Randomized Clinical Trial of Aspirin and Simvastatin for Pulmonary Arterial Hypertension

ASA-STAT

Steven M. Kawut, MD, MS; Emilia Bagiella, PhD; David J. Lederer, MD, MS; Daichi Shimbo, MD; Evelyn M. Horn, MD; Kari E. Roberts, MD; Nicholas S. Hill, MD; R. Graham Barr, MD, DrPH; Erika B. Rosenzweig, MD; Wendy Post, MD, MS; Russell P. Tracy, PhD; Harold I. Palevsky, MD; Paul M. Hassoun, MD; Reda E. Girgis, MB, BCh on behalf of the ASA-STAT Study Group

Background—Pulmonary arterial hypertension (PAH) is a progressive disease that causes exercise limitation, heart failure, and death. We aimed to determine the safety and efficacy of aspirin and simvastatin in PAH.

Methods and Results—We performed a randomized, double-blind, placebo-controlled 2×2 factorial clinical trial of aspirin and simvastatin in patients with PAH receiving background therapy at 4 centers. A total of 92 patients with PAH were to be randomized to aspirin 81 mg or matching placebo and simvastatin 40 mg or matching placebo. The primary outcome was 6-minute walk distance at 6 months. Sixty-five subjects had been randomized when the trial was terminated by the Data Safety and Monitoring Board after an interim analysis showed futility in reaching the primary end point for simvastatin. After adjustment for baseline 6-minute walk distance, there was no significant difference in the 6-minute walk distance at 6 months between aspirin (n=32) and placebo (n=33; placebo-corrected difference −0.5 m, 95% confidence interval −28.4 to 27.4 m; P=0.97) or between simvastatin (n=32) and placebo (n=33; placebo-corrected difference −27.6 m, 95% confidence interval −59.6 to 4.3 m; P=0.09).

There tended to be more major bleeding episodes with aspirin than with placebo (4 events versus 1 event, respectively; P=0.17).

Conclusions—Neither aspirin nor simvastatin had a significant effect on the 6-minute walk distance, although patients randomized to simvastatin tended to have a lower 6-minute walk distance at 6 months. These results do not support the routine treatment of patients with PAH with these medications.

Clinical Trial Registration—URL: http://www.clinicaltrials.gov. Unique identifier: NCT00384865.
(Circulation. 2011;123:2985-2993.)

Key Words: hypertension, pulmonary ■ clinical trial ■ antiplatelet agents ■ endothelial dysfunction ■ statins

Pulmonary arterial hypertension (PAH) includes idiopathic and heritable forms, as well as PAH associated with connective tissue disease, portal hypertension, anorexigen use, HIV infection, congenital systemic-to-pulmonary shunts, and other conditions. In PAH, the small muscular pulmonary arteries show endothelial proliferation and smooth muscle hypertrophy, in situ thrombosis, and plexiform lesions. Right ventricular failure ensues, which leads to exercise limitation and death.

Editorial see p 2919
Clinical Perspective on p 2993

Reduced prostacyclin (PGI₂) production, elevated endothelin-1 levels, and deficits in nitric oxide are seen in PAH and have guided therapeutic development. Platelet activation, endothelial nitric oxide synthase dysfunction, oxidative stress, and inflammation are also present, but these mechanisms have not been targeted specifically. Activated platelets produce thromboxane (Tx) A₂, which causes platelet aggregation, vasoconstriction, and vascular smooth muscle hypertrophy. Patients with PAH have increased TxA₂ (and TxB₂) production and decreased PGI₂ production which result in an increased Tx-PGI₂ ratio, even with treatment.¹⁻⁵ Clinical trials of intravenous epoprostenol⁶ and other PGI₂ analogues that are efficacious in PAH⁷⁻⁹ were predicated on the inference that low endogenous PGI₂ (and increased Tx-PGI₂ ratio) is detrimental in PAH. Investigators have

Continuing medical education (CME) credit is available for this article. Go to http://cme.ahajournals.org to take the quiz.

Received December 22, 2010; accepted April 12, 2011.
From the Penn Cardiovascular Institute (S.M.K., H.L.P.), Department of Medicine (S.M.K., H.L.P.), and the Center for Clinical Epidemiology and Biostatistics (S.M.K.), University of Pennsylvania School of Medicine, Philadelphia, PA; Departments of Biostatistics (E.B.) and Epidemiology (R.G.B.), Joseph L. Mailman School of Public Health, and Departments of Medicine (D.J.L., D.S., R.G.B.) and Pediatrics (E.B.R.), College of Physicians and Surgeons, Columbia University, New York City, NY; Department of Medicine, Weill-Cornell Medical School, New York City, NY (E.M.H.); Department of Medicine, Tufts Medical Center, Boston, MA (K.E.R., N.S.H.); Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD (W.P., P.M.H., R.E.G.); and Department of Laboratory Medicine, University of Vermont School of Medicine, Burlington, VT (R.P.T.).
The online-only Data Supplement is available with this article at http://circ.ahajournals.org/cgi/content/full/CIRCULATIONAHA.110.015693/DC1.
Correspondence to Steven M. Kawut, MD, MS, 718 Blockley Hall, 423 Guardian Dr, Philadelphia, PA 19104. E-mail kawut@upenn.edu
© 2011 American Heart Association, Inc.

Circulation is available at http://circ.ahajournals.org

DOI: 10.1161/CIRCULATIONAHA.110.015693
visualized circulating platelet aggregates in the blood of patients with PAH.10 and increased platelet aggregation is associated with more severe PAH.11 Soluble P-selectin is elevated in patients with PAH, and platelet-released CD40 ligand increases across the pulmonary vascular bed, which suggest transmural pulmonary platelet activation.12,13 Thrombocytopenia due to platelet trapping in the lungs occurs during PAH crises14,15 and is associated with worse hemodynamics.16 Aspirin lowers the Tx-PGI2 ratio in PAH (even in patients chronically treated with PGI2 analogues or other medications) and inhibits platelet activity,2 thereby offering a potential therapeutic approach. A recent study showed that aspirin decreased pulmonary artery pressure, reduced right ventricular hypertrophy, and improved survival in the monocrotaline animal model of pulmonary hypertension.17

Reductions in nitric oxide production and endothelial nitric oxide synthase activity and increases in oxidative stress contribute to endothelial dysfunction in patients with PAH.18,19 Statins inhibit proliferation, induce apoptosis, and cause vasorelaxation in vascular smooth muscle cells, enhance expression and activity of endothelial nitric oxide synthase in endothelium, and reduce oxidative stress and inflammation.20–24 Several studies have demonstrated the efficacy of statins in animal models of pulmonary hypertension.25–32 Uncontrolled human studies of simvastatin have suggested benefit in patients with PAH.33,34 One recently published randomized clinical trial (RCT) showed that simvastatin decreased right ventricular mass and plasma N-terminal probrain natriuretic peptide (NT-proBNP), but had no effect on 6-minute walk distance (6MWD) in patients with PAH.35

Aspirin and simvastatin have potential for the treatment of PAH by targeting platelet activation and endothelial dysfunction. We aimed to show the feasibility of studying these therapies and to obtain estimates of efficacy and safety in a phase II RCT. We hypothesized that the 6MWD at 6 months would be greater in subjects with PAH assigned to aspirin or simvastatin than to the respective placebo after adjustment for baseline 6MWD.

Methods

Study Design

ASA-STAT was a 4-center, randomized, double-blind, placebo-controlled 2×2 factorial study to determine the efficacy and safety of aspirin and simvastatin in patients with PAH. Details of the methods have been published elsewhere36 (see the online-only Data Supplement). The initial protocol called for the recruitment of 128 subjects (25 in each of the 4 randomized groups, 50 in each active and placebo group) assigned in a 1:1:1:1 ratio by a Web-based computerized system to enteric coated aspirin 81 mg (Tiny Tablets, Bayer HealthCare LLC, Morristown, NJ) once daily/simvastatin 40 mg (Zocor, Merck & Co, Whitehouse Station, NJ), aspirin 81 mg once daily/simvastatin placebo once daily, aspirin placebo once daily/simvastatin 40 mg once daily, or aspirin placebo once daily/simvastatin placebo once daily. The randomization scheme was random permuted block, stratified by type of PAH (idiopathic/hereditary versus other) and center. All subjects and study personnel (other than the Data Coordinating Center Chair and research pharmacy) were masked to treatment assignment and were not unmasked until the study was completed. Subjects were evaluated at baseline, 6 weeks, 3 months, and 6 months.36

The primary outcome was 6MWD at 6 months after randomization after adjustment for baseline 6MWD. Secondary outcomes included 6MWD, measures of platelet activation (serum TxB2, plasma β-thromboglobulin, and soluble P-selectin levels) and endothelial function (brachial artery flow-mediated dilation and plasma von Willebrand factor levels), NT-proBNP levels, C-reactive protein levels, oxidized low-density lipoprotein (LDL) levels, World Health Organization functional class, Borg dyspnea score, and Short Form-36 (SF-36) scores at 6 weeks, 3 months, and 6 months after randomization. We assessed time to clinical worsening (defined by the addition of new PAH therapies or dose increases in previously stable PAH therapy, hospitalization for right-sided heart failure, lung transplantation, atrial septostomy, and cardiovascular and all-cause death). End-point and bleeding definitions and details of end-point assessments are provided in the online-only Data Supplement and in Kawut et al.36

Study Monitoring

Details of study monitoring are provided in the online-only Data Supplement and in Kawut et al.36 The enrollment period lasted from January 2007 to September 2009. In July 2009, the DSMB requested a conditional power calculation by the Data Coordinating Center using the subjects enrolled to that point. This showed that the trial had a 4.9% chance of detecting a statistically significantly higher 6MWD for simvastatin than for placebo. The DSMB determined that continuing the study with only the aspirin-versus-placebo comparison would lead to a study with low scientific credibility, and they recommended study termination. The DSMB recommended that subjects currently active in the trial at that time (n=16) should discontinue receiving all study drugs and should not be followed up or undergo any additional study procedures. The DSMB reported that there were no significant safety concerns related to the recommendation for termination. The National Heart, Lung, and Blood Institute accepted these recommendations, and active subjects stopped taking study medications and did not return to the field centers or have telephone follow-up after September 25, 2009.

Statistical Analysis

The primary end point of the trial was 6MWD at 6 months after randomization, after adjustment for baseline 6MWD. Preliminary data suggested that a difference of ≥50 m in 6MWD was associated with an improvement in symptoms and survival. A total of 100 subjects (25 in each of the 4 randomized groups, 50 in each active drug and placebo group) was necessary to detect a difference of 57 m with 80% power, with the assumption of no significant interaction between study drugs and without adjustment for baseline 6MWD. With a significant interaction between study medications, we had 80% power to detect a difference of 80 m. Anticipating 20% attrition, we initially planned for the enrollment of 128 subjects. In May 2009, the DSMB requested revised sample size calculations (online-only Data Supplement). The revised sample size of 92 was approved by the DSMB and National Heart, Lung, and Blood Institute on June 4, 2009.
The primary analysis proceeded according to the intention-to-treat principle. Hypothesis testing for the primary and secondary endpoints was conducted with 2-sided \(\alpha = 0.05 \). There was no observed clinically relevant statistical interaction between the study medications (see protocol in the online-only Data Supplement and in Kawut et al.\(^36\)) so all analyses proceeded at the margins by comparing patients assigned to aspirin with those who were assigned to aspirin placebo, and by comparing those assigned to simvastatin with those who were assigned to simvastatin placebo.

Continuous variables are presented as mean ± SD or median (interquartile range) and categorical variables as \(n \) (%). Skewed variables were natural log transformed before analysis. The analysis of the primary end point compared the absolute 6MWD at 6-month follow-up between active-therapy and placebo groups with adjustment for baseline 6MWD by use of linear regression models. Multiple imputation was performed for subjects without a 6-month 6MWD in the primary analysis (see online-only Data Supplement for details). Secondary analyses incorporated all of the available endpoint assessments (6 weeks, 3 months, and 6 months) without imputation in linear mixed-effects models with adjustment for baseline values. There were no interim analyses or stopping rules planned a priori for the trial. Other analyses are described in the online-only Data Supplement and in Kawut et al.\(^36\).

Results

We screened 712 PAH patients during the enrollment period from January 2007 to September 25, 2009. Of the adjusted target sample of 92, 65 were randomized, and 49 had completed the 6-month assessment at study termination (3 died, 1 withdrew consent, and 12 were active in the trial and had not yet had their 6-month study visits; Figure 1). One subject completed the study, but was unable to perform the walk at the 6-month assessment. At study termination, 59 of the 65 randomized subjects had undergone at least 1 outcome assessment.

The mean age of the participants was 50.5 ± 13.9 years, and 56 (86.1%) were women. Thirty-nine (60.0%) were non-Hispanic white, 9 (13.9%) were Hispanic, 13 (20.0%) were black, and 3 (4.6%) were Asian. Thirty-three (51.6%) had idiopathic PAH, 3 (4.7%) had heritable PAH, 12 (18.8%) had PAH associated with systemic sclerosis, 9 (15.3%) had PAH associated with other connective tissue diseases, and 6 (9.2%) had congenital systemic-to-pulmonary shunts. Those enrolled were somewhat younger, but similar in terms of sex and race, than those screened and not enrolled (Table II, online-only Data Supplement).

Aspirin Versus Placebo

Thirty-two subjects were randomized to aspirin, and 33 were randomized to placebo (Table 1). The 2 groups were similar in terms of demographics. Subjects randomized to aspirin had a somewhat higher prevalence of idiopathic/heritable PAH than other forms, more frequent use of sildenafil, somewhat lower World Health Organization functional class, and somewhat higher baseline 6MWD. Combination therapy was
common, and most patients were treated with warfarin. Six subjects discontinued the aspirin study drug (2 aspirin, 4 placebo; Figure 1). One participant was started on nonstudy aspirin after she was diagnosed with coronary artery disease. One patient stopped taking the aspirin study drug because of epigastric pain, 1 had a decrease in hemoglobin without clinical bleeding, 1 had a new gastric ulcer with bleeding, 1 had light-headedness, and 1 stopped without providing a reason. Compliance with the study drug was 95%.

There was no difference in 6MWD between aspirin and placebo groups at 6 months after adjustment for baseline 6MWD (least squares means: 438.0 m, 95% confidence interval [CI] 415.9 to 460.1 m versus 438.5 m, 95% CI 419.2 to 457.8 m, respectively; \(P=0.97; n=65 \)). The placebo-corrected difference in 6MWD at 6 months was \(-0.5 \) m (95% CI \(-28.4 \) to 27.4 m). Median postwalk Borg dyspnea scores at 6 months were similar between the groups (aspirin 3 [interquartile range 2 to 4] versus placebo 3 [interquartile range 2 to 4], \(P=0.39 \)). Analyses that included the 6MWD from all postrandomization visits without imputation after adjustment for baseline showed similar results (Figure 2A).

Aspirin reduced serum TxB2 levels by 93% compared with placebo (Figure 2B), which suggests that the study drug had the expected effect on eicosanoid metabolism. However, there were no differences in soluble P-selectin, \(-\)thromboglobulin, or NT-proBNP levels between the groups (Figure I A-C, online-only Data Supplement). There were no differences in any scales of the SF-36 (Table III, online-only Data Supplement) or in World Health Organization functional class (data not shown). All clinical worsening events are shown in Table IV in the online-only Data Supplement. Subjects receiving aspirin had 2 clinical worsening events and subjects receiving placebo had 6 (\(P=0.19 \)). There was no difference in time to clinical worsening between the groups (\(P=0.35 \); Figure II, online-only Data Supplement).

