Pulmonary Vein Stenosis Due to a Compressive Malignant Tumor Detected by Transesophageal Echocardiography

Ihab Hamzeh, MD; Abdul Rashid, MD; Fidaa Shaib, MD; Buddhadeb Dawn, MD

A 72-year-old man presented to the emergency department with a history suggestive of a transient ischemic attack. On physical examination, he had bilateral expiratory rhonchi and no residual neurological deficit. A chest radiograph, obtained on admission, did not reveal any obvious lung mass or nodule. As part of the evaluation protocol, a transesophageal echocardiogram (TEE) was performed to rule out a possible cardioembolic etiology. The TEE showed normal left ventricular systolic function, mildly dilated right ventricle with moderately elevated right ventricular systolic pressure, and a patent foramen ovale with a right-to-left shunt (Figure 1A). With color Doppler interrogation, a high-velocity flow with aliasing was noted in the right upper pulmonary vein (RUPV) (Figure 1B). By continuous wave Doppler, the peak velocity was noted to be 227 cm/s with a mean gradient of 14 mm Hg (Figure 1C), indicating hemodynamically significant stenosis of RUPV. The Doppler waveform showed continuous forward flow in RUPV into the left atrium.

Figure 1. Representative TEE images showing a right-to-left shunt through the patent foramen ovale during saline contrast injection (A); a high-velocity flow with aliasing in RUPV by color Doppler (B); increased peak velocity and mean gradient and absence of flow reversal during atrial systole in RUPV by continuous wave Doppler (C); and normal waveforms in right lower (D), left lower (E), and left upper (F) PVs by pulsed Doppler interrogation. LA indicates left atrium; LLPV, left lower PV; LUPV, left upper PV; LV, left ventricle; RA, right atrium; RLPV, right lower PV; RUPV, right upper pulmonary vein; and RV, right ventricle.

From the Division of Cardiovascular Medicine (I.H., A.R.) and Division of Pulmonary, Critical Care, and Sleep Medicine (F.S.), University of Louisville, Louisville, KY, and Division of Cardiovascular Diseases and Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City (B.D.).

(Circulation. 2011;123:349-350.)
© 2011 American Heart Association, Inc.
Circulation is available at http://circ.ahajournals.org

DOI: 10.1161/CIRCULATIONAHA.110.958082
left atrium throughout the cardiac cycle, including atrial systole. The other 3 pulmonary veins (PVs) showed normal velocities (Figure 1D to 1F). Further TEE evaluation of adjoining structures suggested compression of RUPV by an extracardiac mass (Figure 2A). A computed tomographic scan of the chest was subsequently obtained, which showed a right-sided mediastinal tumor compressing the RUPV (Figure 2B). A transbronchial biopsy followed by histological examination confirmed the diagnosis of small cell carcinoma. The patient was referred to the oncology service for further management.

A peak velocity >100 cm/s indicates PV stenosis.1 Hemodynamically significant PV stenosis is often associated with the loss of flow reversal during atrial systole.2 The common causes of PV stenosis include compression by tumor and narrowing after PV isolation. The increased right ventricular pressure resulting from PV hypertension may lead to a right-to-left shunt through the patent foramen ovale, which predisposes to paradoxical embolism. Our findings underscore the importance of routinely examining PV flow velocities during all clinically indicated TEE procedures.

Disclosures

None.

References

Pulmonary Vein Stenosis Due to a Compressive Malignant Tumor Detected by Transesophageal Echocardiography
Ihab Hamzeh, Abdul Rashid, Fidaa Shaib and Buddhadeb Dawn

Circulation. 2011;123:349-350
doi: 10.1161/CIRCULATIONAHA.110.958082
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2011 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/123/3/349

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/