an integral step in the metabolism of clopidogrel. Finally, studies have consistently demonstrated that some PPIs, in particular omeprazole, diminish the pharmacodynamic effects of clopidogrel.12,13 However, the evidence to suggest that changes in this surrogate end point carry clinical consequences remains conflicting.

In the current issue of Circulation, Simon and colleagues14 looked for evidence of a clinical interaction between PPIs and clopidogrel in 2744 subjects in the French Acute non–ST- or ST-elevation Myocardial Infarction (FAST-MI) Registry, a French registry of subjects after hospitalization for a myocar- dial infarction. After multivariable analysis, use of a PPI was not associated with an increased risk of cardiovascular events before hospital discharge (adjusted hazard ratio 0.90, 95% confidence interval 0.60 to 1.35) or at 1 year (adjusted hazard ratio 0.98, 95% confidence interval 0.90 to 1.08) in clopidogrel-treated patients. These findings were consistent when repeated in a propensity-matched cohort analysis. Of those subjects prescribed a PPI, more than two-thirds were taking omeprazole, which is believed to be one of the stronger inhibitors of the CYP2C19 enzyme. When individual types of PPIs were examined, the risk of 1-year cardiovascular outcomes was similar for subjects taking omeprazole compared with those not taking a PPI (1-year outcomes: adjusted hazard ratio 0.82, 95% confidence interval 0.54 to 1.24) on a background of clopidogrel.14

These new data support a growing number of recent publications that suggest that PPIs and clopidogrel can be coadministered without a clear increase in cardiovascular risk.2,6–9 Although omeprazole appears to attenuate some of the antiplatelet effects of clopidogrel, there is insufficient evidence to suggest that this in vitro finding translates into a higher risk of cardiovascular events. A diminished pharmacodynamic response to clopidogrel has been observed when coadministered with lipophilic statins and calcium channel blockers.15–17 However, concerns about a clinical drug-drug interaction with statins largely have been dismissed because subsequent outcome studies failed to demonstrate increased cardiovascular risk.18,19 These findings highlight the fact that observational analyses are subject to confounding and also raise concern about the use of in vitro platelet reactivity as a surrogate end point.

To that end, there is still much we need to learn to better understand the relationship between in vitro platelet reactivity and adverse clinical outcomes. It is plausible that the pharmacodynamic interaction between clopidogrel, PPIs, calcium channel blockers, or lipophilic statins is too weak to translate into cardiovascular harm. Another consideration is that the shape of the relationship between platelet reactivity and clinical outcomes is not linear; rather, there might exist a threshold effect such that platelet reactivity must be raised above a certain threshold before a patient is placed at

The opinions expressed in this article are not necessarily those of the editors or of the American Heart Association.

From the TIMI Study Group, Cardiovascular Division, Brigham and Women’s Hospital, Boston, MA.

Correspondence to Michelle L. O’Donoghue, MD, MPH, TIMI Study Group, Brigham and Women’s Hospital, 350 Longwood Ave, 1st Floor, Boston, MA 02115. E-mail modonoghue@partners.org

© 2011 American Heart Association, Inc.

Circulation is available at http://circ.ahajournals.org
DOI: 10.1161/CIRCULATIONAHA.110.006866
increased risk. In support of this hypothesis, it has been
reported that ischemic events appear to be most clustered
above a particular cut point in the upper tertile or quartile
of on-treatment platelet reactivity.20

Perhaps the most intriguing question to be addressed in
the present analysis is whether the pharmacodynamic interaction
between PPIs and clopidogrel might be clinically relevant
only to those individuals who carry a loss-of-function
CYP2C19 allele. To date, it remains unknown whether
CYP2C19 genotype and PPI use might have an additive
effect toward diminishing the antplatelet effects of clopi-
dogrel. In the present analysis, a DNA sample was available
in 1579 subjects (67%), and 446 (28%) of those subjects
carried at least 1 loss-of-function CYP2C19 allele. In
propensity-matched cohorts, PPI use was not associated with
an increased risk of either in-hospital (odds ratio 0.29, 95% confidence interval 0.06 to 1.44) or 1-year cardiovascular
events (odds ratio 0.68, 95% confidence interval 0.26 to 1.79) in carriers of a single loss-of-function CYP2C19 allele,
although the confidence intervals were relatively wide.14

These new data support our previously published findings
from the TRITON-TIMI 38 study (TRial to assess Improve-
ment in Therapeutic Outcomes by optimizing platelet inhibi-
tioN with prasugrel-Thrombolysis In Myocardial Infarction
38), which similarly demonstrated that PPI use was not
associated with an increased risk of adverse outcomes in
either wild-type carriers or carriers of a loss-of-function
CYP2C19 allele.7

Although the present study was underpowered to examine
whether a drug-drug interaction might exist in carriers of 2
loss-of-function CYP2C19 alleles, such an interaction is
unlikely to be clinically meaningful. Because the most
common loss-of-function alleles (*2 and *3) code for an
inactive form of the CYP2C19 isoenzyme, carriers of 2
loss-of-function alleles would be expected to have little or no
CYP2C19 enzyme activity at baseline. As such, it is unlikely
that PPI use could lead to further inhibition of the CYP2C19
enzyme to an extent that would be clinically meaningful.