We performed prespecified subset analyses in patients with baseline 6MWD <450 m (\(n=32 \)); there were no differences in the results from the full sample (data not shown). In

Table 1. Baseline Characteristics of Subjects Randomized to Aspirin and Placebo

<table>
<thead>
<tr>
<th></th>
<th>Placebo ((n=33))</th>
<th>Aspirin ((n=32))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y</td>
<td>51.7 ± 13.0</td>
<td>49.2 ± 14.7</td>
</tr>
<tr>
<td>Female sex</td>
<td>30 (90.9)</td>
<td>26 (81.2)</td>
</tr>
<tr>
<td>Body mass index, kg/m²</td>
<td>28.6 ± 7.8</td>
<td>27.4 ± 6.2</td>
</tr>
<tr>
<td>Race/ethnicity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White (Non-Hispanic)</td>
<td>17 (51.5)</td>
<td>22 (68.8)</td>
</tr>
<tr>
<td>Hispanic or Latino</td>
<td>6 (18.2)</td>
<td>3 (9.4)</td>
</tr>
<tr>
<td>Black</td>
<td>8 (24.2)</td>
<td>5 (15.6)</td>
</tr>
<tr>
<td>Asian</td>
<td>2 (6.1)</td>
<td>1 (3.1)</td>
</tr>
<tr>
<td>Other</td>
<td>0</td>
<td>1 (3.1)</td>
</tr>
<tr>
<td>PAH diagnosis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idiopathic</td>
<td>14 (42.4)</td>
<td>19 (61.3)</td>
</tr>
<tr>
<td>Heritable</td>
<td>2 (6.1)</td>
<td>1 (6.2)</td>
</tr>
<tr>
<td>Congenital systemic-to-pulmonary shunt</td>
<td>4 (12.1)</td>
<td>2 (6.3)</td>
</tr>
<tr>
<td>Systemic sclerosis</td>
<td>8 (24.2)</td>
<td>4 (12.9)</td>
</tr>
<tr>
<td>Other connective tissue disease</td>
<td>5 (15.1)</td>
<td>4 (12.5)</td>
</tr>
<tr>
<td>Drugs/Toxins</td>
<td>0</td>
<td>2 (6.5)</td>
</tr>
<tr>
<td>Right ventricular systolic pressure by echocardiography, mm Hg ((n=57))</td>
<td>69.5 (53–91)</td>
<td>70.0 (56–87)</td>
</tr>
<tr>
<td>Concomitant medications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambrisentan</td>
<td>8 (24.2)</td>
<td>10 (31.3)</td>
</tr>
<tr>
<td>Bosentan</td>
<td>12 (36.4)</td>
<td>6 (18.8)</td>
</tr>
<tr>
<td>Epoprostenol</td>
<td>8 (24.2)</td>
<td>7 (21.9)</td>
</tr>
<tr>
<td>Iloprost (inhaled)</td>
<td>4 (12.1)</td>
<td>5 (15.6)</td>
</tr>
<tr>
<td>Sildenafil</td>
<td>16 (48.5)</td>
<td>26 (81.3)</td>
</tr>
<tr>
<td>Treprostinil (intravenous)</td>
<td>3 (9.1)</td>
<td>2 (6.3)</td>
</tr>
<tr>
<td>Combination therapy</td>
<td>17 (51.5)</td>
<td>23 (71.9)</td>
</tr>
<tr>
<td>Warfarin</td>
<td>28 (84.8)</td>
<td>23 (71.9)</td>
</tr>
</tbody>
</table>

WHO functional classification |

<table>
<thead>
<tr>
<th></th>
<th>Placebo ((n=33))</th>
<th>Aspirin ((n=32))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class I</td>
<td>4 (12.1)</td>
<td>1 (3.1)</td>
</tr>
<tr>
<td>Class II</td>
<td>17 (51.5)</td>
<td>24 (75)</td>
</tr>
<tr>
<td>Class III</td>
<td>12 (36.4)</td>
<td>7 (21.9)</td>
</tr>
</tbody>
</table>

Six-minute walk distance, m |

<table>
<thead>
<tr>
<th></th>
<th>Placebo ((n=33))</th>
<th>Aspirin ((n=32))</th>
</tr>
</thead>
<tbody>
<tr>
<td>418.3 ± 131.7</td>
<td>447.3 ± 96.1</td>
<td></td>
</tr>
</tbody>
</table>

Posttest Borg dyspnea score |

<table>
<thead>
<tr>
<th></th>
<th>Placebo ((n=33))</th>
<th>Aspirin ((n=32))</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 (2–3)</td>
<td>3 (2–3)</td>
<td></td>
</tr>
</tbody>
</table>

PAH indicates pulmonary arterial hypertension; WHO, World Health Organization.

Data are shown as mean ± SD, median (interquartile range), or \(n \) (%).

Figure 2. A, Six-minute walk distance for aspirin and placebo (error bars are 95% confidence intervals). B, Serum logarithmic (ln) thromboxane B₂ levels for aspirin and placebo. Probability values are from linear mixed-effects models.
patients with idiopathic or heritable PAH, we found that aspirin may have lowered soluble P-selectin levels ($P=0.07$) but did not have an impact on the 6MWD (Figure III, online-only Data Supplement). Other results were similar to those from the main analysis (data not shown).

Adverse events in the aspirin and placebo groups are shown in Table 2. There were no differences in the numbers of minor bleeding episodes ($P=0.87$) between the groups, but there may have been an increase in major bleeding episodes in subjects treated with aspirin ($P=0.17$). There were no differences in safety laboratory results between the groups (data not shown).

Simvastatin Versus Placebo

Thirty-two subjects were randomized to simvastatin and 33 to placebo (Table 3). The 2 groups were similar in terms of demographics and type of PAH. Patients randomized to simvastatin had somewhat higher right ventricular systolic pressure by transthoracic echocardiography, but World Health Organization functional class and 6MWD at baseline were similar between the groups. More than 60% of both groups were treated with sildenafil either as monotherapy or in combination therapy. Five subjects discontinued the simvastatin study drug (2 simvastatin, 3 placebo; Figure 1). One participant was diagnosed with coronary artery disease, and pravastatin was prescribed. Two patients discontinued the study drug for myalgias, 1 for headaches, and 1 without providing a reason. Compliance with the study drug was >95%.

There was no difference in 6MWD between simvastatin and placebo groups at 6 months after adjustment for baseline 6MWD (least squares means 425.0 m, 95% CI 400.2 to 449.9 m versus 452.7 m, 95% CI 431.9 to 473.4 m, respectively; $P=0.09$; $n=65$), with a placebo-corrected difference in 6MWD of -27.6 m (95% CI -59.6 to 4.3 m), which indicates that simvastatin may have reduced the 6MWD. Additionally, median postwalk Borg dyspnea scores at 6 months tended to be higher in the subjects assigned to simvastatin, which suggests greater breathlessness (simvastatin 3 [interquartile range 2 to 4] versus placebo 3 [interquartile range 2 to 4]; $P=0.07$). Analyses that included the 6MWD from all postrandomization visits without imputation after adjustment for baseline 6MWD were also consistent with lower 6MWD in the group randomized to simvastatin (Figure 3A).

Simvastatin significantly decreased total cholesterol, LDL, and oxidized LDL levels (Figures 3B–D) compared with placebo but did not affect triglycerides or high-density lipoprotein levels (Figures 3A–B, online-only Data Supplement), consistent with the expected effects. However, there were no differences in levels of von Willebrand factor, C-reactive protein, or NT-proBNP or in flow-mediated dilation between the groups (Figures V A–D, online-only Data Supplement). Other results were similar to those from the main analysis (data not shown).
Supplement). There were no differences in any scales of the SF-36 (Table V, online-only Data Supplement) or in World Health Organization functional class (data not shown).

All clinical worsening events are shown in Table VI in the online-only Data Supplement. Subjects receiving simvastatin and subjects receiving placebo each had 4 events ($P=0.33$). There was no difference in time to clinical worsening between the groups ($P=0.80$; Figure VI, online-only Data Supplement).

We performed prespecified subset analyses in patients with baseline 6MWD <450 m ($n=32$); there were no differences in the results from the full sample (data not shown). In patients with idiopathic or heritable PAH, we found that simvastatin did not have an impact on the 6MWD (Figure VII, online-only Data Supplement). Other results were similar to those from the main analysis (data not shown).

Adverse events in the simvastatin and simvastatin placebo groups are shown in Table 4. There was no difference in adverse events between the groups. There were no differences in safety laboratory results between the groups (data not shown).

Discussion

This is the first RCT of traditional cardiovascular disease therapies targeting platelet and endothelial function and the first National Institutes of Health–funded RCT in patients with PAH. Neither aspirin nor simvastatin had a significant effect on the primary end point of 6MWD at 6 months. If anything, 6MWD may have decreased, and postwalk Borg dyspnea scores increased, with simvastatin. Although aspirin lowered serum TxB2 levels, other traditional markers of platelet activation such as soluble P-selectin levels (except possibly in idiopathic/heritable PAH) and β-thromboglobulin were not altered. There was a possible increased risk of major bleeding associated with aspirin use. Although simvastatin lowered total cholesterol and LDL levels, there was no effect

![Figure 3](http://circ.ahajournals.org/)

Figure 3. A. Six-minute walk distance for simvastatin and placebo (error bars are 95% confidence intervals). B. Serum total cholesterol levels for simvastatin and placebo. C. Serum low-density lipoprotein (LDL) levels for simvastatin and placebo. D. Plasma oxidized LDL levels for simvastatin and placebo. Probability values are from linear mixed-effects models.

| Table 4. Frequency of Adverse Events of Subjects Randomized to Simvastatin and Placebo |
|---|----------------|
| Placebo ($n=33$) | Simvastatin ($n=32$) |
| Bleeding | 13 (39.4) | 14 (43.8) |
| Upper respiratory infection | 9 (27.3) | 12 (37.5) |
| Bruising | 6 (18.2) | 10 (31.3) |
| Myalgia | 5 (15.2) | 3 (9.4) |
| Headache | 3 (9.1) | 5 (15.6) |
| Other infections | 4 (12.1) | 4 (12.5) |
| Diarrhea | 4 (12.1) | 3 (9.4) |
| Dyspnea | 3 (9.1) | 3 (9.4) |
| Rash | 2 (6.1) | 4 (12.5) |
| Arthralgia | 2 (6.1) | 4 (12.5) |
| Chest pain | 3 (9.1) | 1 (3.1) |
| Increased transaminases | 2 (6.1) | 2 (6.3) |
| Insomnia | 2 (6.1) | 1 (3.1) |

Data are shown as n (%).
on other vascular or plasma markers of endothelial dysfunction or injury (flow-mediated dilation and von Willebrand factor) or C-reactive protein. Simvastatin significantly lowered oxidized LDL levels, which reflect oxidative stress. Neither aspirin nor simvastatin affected NT-proBNP levels. The effects of aspirin and simvastatin on serum TXB2 and lipid levels, respectively, provided evidence that subjects were compliant with the study medication and that the medications had their traditional effects in patients with PAH. Early termination of the trial because of futility in detecting a positive effect of simvastatin on the 6MWD limited the power of some analyses; however, none of the point estimates for the end points suggested a benefit, and the precision of the estimates of 6MWD was good, which makes it less likely that low power accounted for the results.

Aspirin reduced production of TX both in the present study and in our previous study in idiopathic PAH, in which platelet aggregation was also significantly inhibited by low-dose aspirin. Because the TX-PGI2 ratio is elevated in PAH and platelet aggregation is thought to contribute to disease pathogenesis, it was hypothesized that platelet inhibition with aspirin would translate to clinical benefit in terms of exercise capacity. Although aspirin suppressed production of TXB2 by >90%, there was no effect on 6MWD, NT-proBNP, or quality of life. This suggests that platelet TX production does not contribute significantly to disease manifestations in PAH. One previous trial of a TX synthase inhibitor was performed in PAH,37 but it was terminated prematurely because of an excess of side effects (leg pain) and it did not show a clinical benefit.

Although aspirin did lower serum TXB2, the effect was somewhat less than the 97% to 99% TXB2 suppression usually seen with aspirin.38 This suggests either aspirin resistance or another source of TX unaffected by low-dose aspirin (eg, vascular endothelium). The lack of change of β-thromboglobulin levels and the borderline reductions in soluble P-selectin levels are also consistent with aspirin resistance. Ongoing vascular injury could also account for the smaller impact of aspirin on soluble P-selectin levels than seen in healthy individuals.

There were no differences in health-related quality of life with aspirin. There tended to be fewer clinical worsening events in the aspirin group, but there was also a somewhat higher incidence of major bleeding events. We were unable to assess the interaction of aspirin with warfarin because of the small number of events.

Simvastatin has a significant effect on pulmonary vascular disease and right ventricular changes in a variety of animal models. We have shown that statins have an impact on pulmonary hypertension and vascular remodeling in the chronically hypoxic rat model.25,31,39 Other studies have reproduced these findings in the monocrotaline animal model, but not universally.26,40,41 There have been 2 previous small RCTs of statins in patients with PAH. One studied the effect of rosuvastatin in patients with PAH that was idiopathic or associated with congenital heart disease.42 There were no statin-associated differences in 6MWD or other biomarkers. Wilkins et al35 performed a placebo-controlled, double-blind RCT of simvastatin in 43 patients with PAH that was idiopathic, heritable, or associated with atrial septal defect or connective tissue disease. Simvastatin significantly reduced right ventricular mass and plasma NT-proBNP at 6 months, changes that were not maintained at 1 year. Notably, there was no effect of simvastatin on 6MWD, other right ventricular parameters, quality of life, or other biomarkers.

In the present study, simvastatin did not improve 6MWD, biomarkers of endothelial dysfunction and injury, or quality of life. If anything, there were trends toward decreased 6MWD and more dyspnea in patients randomized to simvastatin. These results suggest that simvastatin is not effective as add-on therapy in PAH. Systemic side effects, such as myalgia and arthralgia, could have had an impact on the measured response to the study medication; however, an increasing Borg dyspnea score after the 6-minute walk suggested respiratory limitation.

Studying PAH patients receiving background therapy makes it more difficult to conduct trials of new therapies focused on clinically meaningful end points within a reasonable period of time. Because patients in clinical trials must receive the standard of care, this is the only ethically justifiable approach to intermediate or long-term placebo-controlled trials in the era of available effective therapy.

The present study has several limitations. The primary end point that should be used in early-stage clinical trials in PAH is uncertain. We chose the 6MWD because it is the one by which all PAH therapies have been approved; an effective treatment should show some signal in terms of this measure. Available therapies for PAH that increase the 6MWD often improve long-term clinical outcomes, although 6MWD has not been validated as a surrogate end point.43 However, it remains possible that the active treatment had some favorable effect that went undetected. The development and validation of surrogate end points that change over a short period of time and reliably predict clinically meaningful outcomes is an unmet need in the field.

We did not include invasive hemodynamic end points. Measurement of pulmonary hemodynamics as a secondary outcome would have been of interest, but for pragmatic reasons, it could not be done. The requirement for multiple right-sided heart catheterizations on otherwise stable, treated patients would have rendered the recruitment much more difficult and the study much more expensive, making the trial infeasible. Although there is no specific biomarker readout for pulmonary vascular function, the absence of any effect of the study drugs on NT-proBNP suggests that there was no impact on hemodynamics. Whether either agent had other long-term benefits beyond 6 months was not assessed.

The present study was terminated because of a high likelihood of not rejecting the null hypothesis for the simvastatin arm even if fully recruited. Subjects were not followed up or reassessed after study termination, which led to missing data for those active subjects in the trial at termination (n=16). These missing data may have introduced bias, even though such data should be missing completely at random. The results and conclusions were similar whether we multiply imputed missing data or performed analyses with only the available data, which makes significant bias less likely. Although even effective drugs may have a reduced impact in
the setting of background therapy in PAH, simvastatin was associated with a decrease in 6MWD, and there was essentially no change in 6MWD with aspirin, which makes inadequate power an unlikely explanation for the present results. Results from the subgroup with idiopathic PAH and heritable PAH did not differ from those of the main study; other disease subgroups were not large enough for meaningful analyses.

In summary, we have shown that, although simvastatin 40 mg each day lowered total cholesterol, LDL, and oxidized LDL, there was no effect on 6MWD or biomarkers of endothelial dysfunction or injury in PAH. Similarly, although aspirin 81 mg each day reduced TxB2 production and may have lowered soluble P-selectin levels (in idiopathic or heritable PAH), there was no effect on 6MWD, and it possibly increased the risk of major bleeding. On the basis of these findings, neither drug can be recommended for the treatment of PAH. These drugs should be used according to usual indications in PAH.

Acknowledgments

We thank the following individuals for their assistance: Jude Aidam, MB, ChB, MPH; Rebekah Boyle, MS; Elaine Cornell; Nadine Al-Naamani, MD; Jeffrey Okun, MD; Kwabena Osei, MD; Diane Pinder, BS; Debbie Rybak, BS; and Karen Visnaw, RN.

Sources of Funding

This study was funded by National Institutes of Health grant R01 HL082895 and HL082895-S1. This publication was made possible by grants U1L RR25005, U1L RR25752, U1L RR24156, and U1L RR24134 from the National Center for Research Resources and the National Institutes of Health Roadmap for Medical Research. Aspirin and matching placebo were provided free of charge by Bayer HealthCare LLC. This study was supported in part by a research grant (in the form of simvastatin and matching placebo) from the Investigator-Initiated Studies Program of Merck & Co, Inc. The opinions expressed in this article are those of the authors and do not necessarily represent those of Bayer HealthCare LLC, Merck & Co, Inc, or the National Institutes of Health.

Disclosures

Dr Kawut has consulted for Bayer, Gilead, Novartis, and Merck; served on grant review boards for Gilead and Pfizer; received fees from Gilead and Actelion for nonpromotional lectures; received support for a CME conference from Actelion, Gilead, United Therapeutics, Lung Rx, and Pfizer; and received funding for contracted research from Actelion, Gilead, and Pfizer. Dr Lederer has served on advisory boards for Gilead and has received institutional funding from Gilead to conduct clinical trials. Dr Horn has received funding for research from United Therapeutics, Gilead, Actelion, Pfizer, Medtronic, and Novartis; funding for advisory boards from United Therapeutics, Gilead, Actelion, Pfizer; funding for consulting from Merck; and speaking fees from Gilead and Pfizer. Dr Roberts has served on an advisory board for Gilead. Dr Hill has received research grant support from Actelion, Bayer, Genzyme, Gilead, Pfizer, and United Therapeutics. Dr Rosenzweig has received honoraria from Actelion, Gilead, and United Therapeutics for her lectures on pulmonary hypertension; she has also received research grant support from Actelion/United Therapeutics (REVEAL registry for PAH); has received honoraria for grant reviews for Gilead and Pfizer; and is the recipient of National Institutes of Health/National Heart, Lung, and Blood Institute grants R01 HL049441 and PS0 award No. HL084946. Dr Girgis has received honoraria and consulting fees from Actelion, Gilead, and Pfizer and clinical research support from Actelion, Bayer, Gilead, and United Therapeutics. The remaining authors report no conflicts.

References

Go to http://cme.ahajournals.org to take the CME quiz for this article.
Randomized Clinical Trial of Aspirin and Simvastatin for Pulmonary Arterial Hypertension: ASA-STAT

Circulation. 2011;123:2985-2993; originally published online May 18, 2011; doi: 10.1161/CIRCULATIONAHA.110.015693

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2011 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/123/25/2985

Data Supplement (unedited) at:
http://circ.ahajournals.org/content/suppl/2011/05/17/CIRCULATIONAHA.110.015693.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/
Randomized Clinical Trial of Aspirin and Simvastatin
for Pulmonary Arterial Hypertension: ASA-STAT

Data Supplement

Steven M. Kawut, MD, MS,a-c Emilia Bagiella, PhD,d David J. Lederer, MD, MS,e
Daichi Shimbo, MD,e Evelyn M. Horn, MD,f Kari E. Roberts, MD, g Nicholas S. Hill, MD, g
R. Graham Barr, MD, DrPH, c,h Erika B. Rosenzweig, MD, i Wendy Post, MD, MS,j
Russell P. Tracy, PhD,k Harold I. Palevsky, MD, a,b Paul M. Hassoun, MD, j
and Reda E. Girgis, MB, BCh j

for the ASA-STAT Study Group

aPenn Cardiovascular Institute, bDepartment of Medicine, and the cCenter for Clinical
Epidemiology and Biostatistics, University of Pennsylvania School of Medicine, Philadelphia, PA

Departments of dBiostatistics and hEpidemiology, Joseph L. Mailman School of Public Health, and Departments of eMedicine and iPediatrics, College of Physicians and Surgeons, Columbia University, New York City, NY

fDepartment of Medicine, Weill-Cornell Medical School, New York City, NY

gDepartment of Medicine, Tufts Medical Center, Boston, MA

jDepartment of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD

kDepartment of Laboratory Medicine, University of Vermont School of Medicine, Burlington, VT
Supplemental Methods

Study Design

The trial was designed by the PI and the co-investigators and funded by a grant from the National Heart, Lung and Blood Institute (NHLBI). Additional support was provided by Clinical and Translational Science Awards. Study drugs and identical appearing placebos were provided free of charge by Bayer HealthCare LLC and Merck & Co., Inc. who had no role in the study design, conduct, monitoring, data analysis or interpretation, or preparation of the manuscript.

The design and maintenance of the database and the data collection were supervised by the Data Coordinating Center (DCC) at Columbia University. The manuscript was written by the authors, and the decision to submit the manuscript for publication was made by the authors. The authors vouch for the accuracy and completeness of the data and all analyses.

Study Procedures

Brachial artery ultrasound was performed according to a standard protocol at three Field Centers (Columbia University, Johns Hopkins University, and Tufts Medical Center) to measure flow-mediated dilation (FMD), expressed as maximal % increase in artery diameter after brachial artery occlusion. Two trained readers at the Ultrasound Core who were masked to other subject information interpreted the studies using Vascular Tools (Version 5.05) (Medical Imaging Applications, Coralville, IA).

Serum TxB2 was measured in duplicate using ELISA (Cayman Chemical, Ann Arbor, MI) (inter-assay coefficient of variation (CV) = 13 - 17%). Soluble P-selectin was measured using ELISA (R & D Systems, Minneapolis, MN) (CV = 9.92 - 11.03%). Plasma β-TG was measured using ELISA (Asserachrom B-TG, Diagnostica Stago, Inc., Parsippany, NJ) (CV =
5.97 - 6.55%). Plasma vWF was measured using an immunoturbidimetric assay (Diagnostica Stago, Inc, Parsippany, NJ) (CV = 2.88 – 7.55%). Serum CRP was measured using a nephelometric assay (Siemens BNII, Siemens Healthcare Diagnostics, Plainfield, IN) (CV = 2.04 - 4.27%). Serum NT-proBNP was measured using a chemiluminescent immunometric assay (Roche Elecsys 2010, Roche Diagnostics, Indianapolis, IN) (CV = 6.13 – 7.94%). Serum lipid profile (total cholesterol, high-density lipoprotein (HDL), triglyceride, and calculated low-density lipoprotein (LDL)) was analyzed via a colorimetric reaction using the Ortho Vitros Clinical Chemistry System 950IRC (Johnson & Johnson Clinical Diagnostics, Rochester, NY) (CV for measured analytes < 7%). Plasma oxidized LDL was measured by competitive ELISA (Mercodia AB, Uppsala, Sweden) (CV = 5.83 - 9.13%).

We assessed time to clinical worsening (defined by the addition of new PAH therapies or dose increases in previously stable PAH therapy, hospitalization for right-sided heart failure, lung transplantation, atrial septostomy, and cardiovascular and all-cause death). Hospitalizations, deaths, and bleeding events were classified by the Endpoint Adjudication Committee, which was unaware of study medication assignment and all other information regarding study subjects. A hospitalization because of lower extremity edema or dyspnea refractory to outpatient increases in dose or frequency of diuretics or specific PAH medications was considered a hospitalization for right-sided heart failure. All other hospital admissions were considered non-right-sided heart failure hospitalizations. Cardiovascular death was defined as: 1) sudden death or 2) death preceded by: a) cardiogenic shock (hypotension resulting in a failure to maintain normal renal or cerebral function for >15 minutes prior to death) or b) heart failure symptoms or signs requiring intravenous therapy or oxygen in the hospital or confinement to bed, in the absence of secondary
causes (such as systemic infection or dysfunction of intravenous or subcutaneous medication delivery devices) or alternative causes of death.

A major bleeding episode was defined as: 1) symptomatic bleeding in a critical area or organ (e.g., intracranial, intraspinal, intraocular, retroperitoneal, intraarticular, or intramuscular with compartment syndrome), 2) overt bleeding causing a fall in hemoglobin level of ≥ 2 g/dl or requiring surgery or transfusion, or 3) bleeding resulting in permanent functional disability or death. A minor bleeding episode was bleeding which did not meet any of the preceding criteria.

Study Monitoring

Safety monitoring included measurements of hemoglobin, hematocrit, platelet count, blood urea nitrogen, creatinine, alanine aminotransferase, aspartate aminotransferase, prothrombin time, international normalized ratio, history and physical examination, and assessment of adverse events at each study visit. The Data and Safety Monitoring Board (DSMB) reviewed serious adverse events as they occurred and cumulative adverse events at each meeting.

Significant bleeding episodes warranted permanent discontinuation of the aspirin/placebo study medication, but the simvastatin/placebo medication was continued as were study assessments. Study drugs were not interrupted for serious adverse events which were not drug-related. Even with permanent discontinuation of study medications, participants were encouraged to complete all scheduled study visits and assessments.
Statistical Analysis

In May 2009, the DSMB requested revised sample size calculations using the correlations of baseline and six month 6MWD thus far in the trial and from other sources and using an attrition rate closer to that seen in the trial to that point without unblinding of efficacy data. Using these updated estimates, there was 80% power to detect a 57 m difference in 6MWD after adjustment for baseline 6MWD with only 80 completers. Using the approximate completion rate in the study, 92 subjects were deemed necessary. With an interaction between study medications, there was 80% power to detect an 82 meter difference using the same assumptions. The revised sample size of 92 was approved by the DSMB and NHLBI on June 4, 2009.

The numbers of clinical worsening events and bleeding events were compared between study groups using Fisher’s exact tests (for cardiovascular death) and Poisson regression models. We assessed time to clinical worsening using Kaplan-Meier curves and log rank tests. Patients were censored at the end of the study period or at study termination.

The MI procedure in SAS was used to perform the imputation and the mianalyze procedure was used for the analysis of the primary endpoint. All missing data (whether due to premature termination of the study or death/worsened disease) were handled similarly in the primary analysis. The factors included in the imputation were age, sex, treatment group, disease type (idiopathic/heritable PAH vs. other), and the walk distances performed at various timepoints before the six month assessment.
Appendix.

ASA-STAT Study Group

National Heart, Lung, and Blood Institute: Timothy Moore, MD, PhD, Dorothy Gail, PhD, Jim Kiley, PhD

Study PI: Steven Kawut, MD, MS

Study co-PI: Reda Girgis, MB, BCh

Data Coordinating Center: Emilia Bagiella, PhD, (Chair), Veena Singh, PhD, Sudhir Marathe, PhD, Helena Chang, MS, Malka Schlesinger, MS

Field Centers:

Columbia University, David Lederer, MD, MS (Local PI, 10/2008-), Steven Kawut, MD, MS (Local PI, 3/2005-9/2008), Evelyn Horn, MD, Erika Rosenzweig, MD

Johns Hopkins University, Reda Girgis, MB, BCh (Local PI), Paul Hassoun, MD, Ari Zaiman, MD, Wendy Post, MD

University of Pennsylvania School of Medicine, Steven Kawut, MD, MS (Local PI, 10/2008-), Harold Palevsky, MD, Darren Taichman, MD, PhD, Scott Halpern, MD, PhD, Paul Forfia, MD, Christine Archer-Chicko, MSN, CRNP

Tufts Medical Center, Kari Roberts, MD (Local PI), Ioana Preston, MD, Nicholas Hill, MD, Jeff Kuvin, MD, Richard Karas, MD

Ultrasound Core Laboratory: Columbia University, Daichi Shimbo, MD (PI), Shunichi Homma, MD, Michael Zhang, Yukiko Sashida

Laboratory Core: University of Vermont, Russell Tracy, PhD (PI), Elaine Cornell, Rebekah Boyle, MS

Exercise Core: Columbia University, Robert Garofano, EdD
Research Pharmacy: Columbia University, Robert MacArthur, PharmD, Armin Altincatal, PharmD, Joy Johnson, PharmD

Endpoint Adjudication Committee: Philip Horwitz, MD (Chair), University of Iowa, Micah Fisher, MD, Emory University, Michael Mathier, MD, University of Pittsburgh

DSMB: Harrison Farber, MD (Chair), Boston University, Jess Mandel, MD, University of California, San Diego, Jonathan Halperin, MD, Mount Sinai School of Medicine, Daniel Heitjen, PhD (2005-2008), University of Pennsylvania, David Mauger, PhD (2008-), Penn State University
Table I. Inclusion and exclusion criteria

Inclusion criteria

- Previous documentation of mean pulmonary artery pressure of > 25 mm Hg at rest with a pulmonary capillary wedge pressure < 16 mm Hg (or left ventricular end-diastolic pressure < 16 mm Hg) at any time before study entry.
- Diagnosis of PAH which is a) idiopathic, b) heritable, or c) associated with: connective tissue disease, HIV infection, congenital systemic-to-pulmonary shunt, or former anorexigen use.
- Most recent pulmonary function tests showing FEV1/FVC >50% AND either a) total lung capacity > 70% predicted or b) total lung capacity between 60% and 70% predicted with no more than mild patchy interstitial lung disease on high resolution computerized tomography.
- Ability to perform six-minute walk testing without limitations in musculoskeletal function or coordination.
- Negative pregnancy test (women of childbearing potential) at screening.
- Use of medically acceptable contraceptive precautions (women).
- Informed consent.