A possible limitation to the present analysis is whether the
FAST-MI registry is an appropriate study population in
whom to examine outcomes for carriers of a single loss-of-
function CYP2C19 allele. Although several studies have
shown that carriers of a single loss-of-function CYP2C19
allele are at increased risk of adverse outcomes on clopi-
dogrel,12 these findings were not replicated in the present
study population. Rather, in FAST-MI, carriers of a single
loss-of-function allele had a trend toward a lower risk of
cardiovascular events than wild-type carriers, whereas those
who carried 2 copies of a loss-of-function allele had excess
risk.21 These findings are perhaps explained by a lower
incidence of percutaneous coronary intervention in the study
population, because the relative benefit of clopidogrel ap-
pears to be greater in patients in whom a coronary stent has
been implanted.22 Unfortunately, pharmacodynamic data are
not available to help us better understand whether carriers of
a single loss-of-function allele had higher or lower on-
treatment platelet reactivity than wild-type carriers.

Additional limitations to the present study merit consider-
ation. In particular, in the present study, use of a PPI was only
captured during the index hospitalization. Because patients
may have started or stopped a PPI during the year after
hospital discharge, the results could be biased toward the null.
Finally, as with all observational studies, there exists the risk
of residual confounding, because it is nearly impossible to
identify all variables that may influence the decision to treat
with a patient with a PPI.

Nevertheless, the present findings provide further support-
ive evidence to indicate that PPIs can be used safely in
patients taking clopidogrel. Although omeprazole might at-
tenuate some of the in vitro antplatelet effects of clopidogrel,
convincing evidence is currently lacking to indicate that this
combination places patients at increased risk of harm. Fur-
thermore, PPIs have been shown to decrease the risk of
gastrointestinal complications, including bleeding, for pa-
tients taking dual-antiplatelet therapy,9 and in turn, gastroin-
testinal bleeding is associated with an increased risk of
cardiovascular events.23 Until the relationship between plate-
let function assays and clinical outcomes is better delineated,
the weight of the evidence suggests that clopidogrel can be
administered safely in combination with a PPI for patients at
risk of gastrointestinal complications.2

Disclosures
Dr O’Donoghue reports receiving grant funding from GlaxoSmith-
Kline and Eisai, and has received honoraria for educational seminars
supported by Eli Lilly and Daiichi Sankyo.

References
Mansourati J, Mottier D, Abgrall JF, Boschat J. Influence of omeprazole
on the antiplatelet action of clopidogrel associated with aspirin: the
randomized, double-blind OCLA (Omeprazole Clopidogrel Aspirin)
2. Abraham NS, Hlatky MA, Antman EM, Bhatt DL, Bjorkman DJ, Clark
CB, Furberg CD, Johnson DA, Kahi CJ, Laine L, Mahaffey KW, Quigley
EM, Scheiman J, Spering LS, Tomasselli GF. ACCF/ACG/AHA 2010
expert consensus document on the concomitant use of proton pump
inhibitors and thienopyridines: a focused update of the ACCF/ACG/AHA
2010 Expert Consensus Document on Reducing the Gastrointestinal
Risks of Antiplatelet Therapy and NSAID Use. Circulation. 2010;122:
2619–2633.
3. Juurlink DN, Gomes T, Ko DT, Sznitko PE, Austin PC, Tu JV, Henry
DA, Kopp A, Mamdani MM. A population-based study of the drug
interaction between proton pump inhibitors and clopidogrel. CMAJ.
2009;180:713–718.
4. Ho PM, Maddox TM, Wang L, Fihn SD, Jesse RL, Peterson ED,
Rumsfeld JS. Risk of adverse outcomes associated with concomitant
use of clopidogrel and proton pump inhibitors following acute coronary
5. Food and Drug Administration. Information for healthcare professionals:
update to the labeling of clopidogrel bisulfate (marketed as Plavix) to alert
healthcare professionals about a drug interaction with omeprazole (marketed
fdagov/DrugsDrugSafetyPostmarketDrugSafetyInformationforPatientsand
6. Dunn SP, Macaulay TE, Brennan DM, Campbell CL, Charnigo RJ,
Smuth SS, Berger PB, Steinshlub SR, Topol EJ. Baseline proton pump
inhibitor use is associated with increased cardiovascular events with and
without the use of clopidogrel in the CREDO trial. Circulation. 2008;
7. O’Donoghue ML, Braunwald E, Antman EM, Murphy SA, Bates ER,
Rozenman Y, Michelson AD, Hautvast RW, Ver Lee PN, Close SL, Shen
L, Mega JL, Sabatine MS, Wiviott SD. Pharmacodynamic effect and
clinical efficacy of clopidogrel and prasugrel with or without a

Key Words: Editorials | clopidogrel | proton pump inhibitors | CYP2C19, human
CYP2C19 Genotype and Proton Pump Inhibitors in Clopidogrel-Treated Patients: Does It Take Two to Tango?
Michelle L. O'Donoghue

Circulation. 2011;123:468-470; originally published online January 24, 2011; doi: 10.1161/CIRCULATIONAHA.110.006866
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2011 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/123/5/468

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/