Exclusion criteria

- Diagnosis of sickle cell disease.
- Clinically significant untreated sleep apnea.
- Left-sided valvular disease (more than moderate), pulmonary artery or valve stenosis, or ejection fraction < 45% on echocardiography.
- Hospitalized or acutely ill.
- Renal failure (creatinine ≥ 2.0).
- Initiation of PAH therapy within three months of enrollment.
- Allergy or hypersensitivity to aspirin or simvastatin administration.
- Absolute indication for aspirin or other anti-platelet therapy.
- Current treatment with statin therapy.
- Inability to avoid non-steroidal anti-inflammatory medications for six months.
- Current or recent use or planned treatment with: amiodarone, cyclosporine, itraconazole, ketoconazole, erythromycin, clarithromycin, HIV protease inhibitors, nefazodone, cimetidine, danazol, large quantities of grapefruit juice, verapamil, fibrates or niacin.
- Peptic or duodenal ulcer diagnosed within one year.
- Gastrointestinal bleeding within six months.
- Bleeding diathesis.
- History of intracranial hemorrhage.
- Anemia (Hematocrit < 30%) at screening.
- International normalized ratio > 3.0 at screening.
- Severe thrombocytopenia (< 75,000) at screening.
- Hepatic transaminases > 2x the upper limit of normal at the center at screening.
- Chronic liver disease (cirrhosis, chronic hepatitis, etc.) with portal hypertension.
- Current or recent (< 6 months) chronic heavy alcohol consumption.
- History of myositis.
• Creatine phosphokinase > 1.5x the upper limit of normal at screening.
• Abnormalities of the arm or hand or radical mastectomy (preventing assessment of flow-mediated dilation).
• Pregnant or lactating women.
• Current use of another investigational (non-FDA approved) drug for PAH.
• Lung transplant recipients.
• Age < 18 years.
<table>
<thead>
<tr>
<th></th>
<th>Screened, not enrolled* (n = 647)</th>
<th>Eligible, enrolled (n = 65)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td>55 ± 16</td>
<td>50 ± 14</td>
</tr>
<tr>
<td>Female gender, %</td>
<td>78</td>
<td>85</td>
</tr>
<tr>
<td>Race/ethnicity, %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White (Non-Hispanic)</td>
<td>68</td>
<td>65</td>
</tr>
<tr>
<td>Hispanic</td>
<td>7</td>
<td>14</td>
</tr>
<tr>
<td>Black</td>
<td>20</td>
<td>17</td>
</tr>
<tr>
<td>Asian</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Other</td>
<td>1</td>
<td>--</td>
</tr>
</tbody>
</table>

* n = 16 missing age, n = 19 missing gender, n = 110 missing race/ethnicity
Table III. SF-36 scores for subjects randomized to aspirin and placebo (norm-based scoring)

<table>
<thead>
<tr>
<th></th>
<th>Placebo</th>
<th>Aspirin</th>
<th>P value*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline (n = 33)</td>
<td>Month 6 (n = 26)</td>
<td>Baseline (n = 32)</td>
</tr>
<tr>
<td>Physical functioning</td>
<td>36.7 ± 10.8</td>
<td>35.7 ± 9.5</td>
<td>37.6 ± 10.2</td>
</tr>
<tr>
<td>Role-physical</td>
<td>42.8 ± 9.8</td>
<td>42.3 ± 9.8</td>
<td>41 ± 10.9</td>
</tr>
<tr>
<td>Bodily pain</td>
<td>49.1 ± 9.0</td>
<td>47.6 ± 9.1</td>
<td>50.8 ± 7.7</td>
</tr>
<tr>
<td>General health</td>
<td>43.3 ± 12.2</td>
<td>41.8 ± 10.1</td>
<td>38.9 ± 9.3</td>
</tr>
<tr>
<td>Vitality</td>
<td>50.7 ± 8.5</td>
<td>49 ± 9.7</td>
<td>47.3 ± 9.3</td>
</tr>
<tr>
<td>Social functioning</td>
<td>47.9 ± 8.7</td>
<td>48.7 ± 8.6</td>
<td>46.6 ± 10.5</td>
</tr>
<tr>
<td>Role-emotional</td>
<td>45.9 ± 11.9</td>
<td>44.7 ± 10.9</td>
<td>51.0 ± 7.3</td>
</tr>
<tr>
<td>Mental health</td>
<td>50.5 ± 10.1</td>
<td>50.2 ± 9.0</td>
<td>52.0 ± 6.9</td>
</tr>
<tr>
<td>Physical component score</td>
<td>40.6 ± 9.2</td>
<td>39.4 ± 9.1</td>
<td>38.4 ± 8.8</td>
</tr>
<tr>
<td>Mental component score</td>
<td>52.2 ± 10.2</td>
<td>51.8 ± 10.0</td>
<td>54 ± 7.7</td>
</tr>
</tbody>
</table>

*P value for difference in six week, three month, and six month assessments in linear mixed-effects models after adjustment for baseline. Mean ± standard deviation.
Table IV. Clinical worsening events of subjects randomized to aspirin and placebo

<table>
<thead>
<tr>
<th>Event</th>
<th>Placebo (n = 33)</th>
<th>Aspirin (n = 32)</th>
<th>P value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change in PAH medication</td>
<td>2</td>
<td>2</td>
<td>0.98</td>
</tr>
<tr>
<td>Heart-failure hospitalization</td>
<td>1</td>
<td>0</td>
<td>--</td>
</tr>
<tr>
<td>Cardiovascular death</td>
<td>3</td>
<td>0</td>
<td>0.12</td>
</tr>
<tr>
<td>Total</td>
<td>6</td>
<td>2</td>
<td>0.19</td>
</tr>
</tbody>
</table>

*P value from Fisher’s exact test for cardiovascular death and Poisson models for others.
Table V. SF-36 results for subjects randomized to simvastatin and placebo (norm-based scoring)

<table>
<thead>
<tr>
<th></th>
<th>Placebo</th>
<th>Simvastatin</th>
<th>P value*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline (n =33)</td>
<td>Month 6 (n = 22)</td>
<td>Baseline (n = 32)</td>
</tr>
<tr>
<td>Physical functioning</td>
<td>36.7 ± 10.8</td>
<td>39 ± 9.7</td>
<td>37.6 ± 9.4</td>
</tr>
<tr>
<td>Role-physical</td>
<td>40.9 ± 11.4</td>
<td>43.8 ± 10.6</td>
<td>43.0 ± 9.1</td>
</tr>
<tr>
<td>Bodily pain</td>
<td>49.7 ± 7.9</td>
<td>47.6 ± 10</td>
<td>50.2 ± 8.9</td>
</tr>
<tr>
<td>General health</td>
<td>39.7 ± 12.2</td>
<td>40.0 ± 10.8</td>
<td>42.6 ± 9.6</td>
</tr>
<tr>
<td>Vitality</td>
<td>48.0 ± 9.2</td>
<td>49.8 ± 10.4</td>
<td>50.0 ± 8.9</td>
</tr>
<tr>
<td>Social functioning</td>
<td>46.3 ± 10.8</td>
<td>49.9 ± 9.5</td>
<td>48.3 ± 8.2</td>
</tr>
<tr>
<td>Role-emotional</td>
<td>48.0 ± 10.5</td>
<td>48.6 ± 10.4</td>
<td>48.8 ± 9.9</td>
</tr>
<tr>
<td>Mental health</td>
<td>51.0 ± 9.9</td>
<td>52.4 ± 9.8</td>
<td>51.5 ± 7.3</td>
</tr>
<tr>
<td>Physical component score</td>
<td>38.6 ± 9.9</td>
<td>39.7 ± 9.9</td>
<td>40.4 ± 8.1</td>
</tr>
<tr>
<td>Mental component score</td>
<td>52.5 ± 10</td>
<td>54.2 ± 10.7</td>
<td>53.6 ± 8.1</td>
</tr>
</tbody>
</table>

*P value for difference between groups in six week, three month, and six month assessments in linear mixed-effects models after adjustment for baseline. Mean ± standard deviation.
Table VI. Clinical worsening events of subjects randomized to simvastatin and placebo

<table>
<thead>
<tr>
<th>Event</th>
<th>Placebo (n = 33)</th>
<th>Simvastatin (n = 32)</th>
<th>P value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change in PAH medication</td>
<td>1</td>
<td>3</td>
<td>0.33</td>
</tr>
<tr>
<td>Heart-failure hospitalization</td>
<td>1</td>
<td>0</td>
<td>--</td>
</tr>
<tr>
<td>Cardiovascular death</td>
<td>2</td>
<td>1</td>
<td>0.51</td>
</tr>
<tr>
<td>Total</td>
<td>4</td>
<td>4</td>
<td>0.33</td>
</tr>
</tbody>
</table>

*P value from Fisher’s exact test for cardiovascular death and Poisson models for others.
Figure I. A) Soluble P-selectin levels for aspirin and placebo (error bars are 95% confidence intervals). B) Plasma ln (β-TG) levels for aspirin and placebo. C) Serum ln (NT-proBNP) levels for aspirin and placebo. P values from linear mixed-effects models.

A.

B.

C.
Figure II. Kaplan-Meier curves for time to clinical worsening for aspirin and placebo
Figure III. A) Soluble P-selectin levels for aspirin and placebo in IPAH-Heritable subset (error bars are 95% confidence intervals). B) Six-minute walk distance for aspirin and placebo in IPAH-Heritable subset. P values from linear mixed-effects models.
Figure IV. A) Serum triglyceride levels for simvastatin and placebo (error bars are 95% confidence intervals). B) Serum high-density lipoprotein (HDL) levels for simvastatin and placebo. P values from linear mixed-effects models.

A.

B.

P value between groups = 0.35

P value between groups = 0.38
Figure V. A) Plasma von Willebrand factor (VWF) levels for simvastatin and placebo (error bars are 95% confidence intervals). B) Serum ln (C-reactive protein (CRP)) levels for simvastatin and placebo. C) Serum ln (NT-proBNP) levels for simvastatin and placebo. D) Brachial artery flow-mediated dilation for simvastatin and placebo. P values from linear mixed-effects models.

A. B. C. D.

[Graphs showing data for each condition with corresponding P values]
Figure VI. Kaplan-Meier curves for time to clinical worsening for simvastatin and placebo.
Figure VII. Six-minute walk distance for simvastatin and placebo in IPAH-Heritable subset (error bars are 95% confidence intervals). P value from linear mixed-effects model.
A clinical trial of aspirin and simvastatin in pulmonary arterial hypertension (ASA-STAT)

Protocol

March 26, 2009

Version 6.5

Steven M. Kawut, MD, MS
University of Pennsylvania
Principal Investigator

Reda Girgis, MB, BCh
Johns Hopkins University
Co-Principal Investigator
Protocol Summary

OBJECTIVES:

The primary objectives of this study are to assess the effects of aspirin vs. placebo and simvastatin vs. placebo on the distance walked in six minutes at six months in patients with pulmonary arterial hypertension (PAH).

Secondary objectives include:

- To assess the effect of aspirin vs. placebo on plasma levels of P-selectin, TxB2, and β-thromboglobulin (platelet markers) at six months.

- To assess the effect of simvastatin vs. placebo on plasma von Willebrand factor levels and flow-mediated dilation (markers of endothelial function) at six months.

- To assess the effect of aspirin vs. placebo and simvastatin vs. placebo on WHO functional class at six months.

- To assess the effect of aspirin vs. placebo and simvastatin vs. placebo on Borg dyspnea score at the conclusion of the six minute walk test at six months.

- To assess the effect of aspirin vs. placebo and simvastatin vs. placebo on the SF36 score at six months.

- To assess the effect of aspirin vs. placebo and simvastatin vs. placebo on each primary and secondary outcome measure at six weeks, three months, and six months.

- To assess the effect of aspirin vs. placebo and simvastatin vs. placebo on the percent and absolute changes from baseline of each primary and secondary outcome measure at six months.

- To assess the effect of aspirin vs. placebo and simvastatin vs. placebo on the time from
randomization to 1) addition of new PAH therapy or increased doses of currently stable PAH therapies (e.g., prostacyclin analogues) 2) hospitalization for right-sided heart failure, 3) lung transplantation, 4) atrial septostomy, 5) cardiovascular death, and 6) all-cause death. Endpoints #3-6 will also be analyzed as a combined endpoint.

- To assess the primary and secondary endpoints in patients with six minute walk distance < 450 meters.

- To assess the safety and side effects associated with aspirin and simvastatin administration in patients with PAH.

- To assess the interaction of the effects of aspirin and simvastatin on the primary and secondary endpoints.

STUDY DESIGN:

Randomized, double-blind, placebo-controlled, 2 X 2 factorial study of 92 patients. Eligible patients will be randomly assigned and blocked and stratified by center and disease type (idiopathic (IPAH) vs. non-IPAH) to receive either aspirin and simvastatin, aspirin and placebo, placebo and simvastatin, or placebo and placebo for six months (24 weeks). Patients will be assigned to one of four groups:

- Group 1: Aspirin 81 mg + Simvastatin 40 mg
- Group 2: Aspirin 81 mg + Placebo
- Group 3: Placebo + Simvastatin 40 mg
- Group 4: Placebo + Placebo
STUDY POPULATION:

Inclusion criteria:

- Mean pulmonary artery pressure > 25 mm Hg with a pulmonary capillary wedge pressure (or left ventricular end-diastolic pressure) < 16 mm Hg.
- Diagnosis of PAH which is a) idiopathic, b) familial, or c) associated with: collagen vascular disease, HIV infection, congenital systemic-to-pulmonary shunt, or former anorexigen use.
- Most recent pulmonary function tests with FEV1/FVC >50% AND either a) total lung capacity > 70% predicted or b) total lung capacity between 60% and 70% predicted with no more than mild patchy interstitial lung disease on high resolution computerized tomography scan of the chest.
- Ability to perform six minute walk testing without limitations in musculoskeletal function or coordination.
- Negative pregnancy test (women of childbearing potential) at screening.
- Women of childbearing potential must be using medically acceptable contraceptive precautions.
- Informed consent.

Exclusion criteria:

- PAH related to other etiologies.
- Clinically significant untreated sleep apnea diagnosed by polysomnography.
- Left-sided valvular disease, pulmonary artery or valve stenosis, or ejection fraction < 45% on echocardiography.
- Hospitalized or acutely ill.
- Renal failure (creatinine ≥ 2.0).
- Initiation of PAH therapy (prostacyclin analogues, endothelin-1 receptor antagonists, phosphodiesterase-5 inhibitors) within three months of enrollment.
- Allergy or hypersensitivity to aspirin or simvastatin administration.
• Absolute indication for aspirin or other anti-platelet therapy.
• Current treatment with statin therapy.
• Inability or unwillingness to avoid non-steroidal anti-inflammatory medications for six months.
• Current or recent use or planned treatment with: amiodarone, cyclosporine, itraconazole, ketoconazole, erythromycin, clarithromycin, HIV protease inhibitors, nefazodone, cimetidine, danazol, large quantities of grapefruit juice (>1 quart daily), verapamil, fibrates or niacin.
• Peptic or duodenal ulcer diagnosed within one year.
• Gastrointestinal bleeding within six months.
• Bleeding diathesis.
• History of intracranial hemorrhage.
• Anemia (Hematocrit < 30%) at screening.
• International normalized ratio (INR) > 3.0 at screening
• Severe thrombocytopenia (< 75,000) at screening.
• Hepatic transaminases > 2x the upper limit of normal at screening
• Chronic liver disease (cirrhosis, chronic hepatitis, etc.) with portal hypertension
• Current or recent (< 6 months) chronic heavy alcohol consumption.
• History of myositis.
• Creatine phosphokinase (CPK) > 1.5x the upper limit of normal (ULN) at screening.
• Abnormalities of the arm or hand or radical mastectomy (preventing brachial artery ultrasound).
• Pregnant or lactating women.
• Current use of another investigational drug (non-FDA approved) for PAH.
• Lung transplant recipients.
• Age < 18.
PRIMARY ENDPOINTS:

- Difference in distance walked in six minutes at the end of six months between aspirin vs. placebo and simvastatin vs. placebo.

SECONDARY ENDPOINTS:

- Difference in P-selectin level, TxB₂, and β-thromboglobulin between aspirin and placebo groups at six months.

- Difference in plasma von Willebrand factor levels and flow-mediated dilation between simvastatin and placebo groups at six months.

- Difference in WHO functional class between aspirin and placebo and simvastatin and placebo groups at six months.

- Difference in Borg dyspnea score between aspirin and placebo and simvastatin and placebo at six months.

- Difference in SF36 score between aspirin and placebo and simvastatin and placebo groups at six months.

- Effect of aspirin vs. placebo and simvastatin vs. placebo on each primary and secondary outcome measure at six weeks, three months, and six months.

- Effect of aspirin vs. placebo and simvastatin vs. placebo on the percent and absolute changes from baseline of each primary and secondary outcome measure at six months.

- Effect of aspirin vs. placebo and simvastatin vs. placebo on the time from randomization to 1) addition of new PAH therapy or increased doses of currently stable PAH therapies (e.g., prostacyclin analogues), 2) hospitalization for right-sided heart failure,
3) lung transplantation, 4) atrial septostomy, 5) cardiovascular death, and 6) all-cause death. Endpoints #3-6 will also be analyzed as a combined endpoint.

- Effects of aspirin and simvastatin in patients with six minute walk distance < 450 meters.

- Safety and side effects associated with aspirin and simvastatin administration in patients with PAH.

- Interaction of the effects of aspirin and simvastatin on the primary and secondary endpoints.

STUDY OBSERVATIONS:

- Patients will be evaluated in person at screening, baseline, six weeks, 3, and 6 months. Telephone calls will be made at 1, 4.5, and 7 months.

- Laboratory tests including a complete blood count, routine chemistry tests (creatinine, transaminases, CPK, HCG), and coagulation studies will be performed at screening or at baseline. Chemistries, complete blood count and coagulation studies will be repeated at six weeks, 3 months, and 6 months.

- All unexpected serious adverse events will be reported in real time to the NIH and both IRBs regardless of relationship to study drug.

- Patients will have six minute walk testing, brachial artery ultrasound, and study laboratories assessed at baseline, six weeks, 3 and 6 months.
SAMPLE SIZE AND POWER:

A total of 92 patients will be enrolled. Assuming a 10% drop-out rate, this sample size will provide 80% power to detect a 57-82 meter difference in the primary outcome between groups at six months with or without an interaction.

DATA ANALYSIS:

Primary study endpoints will be evaluated using linear mixed effects models with adjustment for baseline values. Incidence of adverse events and secondary endpoints will be analyzed using contingency table methods, t tests, and mixed models or ANOVA, as appropriate.
Brief Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>13</td>
</tr>
<tr>
<td>CHAPTER 1: Background and Significance</td>
<td>14</td>
</tr>
<tr>
<td>CHAPTER 2: Objectives and Specific Aims</td>
<td>18</td>
</tr>
<tr>
<td>CHAPTER 3: Screening, Patient Selection and Randomization</td>
<td>19</td>
</tr>
<tr>
<td>CHAPTER 4: Treatments</td>
<td>22</td>
</tr>
<tr>
<td>CHAPTER 5: Data Collection</td>
<td>25</td>
</tr>
<tr>
<td>CHAPTER 6: Assessment of Efficacy and Outcome Measures</td>
<td>31</td>
</tr>
<tr>
<td>CHAPTER 7: Statistical Considerations</td>
<td>35</td>
</tr>
<tr>
<td>CHAPTER 8: Quality Control</td>
<td>40</td>
</tr>
<tr>
<td>CHAPTER 9: Participant Safety and Confidentiality</td>
<td>42</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>52</td>
</tr>
</tbody>
</table>
Detailed Table of Contents

ABSTRACT ...13

CHAPTER 1: Background and Significance ...14

1.1 Definition and characterization of PAH ..14

1.2 Components of endothelial dysfunction-platelet activation in PAH14
1.2.1 Disordered eicosanoid metabolism in PAH ..14
1.2.2 Platelet activation in PAH ..15
1.2.3 Nitric oxide production in PAH ...15
1.2.4 Oxidative stress and inflammation in PAH ..15
1.2.5 Summary ..15

1.3 Investigational interventions ..16
1.3.1 Aspirin ...16
1.3.2 Simvastatin ..16
1.3.3 Description of and justification for, the route of administration, dosage, regimen, and treatment period ...16
1.3.4 Summary ..17

CHAPTER 2: Objectives and Specific Aims ...18

2.1 Objectives ...18

2.2 Specific aims ..18

CHAPTER 3: Screening, Patient Selection and Randomization19

3.1 Recruitment ..19
3.1.1 Identification and screening process ..19

3.2 Patient selection criteria ..19
3.2.1 Inclusion criteria ..19
3.2.2 Exclusion criteria ..20

3.3 Randomization ..21

3.4 Maintenance of treatment randomization codes and procedures for breaking the code ..21
CHAPTER 4: Treatments

4.1 Aspirin

4.2 Simvastatin

4.3 Placebos and packaging of study medication

4.4 Administration of study medication

4.5 Management of other medical therapies during the trial

4.6 Treatment masking

CHAPTER 5: Data Collection

5.1 Study visit

5.1.1 Screening

5.1.2 Study day (Baseline)

5.1.3 Phone call (One month, 4.5 months)

5.1.4 Study day (Six weeks, three months)

5.1.5 Study day (Six months)

5.1.6 Phone call/ Study day (Seven months)

5.2 Study schedule of procedures

5.3 Patients’ retention and drug compliance

CHAPTER 6: Assessment of Efficacy and Outcome Measures

6.1 Assessments of efficacy

6.1.1 Six minute walk distance

6.2 Secondary outcome measures

6.2.1 P-selectin

6.2.2 TxB2

6.2.3 β-thromboglobulin

6.2.4 Von Willebrand factor

6.2.5 Flow-mediated dilation

6.2.6 WHO functional class

6.2.7 Addition of PAH medication

6.2.8 Hospitalization for right-sided heart failure

6.2.9 SF36

6.2.10 Other clinical endpoints
9.6 Assessment of bleeding ... 44

9.7 Other events ... 45

9.8 Adverse events .. 45
 9.8.1 Definitions ... 45
 9.8.2 Interpretation of definitions .. 46
 9.8.3 Classifying adverse events ... 46
 9.8.4 Reporting procedures for adverse events / unanticipated problems... 47
 9.8.5 Patient withdrawal ... 48
 9.8.6 Unblinding of treatment assignment 49

9.9 Confidentiality of study data ... 49

9.10 Potential risks ... 50

9.11 Potential benefits ... 51

9.12 Alternatives ... 51

REFERENCES ... 52
ABSTRACT

Pulmonary arterial hypertension (PAH) is characterized by obliteration of the pulmonary vascular bed. Endothelial dysfunction and platelet aggregation cause vasoconstriction, mitogenesis, and thrombosis in the small muscular pulmonary arteries. Right-sided heart failure ensues with severe limitation of exercise and eventual progression to death. This disease most often afflicts young women and is incurable.

The recognition of abnormal eicosanoid metabolism (increased thromboxane A2 and decreased prostaglandin I2 production) and increased endothelin-1 (ET-1) levels were major advances in understanding the pathophysiology of PAH. Parenteral prostacyclin analogues and ET-1 receptor antagonists are now the standard of care for PAH. While these therapies intervene on downstream effects of endothelial dysfunction, none adequately addresses the proximal endothelial insult or the platelet response. Patients with PAH presently have a five-year survival of only 60% even with these currently-approved treatments.

HMG-CoA reductase inhibitors (statins) and aspirin are very safe, highly-effective cardiovascular therapies used by millions of people. Simvastatin decreases cholesterol, stabilizes the endothelial cell layer, increases the bioavailability of nitric oxide, reduces oxidative stress, and decreases inflammation. Aspirin arrests platelet thromboxane A2 production, inhibiting platelet aggregation. Our pilot studies of simvastatin and aspirin in animal models and humans with PAH have shown very promising results, suggesting that these therapies may have significant clinical benefit when added to traditional PAH medications. We have designed a Phase II trial to initiate the study of these two potentially useful interventions with maximum efficiency.

Our goals are 1) to explore the feasibility of performing an NIH-funded clinical trial of simvastatin and aspirin in PAH, 2) to find treatment-related effect sizes for clinical endpoints in order to plan a Phase III trial, and 3) to study the effects of these therapies on endothelial and platelet function. We propose a randomized, placebo-controlled 2 X 2 factorial trial of simvastatin and aspirin enrolling 92 patients to determine whether these drugs have an effect on the distance walked in six minutes in patients with PAH.
Chapter 1. Background and Significance

1.1 Definition and characterization of PAH

The Third World Symposium on Pulmonary Hypertension has recently reclassified “Pulmonary Arterial Hypertension” (PAH), which includes idiopathic (or primary) (IPAH) and familial forms, as well as PAH associated with collagen vascular disease, portal hypertension, anorexigen use, HIV infection, and congenital systemic-to-pulmonary shunts. The seemingly distinct forms of PAH are grouped together for several reasons. First, the vascular lesions in the various forms of PAH are similar. The small muscular pulmonary arteries show endothelial proliferation and smooth muscle hypertrophy, in situ thrombosis, and plexiform lesions in the absence of parenchymal lung disease. Second, patients with PAH share a common hemodynamic profile. Increased pulmonary vascular resistance (PVR) leads to right heart dysfunction, exercise limitation, and death. Third, patients with various forms of PAH show hemodynamic and functional improvement after initiation of prostacyclin analogues and endothelin-1 (ET-1) receptor antagonists. Finally, the outcome of patients with all types of PAH is dismal.

1.2 Components of endothelial dysfunction-platelet activation in PAH

The breakthroughs in treatment for PAH have resulted from studies of the downstream effects of pulmonary vascular endothelial dysfunction. Eicosanoid imbalance and elevated ET-1 levels have invited interventions (prostacyclin analogues and bosentan, respectively) which have proven effective in PAH. Platelet activation, reduced endothelial nitric oxide synthase (eNOS), oxidative stress, and inflammation are unchecked disease pathways, however. Aspirin and simvastatin target these processes, making them promising treatments for the pulmonary vascular obliteration in PAH.

1.2.1 Disordered eicosanoid metabolism in PAH

Cellular membranes throughout the body metabolize arachidonic acid via cyclooxygenase (COX). Patients with PAH have increased thromboxane (Tx) A₂ production and decreased prostaglandin (PG) I₂ production. As TxA₂ and PGI₂ are fleeting, serum TxB₂ and urinary 11-dehydro-TxB₂ (Tx-M) and 2,3-dinor-6-keto-PGF₁α (PGI-M) are more reliably measured. We have shown that TxB₂ and Tx-M are elevated in PAH despite the use of new therapies, suggesting on-going platelet activation.

Strategies which reduce the TxA₂/PGI₂ ratio (by increasing PGI₂) are effective in PAH. Intravenous epoprostenol, a short-acting PGI₂ analogue, improves cardiac index, the distance walked in six minutes, and survival (the only therapy to do so in PAH). Far from ideal, however, epoprostenol requires continuous intravenous infusion twenty-four hours/day through a tunneled catheter, daily drug preparation and pump maintenance, and has troublesome side effects. Other similarly expensive PGI₂ analogues offer variable functional benefit and no clear survival advantage and require inconvenient delivery systems. Therefore, while PGI₂ supplementation effectively decreases PVR and...
improves cardiac function, distance walked in six minutes, and outcomes in PAH, this therapeutic approach is quite burdensome to patients and often may reduce their quality-of-life.

1.2.2 Platelet activation in PAH

Several other lines of evidence implicate platelet activation in disease pathogenesis and clinical worsening in PAH. Investigators have visualized circulating platelet aggregates in the blood of patients with PAH, and increased platelet aggregation is associated with more severe PAH. Soluble P-selectin is elevated in patients with PAH, and platelet-released CD40 ligand increases across the pulmonary vascular bed suggesting trans-pulmonary platelet activation. Thrombocytopenia occurs during severe PAH “crises”, attributed to platelet trapping in the lungs.

1.2.3 Nitric oxide production in PAH

Pulmonary vascular dysfunction in PAH is characterized by chronic deficits in nitric oxide (NO) production and eNOS activity. Inhaled NO prevents monocrotaline-induced pulmonary vascular changes in the rat, however this therapy is unsuitable for chronic use in humans and is very expensive. Phosphodiesterase 5 inhibitors (sildenafil) increase cGMP levels in the lung, resulting in improvements in animal models and humans with PAH, respectively. While augmentation of the NO pathway appears promising, inexpensive therapies which target this system are neither available nor definitive in their disease-modifying effects. Simvastatin may provide clinical benefit by increasing lung NO production.

1.2.4 Oxidative stress and inflammation in PAH

Xanthine oxioreductase (XOR), NADPH, and dysfunctional eNOS generate superoxide anion and, subsequently, hydrogen peroxide, which alter transcription and protein/enzyme activities, inactivate NO, and damage membranes and DNA in the pulmonary vasculature. Lungs from patients with PAH show increased expression of oxidant stress markers. We have shown that decreased NO actually potentiates increases in lung XOR. Investigators have also found a decreased threshold of neutrophil degranulation and elevated levels of interleukin-1 and -6 in PAH. Inflammatory infiltrates surround the plexiform lesions, and the chemokines RANTES and fractalkine are upregulated. Unfortunately, current PAH therapies do not impact on these components of endothelial dysfunction.

1.2.5 Summary

The components of endothelial dysfunction and platelet activation in PAH are intertwined and inseparable, despite our simplified presentation. Simvastatin and aspirin are safe, relatively inexpensive, FDA-approved therapies which target these processes. We believe that chronic reductions in Tx, platelet activation, oxidant stress, and inflammation and increased NO availability could remodel the small muscular pulmonary
arteries, lower PVR, and improve cardiac output, exercise tolerance, and outcomes in PAH.

1.3 Investigational interventions

1.3.1 Aspirin

Aspirin irreversibly binds COX-1 and -2, inactivating COX for the life of the platelet.34,35 Chronic inhibition of platelet aggregation and lowering the TxA\textsubscript{2}/PGI\textsubscript{2} ratio with aspirin therapy has repeatedly shown benefit in cardiovascular disease. In fact, the goal of many PAH therapies is the reduction of the TxA\textsubscript{2}/PGI\textsubscript{2} ratio. We have shown that aspirin potently inhibits platelet aggregation and synthesis of TxA\textsubscript{2} in PAH.17 Aspirin therefore presents: 1) a well-defined safety profile in the setting of anticoagulation and other comorbid disease, 2) an inexpensive and familiar drug, and 3) a track record of effectiveness in a variety of other conditions characterized by endothelial dysfunction and platelet activation. Considering that platelet aggregation and elevated TxA\textsubscript{2} contribute to pulmonary vascular changes and increased PVR, aspirin seems the ideal therapy for PAH.

1.3.2 Simvastatin

Statins were originally developed as cholesterol-lowering agents, however it is now recognized that these drugs have “pleiotropic” effects. Statins suppress proliferation and migration of both pulmonary vascular smooth muscle cells and induce apoptosis.36,37 Statins increase eNOS protein levels and activity. Statins possess potent anti-oxidant effects, including suppression of NADPH oxidase activity.38 This not only decreases direct oxidant species-induced endothelial injury, but also reduces the inactivation of NO by superoxide radicals. Moderate to high concentrations of statins inhibit endothelial cell proliferation and induce apoptosis. By enhancing eNOS function and reducing oxidative stress, statins decrease expression of endothelial cell surface adhesion molecules (e.g. P-selectin, ICAM-1), inhibit leukocyte-endothelial cell binding, and reduce inflammation. We have shown that simvastatin also preserves endothelial cell barrier function.39 These benefits of statins on endothelial function have translated into well-known clinical efficacy in a variety of cardiovascular diseases. Simvastatin safely and effectively targets the components of endothelial function not addressed by current therapies in PAH, therefore warranting further clinical study.

1.3.3 Description of and justification for, the route of administration, dosage, regimen and treatment period

Aspirin will be given as 81 mg by mouth to maximize the effect on platelets and minimize the effects on the pulmonary vasculature. The dose is identical to that used in our preliminary studies, showing significant inhibition of platelet aggregation and Tx production.17 In addition, this dose is the approved dose for indications such as ischemic stroke and transient ischemic attack, prevention of recurrent myocardial infarction, and
chronic stable angina pectoris. While higher doses are also effective, they are associated with an increased risk of side effects. (See Chapter 4.)

Simvastatin will be administered in a dose of 40 mg each day by mouth. This is the identical dose recommended for patients at high risk for a cardiac event due to existing coronary heart disease, diabetes, peripheral vascular disease, history of stroke or other cerebrovascular disease.

The treatment period of six months is sufficient to assess the effects of the study drugs on the outcomes. Most randomized controlled trials of medical therapy for PAH have been conducted for only 3-4 months. In addition, this study is focused on the long-term impact and side effects of these medications when used in concert with other established PAH therapies, such as endothelin-1 receptor antagonists, phosphodiesterase-5 inhibitors, and prostacyclin analogs, requiring a longer term study than that traditionally used for PAH therapy.

1.3.4 Summary

That the processes which characterize pulmonary vascular endothelial dysfunction in PAH mimic those in other coronary and systemic arterial diseases is not surprising. Then, it should follow that simvastatin and aspirin, which reduce pathologic changes in other vascular beds, will have similar benefits on the pulmonary circulation in PAH.
Chapter 2. Objectives and Specific Aims

2.1 Objectives

This is a Phase II, randomized, double-blind, placebo-controlled 2 X 2 factorial trial. The proposed research project involves two primary and two secondary Specific Aims. Specific Aims 1 and 2 examine the effects of aspirin and simvastatin on exercise tolerance (primary). Specific Aims 3 and 4 examine the effects of aspirin and simvastatin on markers of endothelial and platelet function, respectively (secondary). Six minute walk testing and blood sampling will be performed at baseline, six weeks, and three and six months. Brachial artery ultrasound will be performed at baseline, six weeks, and three and six months. Patients in this protocol may be concurrently treated with other PAH therapies.

2.2 Specific Aims

Primary Aims:

1. To determine whether aspirin affects exercise function at six months in patients with PAH.
2. To determine whether simvastatin affects exercise function at six months in patients with PAH.

Secondary Aims:

3. To determine whether aspirin affects P-selectin levels, TxB2, or β-thromboglobulin (platelet activation) in patients with PAH.
4. To determine whether simvastatin affects von Willebrand factor levels or flow-mediated dilation (endothelial function) at six months in patients with PAH.

Other aims include the demonstration of the feasibility and safety of studying these drugs in PAH and to determine the sample size necessary to conduct Phase III studies of one or both of these therapies.
Chapter 3. Screening, Patient Selection and Randomization

3.1 Recruitment

3.1.1 Identification and screening process

Patients will be identified by the medical staff who care for patients with PAH at Columbia University Medical Center, Johns Hopkins Hospital, the University of Pennsylvania Medical Center, and Tufts-New England Medical Center. We expect to screen approximately 450 patients over three years between the centers. Potentially eligible patients will be informed about the study and screened if they have an interest in enrolling. After the initial screening, the patient will provide informed consent according to the local IRB before any study procedures are performed.

The main sources of participants at all field centers will be the pulmonary and cardiology clinical practices. We will perform computerized searches at the field centers of all patients evaluated with an ICD-9 code for pulmonary hypertension. We will review this list to narrow the possible candidates, hand-searching outpatient charts to assess the patients for eligibility. Patients who are eligible will be approached by study staff. In addition, an active recruitment effort will be mounted by sending recruiting letters and emails to every pulmonologist and cardiologist in practice at the recruiting centers. We will also recruit patients from nearby medical centers which have pulmonologists or cardiologists with particular expertise in pulmonary hypertension and established pulmonary hypertension centers. We will send recruitment letters to potentially eligible patients who are cared for in the investigators’ clinical practices, and post signs in patient areas.

3.2 Patient selection criteria

3.2.1 Inclusion criteria

- Previous documentation of mean pulmonary artery pressure of > 25 mm Hg at rest with a pulmonary capillary wedge pressure < 16 mm Hg (or left ventricular end-diastolic pressure < 16 mm Hg) at any time before study entry.
- Diagnosis of PAH which is a) idiopathic, b) familial, or c) associated with: collagen vascular disease [such as scleroderma, systemic lupus erythematosus, mixed connective tissue disease, rheumatoid arthritis], HIV infection, congenital systemic-to-pulmonary shunt, or former anorexigen use.
- Most recent pulmonary function tests showing FEV$_1$/FVC >50% AND either a) total lung capacity $> 70\%$ predicted or b) total lung capacity between 60% and 70% predicted with no more than mild patchy interstitial lung disease on high resolution computerized tomography of the chest
- Ability to perform six minute walk testing without limitations in musculoskeletal function or coordination (e.g., unstable gait, hip pain, etc.).
- Negative pregnancy test (women of childbearing potential) at screening.
ASA-STAT Protocol

- Women of childbearing potential must be using medically acceptable contraceptive precautions.
- Informed consent.

3.2.2 Exclusion criteria

- PAH related to other etiologies.
- Diagnosis of sickle cell disease.
- Clinically significant untreated sleep apnea diagnosed by polysomnography.
- Left-sided valvular disease (more than moderate mitral valve stenosis or insufficiency or aortic stenosis or insufficiency), pulmonary artery or valve stenosis, or ejection fraction < 45% on echocardiography.
- Hospitalized or acutely ill.
- Renal failure (Cr ≥ 2.0).
- Initiation of PAH therapy (prostacyclin analogues, ET-1 receptor antagonists, phosphodiesterase-5 inhibitors) within three months of enrollment.
- Allergy or hypersensitivity to aspirin or simvastatin administration.
- Absolute indication for aspirin or other anti-platelet therapy (such as coronary artery disease, symptomatic carotid artery disease, peripheral arterial disease, etc.).
- Current treatment with statin therapy.
- Inability or unwillingness to avoid non-steroidal anti-inflammatory medications for six months.
- Current or recent use or planned treatment with: amiodarone, cyclosporine, itraconazole, ketoconazole, erythromycin, clarithromycin, HIV protease inhibitors, nefazodone, cimetidine, danazol, large quantities of grapefruit juice (>1 quart daily), verapamil, fibrates or niacin.
- Peptic or duodenal ulcer diagnosed within one year.
- Gastrointestinal bleeding within six months.
- Bleeding diathesis.
- History of intracranial hemorrhage.
- Anemia (Hematocrit < 30%) at screening.
- INR > 3.0 at screening.
- Severe thrombocytopenia (< 75,000) at screening.
- Hepatic transaminases > 2x the upper limit of normal at the center at screening.
- Chronic liver disease (cirrhosis, chronic hepatitis, etc.) with portal hypertension
- Current or recent (< 6 months) chronic heavy alcohol consumption.
- History of myositis.
- Creatine phosphokinase (CPK) > 1.5x the upper limit of normal at screening.
- Abnormalities of the arm or hand or radical mastectomy (preventing brachial artery ultrasound).
- Pregnant or lactating women.
- Current use of another investigational drug (non-FDA approved) for PAH.
- Lung transplant recipients.
ASA-STAT Protocol

- Age < 18 years.

3.3 Randomization

The objectives of randomization are 1) to produce study groups comparable with respect to known and unknown risk factors, 2) to remove investigator bias in the recruitment and allocation of participants, and 3) to guarantee that statistical tests have valid significance levels.

To balance factors that may influence treatment outcome, randomization will be stratified and blocked. Each combination of factors forms a stratum and randomization is allocated within each stratum. In this study, the only stratification variables are accrual center and type of PAH. Allocation concealment will be maintained by randomly alternating block sizes.

Randomization will be performed using a Web-based randomization assignment program provided by the Data Coordinating Center (DCC) which will provide a number corresponding to each randomized participant. Randomization will be done directly after necessary baseline data have been collected.

3.4 Maintenance of treatment randomization codes and procedures for breaking the code

The treatment randomization codes will be maintained by the head of the DCC. The code is to be broken only if knowledge of treatment assignment for that patient is required to initiate appropriate therapy of an adverse event or if the safety of the patient is at serious risk if treatment is continued without knowledge of the treatment assignment. The decision to unmask will be made by the study PI. The DSMB and the NHLBI Project Officer must be notified of the decision as soon as possible.
Chapter 4. Treatments

4.1 Aspirin

We will utilize aspirin 81 mg by mouth each day and placebo (supplied by Bayer HealthCare). Aspirin’s main indications are vascular disease, revascularization procedures, and rheumatologic indications, where it has been proven effective. This aspirin dosage is above the minimally effective dose for virtually every indication. Higher doses of aspirin are associated with more gastrointestinal side effects without evidence of additional efficacy.

The administration of aspirin poses an increased risk of gastritis and peptic ulcer. Dyspepsia, stomach pain, heartburn, nausea, and vomiting are common side effects. The most important risk of aspirin in combination with warfarin is an increased risk of bleeding, whether it be gastrointestinal hemorrhage, epistaxis, or post-traumatic or postsurgical bleeding. A recent randomized clinical trial of aspirin vs. warfarin vs. both after stroke showed that combination aspirin and warfarin therapy had a 1-year risk of major bleeding of 0.57%, similar to that of warfarin alone (0.68%). The 1-year risk of minor bleeding was 2.7% with aspirin and warfarin and 2.1% with warfarin alone. A recent systematic review showed no increased risk of major bleeding conferred by the combination of aspirin with low-dose warfarin therapy. Other meta-analyses have confirmed these findings with major and minor bleeding rates < 2%.

4.2 Simvastatin

We will utilize simvastatin 40 mg by mouth each day and placebo (supplied by Merck, Inc.). This is the identical dose recommended for patients at high risk for a cardiac event due to existing coronary heart disease, diabetes, peripheral vascular disease, history of stroke or other cerebrovascular disease. Simvastatin has been extensively studied at the recommended dose of 40 mg per day. Simvastatin is metabolized by the cytochrome P450 isoform 3A4 (CYP3A4). The main indications include secondary prevention for coronary artery disease and for treatment of hypercholesterolemia. Drug interactions include a slight potentiation of warfarin anticoagulant effect and mild increase in serum digoxin concentration, neither of which are clinically significant. No drug interactions have been reported or are expected to occur in combination with epoprostenol, treprostinil or iloprost. In a pharmacokinetic study in nine healthy male subjects, concomitant therapy with bosentan and simvastatin for 6 days was associated with a 40% reduction in simvastatin and metabolite levels, while no effect on plasma levels of bosentan or its metabolites were noted. No clinically relevant treatment-related changes in vital signs, electrocardiographic, or clinical laboratory parameters were observed.

Simvastatin has been evaluated for adverse reactions in over 21,000 patients; only 1.4% discontinued therapy due to adverse experiences. Rhabdomyolysis and elevations in serum transaminases are the two main side effects of simvastatin. Large clinical trials have shown no significant differences in the incidence of elevated CPK 4-10x the upper limit of normal (ULN) between simvastatin (0.19%) and placebo (0.13%) or myopathy
(CPK > 10x ULN). The number of subjects with elevated transaminases (2-4x ULN) was also small and no different than placebo (1.35% for simvastatin, 1.28% for placebo, p=NS). Treatment cessation due to this complication was comparable between the groups (0.5% for simvastatin, 0.3% for placebo). In a large study of bosentan therapy in patients with congestive heart failure, no increased incidence of hepatic enzyme abnormalities was noted in those subjects receiving statin therapy (Personal communication, Actelion).

4.3 Placebos and study drug packaging

Placebo tablets for aspirin and simvastatin which match the active drug will be donated by Bayer HealthCare and Merck, Inc., respectively. At the Research Pharmacy, capsules will be packaged into HDPE bottles with a liner, cotton, and childproof cap. Bottles will be fully labeled to meet state and FDA requirements, and packaged into labeled kits. The use of kits will simplify study product distribution and dispensing at the clinical sites. Study kits will be pre-randomized and patient specific. There will be two bottles of drug product dispensed to study patients at each study visit during the treatment phase. Patients will be asked to return bottles at the 6-week, 3-month, and 6-month visits to allow for tracking of compliance and medication control. At the end of the study, after accountability has been completed, study product can be destroyed at the clinical site, after approval is granted by the Research Pharmacy for the drug destruction plan. Alternatively, the product may be returned to the Research Pharmacy for destruction.

4.4 Administration of study medication

The occurrence of planned or unplanned interventional or surgical procedures may warrant holding aspirin from a patient safety stand-point (cardiac catheterization, dental cleaning, etc.). As holding such therapy when these procedures are planned is part of normal usage (and required to maximize patient safety in the trial), we will allow the patient’s physician to temporarily stop the aspirin/placebo for planned surgical or interventional patient procedures and restart therapy when considered safe from standard clinical practice. We will record the timing and duration of such events. Clinical guidelines recommend stopping aspirin one week prior to elective invasive procedures, which will be the recommended strategy in this study. We will instruct the patients to inform all treating physicians of their participation in the trial and the possibility of aspirin use, and we will alert the patient’s primary medical doctor and PAH clinician of participation in this trial.

4.5 Management of other medical therapies during the trial

The aim of this study is to improve outcomes beyond those achieved with current therapies. Patients with PAH are often treated with diuretics, digoxin, bosentan, calcium channel blockers, sildenafil, and prostacyclin analogues. Withholding therapy which is the current standard of care is unethical in PAH, considering the high risk of morbidity and mortality. In addition, new drugs should add incremental benefit to established therapies to really improve outcomes. The patients’ pre-study medical regimen will
therefore be continued after enrollment in the study. There will be no constraints on the management of the patients’ PAH medication during the study period.

Warfarin is routinely used in patients with PAH despite the lack of data from randomized clinical trials to support its clinical effectiveness. It is therefore unclear what the target INR for these patients should be. Traditionally, an INR of 2.0-3.0 is targeted at our centers, however there is no clear consensus. Therefore, throughout this protocol, the physicians and clinicians caring for the subjects enrolled in this trial will continue to target this range. The details of monitoring of INR and dose adjustments of warfarin are provided in detail in Section 9.4.

4.6 Treatment masking

All study personnel and subjects will be masked for the duration of the study until the last subject completes follow-up assessments. The Columbia University Research Pharmacist, the DSMB, and the Chair of the DCC will be unmasked; the Research Pharmacist will supply the Chair of the DCC with the drug/placebo identifier. Assessment of the success of masking will be performed by querying each subject and researcher at the final visit about which treatment he or she believes that the patient is receiving.
5.1 Study visit

5.1.1 Screening

Potentially eligible patients will be referred if there is interest in enrolling. The following procedures will be performed during the screening process:

- Review of inclusion/exclusion criteria
- Sign and date the informed consent and HIPAA release
- Review medical history and contraceptive use (females of child-bearing potential)
- Review current medications
- Labs (if baseline visit is scheduled within 28 days of screening visit): complete blood count, including hemoglobin, hematocrit, and platelet count, clinical chemistries, coagulation studies, and pregnancy test (blood or urine) for females of child-bearing potential
- Provide instructions on recording of new medications and dose changes and the avoidance of NSAID- or aspirin-containing products
- Instruct subjects to bring routine medications to baseline visit

A medication diary for all new or over-the-counter medications used during the study period will be provided.

After consent, the patient will be scheduled for a baseline study visit within 120 days (and > 14 days) at the respective study center. The coordinator will call the patient and the PAH clinician 24 hours after the study visit if laboratories were obtained. The coordinator will call the patient more than two weeks before the baseline visit as a reminder to avoid NSAID- and aspirin-containing products.

5.1.2 Study Day (Baseline)

The research coordinator will call the patient 1-2 days before the visit as a reminder. The coordinator will instruct the patient to not eat or drink (except water) and to avoid heavy exercise for 12 hours before the study day assessment. Patients will be instructed to bring their regular medications with them to the visit and to not take their medications before coming to the study center.

Baseline information will be used to characterize the participants and to compare the experimental groups with regards to demographics and other variables. If laboratories were obtained at the screening visit or at an outpatient laboratory within 28 days of the baseline visit, these will be used as baseline measurements. All baseline data will be collected prior to randomization to treatment group.

The patient will arrive at the study site outpatient clinic. The following procedures will be performed:
ASA-STAT Protocol

- Review of inclusion/exclusion criteria
- Phlebotomy
- Brachial artery ultrasound
- Eat a small snack
- Interim medical history
- Vital signs
- Review current medications
- WHO functional class assessment
- Complete SF36
- Six minute walk testing with Borg scores
- Randomization to treatment group
- Dispense supply of study drugs
- Reinforce instructions on recording of new medications and dose changes and the avoidance of NSAID- or aspirin-containing products
- Reinforce instructions on bringing the patient’s routine and study medications to the follow-up visit

Blood samples for study assays and lipid profiles will be processed and banked, whereas screening labs (if not previously performed) will be sent STAT to the hospital laboratory.

Brachial artery ultrasound will be performed more than 30 minutes after venipuncture. After the ultrasound, the patient will be instructed to take their usual morning medications. The patient will eat a snack provided by the study coordinator. The investigator or research coordinator will take a history and perform a physical examination and the patient will complete the SF36.

The patient will perform the 6MWT more than one hour after eating.

After confirmation that laboratories meet screening criteria, the patients will be randomized to a treatment group. A pre-packaged six week supply of both study medications (simvastatin 40 mg/placebo and aspirin 81 mg/placebo) will be given to the subject. The patient will be instructed to take one tablet of each medicine once each day. At each follow-up visit, medication supplies will be replenished.

After the completion of the walk test, the research coordinator will thank the patient for their attendance and reinforce compliance with the study medications and protocol. The patient’s primary PAH physician and medical doctor will be alerted to the patient’s participation in the clinical trial and the clinical laboratory results (if performed).

5.1.3 Phone Call (One month, 4.5 months)

The local research coordinator will call the patient. Symptoms and potential side effects will be assessed. Medication compliance will be assessed and reinforced.
5.1.4 Study Day (Six weeks, Three Months)

The research coordinator will call the patient 1-2 days before each visit as a reminder. The coordinator will instruct the patient to not eat or drink (except water) and to avoid heavy exercise for 12 hours before the study day assessment. Patients will be instructed to bring their regular and study medications with them to each visit and to not take their regular or study medications before coming to the study center.

The patient will arrive at the study site clinic. The following procedures will be performed:

- Phlebotomy
- Brachial artery ultrasound
- Eat a small snack
- Interim medical history
- Vital signs
- Review current medications
- WHO functional class assessment
- Complete SF36
- Six minute walk testing with Borg scores
- Dispense supply of study drugs
- Reinforce instructions on recording of new medications and the avoidance of NSAID- or aspirin-containing products
- Reinforce instructions on bringing the patient’s routine and study medications to the follow-up visit

Blood samples for study assays and lipid profiles will be processed and banked, whereas samples for safety monitoring will be sent to the hospital laboratory.

Brachial artery ultrasound will be performed more than 30 minutes after venipuncture. After the ultrasound, the patient will be instructed to take their usual morning medications and study drugs. The patient will eat a small meal provided by the study coordinator. The investigator or research coordinator will take a history and perform a physical examination, perform a pill count, assess side effects, and the patient will complete the SF36.

The patient will perform the 6MWT more than one hour after eating. After the completion of the walk test, the research coordinator will thank the patient for their attendance and reinforce compliance with the study medications and protocol. The coordinator will call the patient and the PAH clinician 24 hours after the study visit to discuss the clinical lab results.

5.1.5 Study Day (Six Months)

The research coordinator will call the patient 1-2 days before the visit as a reminder. The coordinator will instruct the patient to not eat or drink (except water) and to avoid heavy
exercise for 12 hours before the study day assessment. Patients will be instructed to bring their regular and study medications with them to each visit and to not take their regular or study medications before coming to the study center.

The patient will arrive at the study site. The following procedures will be performed:

- Phlebotomy
- Brachial artery ultrasound
- Eat a small snack
- Interim medical history
- Vital signs
- Review current medications
- Patient and clinician assessment of study group assignment
- WHO functional class assessment
- Complete SF36
- Six minute walk testing with Borg scores
- Provide instructions on bringing the patients routine medications to the follow-up visit

Blood samples for study assays and lipid profiles will be processed and banked, whereas samples for safety monitoring will be sent to the hospital laboratory.

Brachial artery ultrasound will be performed more than 30 minutes after venipuncture. After the ultrasound, the patient will be instructed to take their usual morning medications and study drugs. The patient will eat a snack provided by the study coordinator. The investigator or research coordinator will take a history and perform a physical examination, perform a pill count, assess side effects, and the patient will complete the SF36.

The patient will perform the 6MWT more than one hour after eating. After the completion of the walk test, the research coordinator will thank the patient for their attendance and reinforce compliance with the protocol. The coordinator will contact the patient and the PAH clinician 24 hours after the study visit to discuss the clinical lab results.

5.1.6 Phone Call/Study Day (Seven Months)

The research coordinator will call the patient. The coordinator will collect the following:

- Interim medical history
- Review current medications
- WHO functional class assessment
ASA-STAT Protocol

If there is a significant increase in symptoms or worsened clinical status since the previous assessment, the patient will be asked to come to the study center for evaluation. The research coordinator will thank the patient for his or her participation.

5.2 Study schedule of procedures

The table below summarizes the study procedures.

<table>
<thead>
<tr>
<th>Visit #</th>
<th>Screening</th>
<th>Baseline</th>
<th>Month 1</th>
<th>Week 6</th>
<th>Month 3</th>
<th>Month 4.5</th>
<th>Month 6</th>
<th>Month 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day#</td>
<td>-120 - 15</td>
<td>0</td>
<td>28 ± 7</td>
<td>42 ± 7</td>
<td>84 ± 7</td>
<td>126 ± 7</td>
<td>168 ± 7</td>
<td>196 ± 7</td>
</tr>
</tbody>
</table>

Telephone follow-up

- Informed consent: X
- History and physical
 - Medical history: X
 - Symptom assessment: X
 - Medications: X
 - Vital signs: X
 - Physical exam: X

General testing

- Chemistry, CBC: X (if D#-21±7) X (if ND)
- Transaminases, CPK: X (if D#-21±7) X (if ND)
- Prothrombin time/INR: X (if D#-21±7) X (if ND)
- HCG: X (if D#-21±7) X (if ND)

Endpoint assessment

- Six minute walk test: X
- Brachial artery ultrasound: X
- von Willebrand factor: X
- P-selectin: X
- β-thromboglobulin: X
- TxB2: X
- Lipid levels: X

Study procedures

- Dispense study drug/placebo: X
- Adverse events: X
- Medication compliance: X
- Assessment of masking: X
- SF36: X

ND = not done at (or since) screening (≤ 28 days)
5.3 Patients’ retention and drug compliance

We will enforce patient retention in several ways. We will record extensive contact information for each patient at their enrollment in the trial. This will include home, work, and cellular telephone numbers. The local research coordinator will call before each study visit to remind the patient to attend. We will provide other small incentives to the subjects in this trial, such as a $50 incentive for Visits 1-4 and parking vouchers/travel reimbursement at each visit.

The research coordinator and physician will explain the importance of compliance with the study protocol at each patient contact. If a patient fails to comply with a study visit, the coordinator will contact him or her by telephone. If this fails, the coordinator will send two letters by Federal Express, one week apart, to request follow-up.

We have considered how to minimize noncompliance with therapy. We will strongly emphasize the importance of complying with the study drug treatment. Patients with PAH are familiar with a complicated medical regimen and the dire implications of medication non-compliance. These patients understand that study medications must be taken religiously to maximize the value of an RCT. Nonetheless, we will perform pill counts at each visit and record episodes when medication is withheld due to clinical considerations. If a patient wishes to drop-out from the treatment phase of the study or has a serious adverse event (whether related to study drugs or not), we will continue to follow-up with the patient for study assessments to assist with safety monitoring and to avoid the problems introduced by missing data. The inclusion of such follow-up data will allow for analysis by intention-to-treat.

If a patient is withdrawn from the treatment portion of the study for any reason, the patient will visit the field center to undergo a history and physical examination. Only clinically necessary testing will be performed, as determined by the patient’s physician. The patient will be strongly encouraged to continue with the remainder of the study assessments, as scheduled.
Chapter 6. Assessment of Efficacy and Outcome Measures

6.1 Assessment of efficacy

Primary
The primary objectives of this study are to assess the effect of aspirin vs. placebo and simvastatin vs. placebo on the distance walked in six minutes at six months (24 weeks) in patients with PAH.

Secondary
There are several secondary objectives of this study. They include:

- To assess the effect of aspirin vs. placebo on P-selectin level, TxB2, and β-thromboglobulin at six months.

- To assess the effect of simvastatin vs. placebo on plasma von Willebrand factor level and flow-mediated dilation at six months.

- To assess the effect of aspirin vs. placebo and simvastatin vs. placebo on WHO functional class at six months.

- To assess the effect of aspirin vs. placebo and simvastatin vs. placebo on Borg score at the conclusion of the 6MWT at six months.

- To assess the effect of aspirin vs. placebo and simvastatin vs. placebo on the SF36 score at six months.

- To assess the effect of aspirin vs. placebo and simvastatin vs. placebo on each primary and secondary outcome measure at six weeks, three months, and six months.

- To assess the effect of aspirin vs. placebo and simvastatin vs. placebo on the percent and absolute changes from baseline of each primary and secondary outcome measure at six months.

- To assess the effect of aspirin vs. placebo and simvastatin vs. placebo on the time from randomization to 1) addition of new PAH therapy or increased doses of currently stable PAH therapies (e.g., prostacyclin analogues), 2) hospitalization for right-sided heart failure, 3) lung transplantation, 4) atrial septostomy, 5) cardiovascular death, and 6) all-cause death. Endpoints #3-6 will also be analyzed as a combined endpoint.

- To assess the effect of aspirin vs. placebo and simvastatin vs. placebo on each primary and secondary outcome measure in patients with six minute walk distance < 450 meters.
6.1.1 Six minute walk distance

Walking is the most basic form of exercise and is integral to daily activities. The six minute walk test (6MWT) is a standardized, timed submaximal test of unencouraged, self-determined distance walked which is reliable and valid.52,53 Standardized test methods, scripted and timed statements, and normative values have been established.54,55 The 6WMT is also non-invasive and safe. The distance walked in six minutes (6MWD) is associated with time until death in PAH.56,57 Therapies which improve 6MWD also prolong time until death in PAH, making this an excellent surrogate endpoint in PAH.3

The 6MWT will be performed more than one hour after eating on the morning of each study day. The patient will be instructed to wear comfortable clothing and shoes. The test will be performed at approximately the same time of day at each visit. The Borg score for dyspnea and oxygen saturation will be recorded at the beginning and conclusion of each test.

6.2 Secondary outcome measures

Endothelial cells and platelets release several substances upon dysfunction/injury and activation, respectively. We will use these plasma biomarkers to verify that our study interventions are having the expected cellular effects and to examine the associations with clinical endpoints. Brachial artery ultrasound will be performed to measure flow-mediated dilation. Participants also will be asked to complete an SF36 Health Survey. Time to new PAH therapies (and increased doses of certain stable therapies), hospitalization for right-heart failure, atrial septostomy, cardiovascular deaths, lung transplantation, and all-cause mortality will be other secondary endpoints.

6.2.1 P-selectin

P-selectin (CD-62P) is a glycoprotein expressed on the platelet surface during activation and shed into the plasma.58-64 Soluble P-selectin is elevated in a variety of diseases characterized by platelet activation.61,65-67 Patients with PAH also have increased P-selectin levels, which correlate with PVR and decrease after chronic epoprostenol therapy.21 P-selectin is therefore an established indicator of platelet activation.

6.2.2 TxB\textsubscript{2}

Arachidonic acid metabolism occurs in cellular membranes. In platelets, the eicosanoid intermediates mostly produce TxA\textsubscript{2}, whereas PGI\textsubscript{2} is produced in the normal vascular endothelium. TxA\textsubscript{2} is rapidly metabolized to the more stable TxB\textsubscript{2}, which may be reliably measured in plasma. TxB\textsubscript{2} is a standard measure of in vivo platelet activation, as platelets are the major source of this metabolite both in normals and in patients with PAH.
6.2.3 β-thromboglobulin

β-thromboglobulin composes 10% of the α granule contents, which are released upon platelet activation. This plasma biomarker therefore reflects the state of platelet degranulation.

6.2.4 Von Willebrand factor

Von Willebrand factor (vWF) is a large multimeric glycoprotein synthesized by endothelial cells and megakaryocytes, which is released by endothelial injury. VWF is a risk factor for cardiovascular events and death in healthy normals and patients with cardiopulmonary disease. We have found a strong, independent relationship between baseline increased vWF levels and the risk of death in PAH, as well. A persistently elevated vWF level despite the initiation of PAH therapy was associated with an increased risk of death. These data suggest that circulating vWF is an excellent surrogate marker of endothelial dysfunction in PAH.

6.2.5 Flow-mediated dilation

Brachial artery ultrasound measures NO-dependent arterial dilatation after transient ischemia. Briefly, a blood pressure cuff is placed on the forearm. A baseline rest image of the brachial artery is acquired and blood flow estimated from a pulsed Doppler velocity signal. Then, artery occlusion is performed by inflation of the cuff above systolic pressure. This causes downstream vessel dilation; cuff deflation produces a brief high-flow state (reactive hyperemia) to accommodate the dilated vessels. The resulting increase in shear stress produces brachial artery flow-mediated dilation (FMD), expressed as % increase in artery diameter.

Lower FMD predicts an increased risk of cardiovascular events and death, and interventions which increase FMD also improve outcomes in hypertension, coronary artery disease, congestive heart failure, and hypercholesterolemia.

6.2.6 WHO functional class

The WHO functional classification for PAH has been modified from the well-known New York Heart Association functional classification. This functional classification is based on symptoms, with Class I being defined by no symptoms, Class II as symptoms with more than usual activity, Class III as symptoms with less than usual activity, and Class IV with symptoms at rest. The WHO functional class will be assessed at baseline, six weeks, and 3, 6, and 7 months.

6.2.7 Addition of PAH medication or increased doses of current PAH therapies

The addition of new therapy for PAH indicates disease worsening (or subsequent) right heart failure. New PAH-specific medications added to the subjects’ medical regimen and the dates when added will be recorded during the study. Often, specific PAH medications
which are administered at a stable dose have increased dosing with clinical worsening (specifically, prostacyclin analog therapy). All dose changes will therefore be recorded.

6.2.8 Hospitalization for right-sided heart failure

We will record all hospitalizations during the time of the study. Records from each hospitalization will be obtained by the local study coordinator. These records will be reviewed by an independent panel of three physicians who are unrelated to the study.

6.2.9 SF36

The SF36 is one of the most widely used generic measures of subjective health status. The SF36 includes one multi-item scale that assesses eight health concepts: 1) limitations in physical activities because of health problems; 2) limitations in social activities because of physical and emotional problems; 3) limitations in usual role activities because of physical health problems; 4) bodily pain; 5) general mental health (psychological distress and well-being); 6) limitations in usual role activities because of emotional problems; 7) vitality (energy and fatigue); and 8) general health perceptions. Patients will complete the SF36 at baseline and each subsequent clinic visit during the therapy phase of the study.

6.2.10 Other clinical endpoints

Clinically significant events, such as atrial septostomy, lung transplantation, or death, will be recorded. Death certificates will be obtained to ascertain cause of death.
Chapter 7. Statistical Considerations

7.1 Study design

The proposed research project involves two primary and several secondary objectives. To address these aims, we will conduct a double-blind, randomized, placebo-controlled 2 X 2 factorial trial (Table 1). 6MWT and blood sampling will be performed at baseline, six weeks, and three and six months. Brachial artery ultrasound will be performed at baseline, six weeks and three and six months.

7.2 Statistical procedures

7.2.1 Data analysis

Eligible patients will be randomized in equal proportion to one of four possible treatment assignments (Table 1). Patients will be stratified at randomization by accrual center and type of PAH. Information on factors known or believed to be of prognostic importance, but not used in stratification, may be included as covariates in the analysis. The primary analysis will be an intent-to-treat analysis that will include all randomized participants regardless of their compliance with the study treatment or follow-up schedule. Hypothesis testing for the primary and secondary aims will be conducted using two-sided \(\alpha = 0.05 \).

Table 1. Study design

<table>
<thead>
<tr>
<th>Aspirin (A)</th>
<th>Simvastatin (S)</th>
<th>Margin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>AS A0</td>
</tr>
<tr>
<td>No</td>
<td>No</td>
<td>0S 00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AS + 0S A0 + 00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Margin</td>
<td>A0</td>
<td>00</td>
</tr>
<tr>
<td></td>
<td>N=46</td>
<td>N=46</td>
</tr>
<tr>
<td></td>
<td>N=46</td>
<td>N=92</td>
</tr>
</tbody>
</table>

7.2.2 Disposition of patients and baseline comparisons

Summaries of all patients screened, recruited, and randomized and the number who complete visits at six weeks and three and six months post-randomization will be provided, according to the CONSORT guidelines. The treatment groups will be compared at baseline with respect to demographics and baseline measurements related to efficacy and safety.

7.2.3 Univariate analysis

We will characterize subjects with regard to baseline and follow-up 6MWD, FMD, and biomarker levels, absolute change between the assessments, and percentage change between the assessments. We will summarize demographics, hemodynamics, and other predictors of exercise performance, clinical status, or adverse outcome. Continuous
variables will be summarized by the mean, median, standard deviation, and range, as appropriate. We will use contingency tables for discrete and dichotomous variables. Two-sided 95% confidence intervals for all parameters will be prepared for routine reporting.

7.2.4 Assessment for interaction between aspirin and simvastatin

A very important aspect of a factorial trial is the assessment for an interaction between the two treatments. As this phase II trial is inadequately powered for formal testing, we will construct a 95% confidence interval for the interaction term. If the upper bound of this confidence interval exceeds a clinically relevant effect size, we will consider a significant interaction to be present.

7.2.5 Analyses of treatment assignment and outcome measures

The primary analysis will compare the absolute measurement of each primary and secondary endpoint at six month follow-up between active therapy and placebo groups while adjusting for the baseline value. We will use a linear mixed-effects model for the analysis of the primary outcome with treatment assignment as the independent variable of interest and the endpoint as the dependent variable. The baseline assessment will be included in the model.

If there is no interaction, bivariate analyses will proceed “at the margins”. We will compare the effect estimates of patients assigned to simvastatin compared to those who were not (AS+S0 vs. A0 + 00) in terms of 6MWD (Specific Aim 1) and compare the 6MWD in patients assigned to aspirin to those who were not (AS+A0 vs. 0S+00) (Specific Aim 2). Analyses for other aims will proceed similarly. If a significant interaction exists, we will include an aspirin-by-simvastatin interaction term as an independent variable.

7.2.6 Other analyses

Exploratory multivariate analyses will be performed incorporating all of the endpoint assessments (baseline, six weeks, three, and six months) in a linear mixed-effects model with treatment assignment as the independent variable of interest and the endpoint as dependent variable. We will also assess the comparison between treatment groups using the six month measurement and the percent change over the study period. All important prognostic factors will also be included in the regression models.

7.2.7 Correlations between biomarkers and 6MWD

We will calculate Pearson correlation coefficients between the changes in biomarker levels (vWF, P-selectin, etc.) over six months with the change in 6MWD. Non-normal data will be transformed to meet those assumptions.
7.2.8 Survival analysis

We will also assess time to failure (as defined by our secondary outcomes, such as addition of new therapies or previously stable PAH therapy dose increases, hospitalization, serious adverse events, lung transplantation, atrial septostomy, cardiovascular and all-cause death). Overall survival will be estimated using Kaplan-Meier curves. Time-to-event will be defined as the time (in days) between randomization and the occurrence of one of the outcomes of interest. A stratified log-rank statistic (using the stratification variables from the randomization procedure) will be used to compare the survival curves. A Cox proportional hazards model with treatment and other important prognostic factors as covariates will be used for the multivariate analysis of the survival times. Hazard ratios and their 95% confidence intervals will be computed. Patients will be censored if they have not experienced any of the events of interest at the end of the study period.

7.2.9 Missing data and dropouts

We will attempt to minimize missing data, however we have planned for its occurrence. For patients lost to follow-up, we will use all of the information available until the end of follow-up. If the data are missing at random (MAR), then likelihood-based methods such as mixed-effects models can be used for analysis without bias. The efficiency of these methods depends on 1) the fraction of missing data and 2) the extent of non-ignorability of the missing values. When the fraction of missing data is small, even non-ignorability has a minimal effect on the final estimates, emphasizing the importance of avoiding missing data. If the extent of missingness is large compared to the effect size, we will use the multiple imputation proposed by Little and Yau. With this approach missing data are imputed conditionally on the actual treatment received and an intent-to-treat analysis is performed on the imputed data.

We have anticipated a 10% drop-out rate. This protocol will continue to follow and perform test procedures as prescribed even if a patient drops-out from the therapeutic portion of the study. That is, if a patient develops a contraindication (or indication) for one or both of the study drugs or decides that he/she does not wish to continue taking the study drug(s), the patient will stop the investigational treatment and follow-up with their physician, but will still be strongly encouraged to continue to follow-up with the study personnel for all scheduled study procedures (e.g., six minute walk testing, brachial artery ultrasound, etc.), so that missing data (and assumptions regarding these data) will be minimized.

7.3 Sample size and power calculations

In estimating our sample size, we have considered the effects of each intervention (aspirin or simvastatin) on the primary and secondary outcome measures as independent hypotheses, setting \(\alpha = 0.05 \) and \(\beta = 0.20 \) for each. We expect 92 patients to enroll in the study (23-AS, 23-A0, 23-0S, 23-00) (Table 1). We have performed our sample size calculations while anticipating a 10% drop-out rate. Therefore, all detectable differences
are actually based on having 80 patients at the completion of the trial.

We have shown the extremes of “No interaction present” and “Significant interaction present” to demonstrate our ability to detect important differences in either situation. As our “interaction present” power calculations are based on subset comparisons (A0 vs. 00 and S0 vs. 00, excluding the AS group), and we will actually analyze the entire study population using linear mixed-effects models with an interaction term, these calculations are quite conservative.

7.3.1 Power for Primary End Point

We found a difference of 86 meters in six minute walk testing after treatment with intravenous epoprostenol for one year between patients who died after three years and those who lived in our preliminary studies; other studies have found clinically significant differences as large as 160 meters after effective treatment.³ The correlation coefficient (r) between baseline and follow-up six minute walk testing was > 0.60 in our preliminary data, and other clinical trial data have suggested r values > 0.70 for the correlation between baseline and post-treatment six minute walk test distance. Under these conditions, we have sufficient power to detect clinically significant effect estimates with or without an interaction between drugs (Table 2).

<table>
<thead>
<tr>
<th>Table 2. Power to detect differences in 6MWD (92 Enrolled, 80 Complete)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correlation between Baseline and 6 Month 6MWD</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>No interaction present</td>
</tr>
<tr>
<td>0.60</td>
</tr>
<tr>
<td>0.70</td>
</tr>
<tr>
<td>0.80</td>
</tr>
<tr>
<td>Significant interaction present</td>
</tr>
<tr>
<td>0.60</td>
</tr>
<tr>
<td>0.70</td>
</tr>
<tr>
<td>0.80</td>
</tr>
</tbody>
</table>

7.4 Interim monitoring guidelines

The objectives of interim monitoring are to 1) assess for adverse events, 2) track participant accrual rates, 3) track study participant adherence to the prescribed treatment assignment, and to 4) track the primary and secondary outcomes for early evidence of harm. To accomplish this, summaries of data quality, accrual, adherence, distribution of baseline factors, adverse events, study endpoints and other analyses as requested will be prepared for review by the Data and Safety Monitoring Board (DSMB) at each meeting. We have not planned for a formal interim analysis for efficacy and therefore there are no stopping rules for efficacy for this trial.
7.5 Protocol violations

Serious protocol violations such as discontinuation of experimental treatment unrelated to adverse events or physician decision (e.g., in anticipation of invasive procedures) will be carefully recorded and regularly reviewed at the scheduled meetings of the Steering Committee as well as the DSMB. Remedial changes in procedure will be recommended where feasible to reduce the incidence of such violations. The causes and circumstances of all violations will be documented where known for purposes of future secondary analyses and interpretation. Because all primary analyses will be intent-to-treat, it is essential that violations be kept to a minimum especially where it is possible to influence their rate of occurrence.

7.6 Safety and masking analysis

All patients will be assessed for toxicity and included in the safety analysis. This analysis will include summaries of the incidence and grade of toxicities. Safety interim analyses will be performed and reported at each DSMB meeting. Patients will be evaluated for serious adverse events like major bleeding and death. Fisher’s exact test will be used to evaluate the differential toxicity in the two treatment groups. A total of 92 patients is sufficient to estimate the rate of serious adverse events to within ± 15% (95% confidence interval) within each treatment arm.
Chapter 8. Quality Control

Design strategies and monitoring activities throughout the study will ensure the integrity and high quality of the data. Design strategies include randomization of treatment assignment, masking, and centralized training and certification of personnel. The rigorous monitoring program includes data queries, site visits and performance monitoring over the time of the trial.

8.1 Personnel training

Prior to randomization of the first patient in the study protocol, each clinical site PI will ensure that all staff have completed appropriate training and certification and all documentation including IRB approval are completed and available.

The purpose of personnel training is to ensure that study personnel are carrying out the protocol in a consistent way between sites and are adhering to good clinical practice guidelines.

Staff will have current Human Subjects Training Certification on file at their respective IRB offices. Before enrollment begins, Study Coordinators, research assistants, and technicians who will perform the screening, baseline and outcome assessments will attend centralized sessions to be trained in all procedures, including completion of case-report forms (CRF), performance of study assessments, and patient safety. Study technicians and investigators will undergo certification in ultrasound, six minute walk testing, and laboratory procedures. Study personnel will participate in regular conference calls to discuss coding and scoring issues and to prevent drift.

All study personnel are required to read the consent form, the protocol and the MOP, and to complete a form regarding the functions that they are fulfilling in the trial.

8.2 Data queries and site visits

The DCC will create programs to identify discrepancies and incomplete data. These reports are sent to the sites, and tracked until each problem is resolved and corrected in the database.

Periodic on-site audits of each enrollment site will be conducted. During these visits, the monitoring staff reviews a random sample of at least 10% of case report forms and source documents to ensure that the information on the forms is complete and consistent with the source documents, that missing visits are recorded, and that the disposition of participants who complete or exit the study is recorded. All consent forms and screening logs will be audited. Summary statistics from the screening logs will be sent to the DCC quarterly. Finally, the DCC staff reviews the reporting, documentation and follow-up of serious adverse events to assure that these events were handled according to required study procedures.
8.3 Performance monitoring

Performance monitoring will be done throughout the study by the DCC. In the screening process, the number of patients screened, the number of eligible patients, the number randomized and the number missed will be recorded. This information will be used to document adequate screening and intervene if necessary. The randomization process will be monitored to assure that eligible patients for whom consent was obtained and baseline data collected were randomized, and that the randomization process resulted in dispensing the right study treatment initially and through the course of treatment.
Chapter 9. Participant Safety and Confidentiality

9.1 Consent

Consent will be obtained for enrollment from participants. For each consent process, study personnel will discuss the details of the study, the risks and benefits, and the patient’s rights and responsibilities if they choose to participate in the trial and their right to refuse to participate. It will be made clear that their clinical care will not be affected by their decision.

9.2 Institutional Review Board process

Once the clinical centers obtain IRB approval, they should send a copy of the approval notification and a copy of the approved consent to the DCC. These materials MUST be on file in the DCC before a center can begin enrolling participants into the clinical trial.

9.3 Laboratory values

The following clinical laboratory tests will be measured at the screening (or baseline), six week, three and six month visits and as clinically indicated.

Hematology
Complete blood count, including hemoglobin, hematocrit, and platelets.

Chemistry
Blood urea nitrogen, creatinine, alanine aminotransferase, aspartate aminotransferase.

Coagulation studies
Prothrombin time, INR.

Pregnancy test (at screening only for women of childbearing potential)

9.4 Monitoring anticoagulation

The majority of patients with PAH are treated with warfarin to prevent in situ thrombosis in the pulmonary vasculature. Usual practice is to target an INR of 2 to 3, which will continue in this study. After the INR is stable, the usual practice is to check the INR monthly.

For this study, the INR will be checked at the screening (or baseline) visit, Week 6, Month 3, and Month 6. Throughout the trial, patients will continue with their routine medical care, which includes standard coagulation laboratory testing on a monthly basis in patients receiving warfarin. All clinical laboratories obtained for the study will be available to the subject’s primary PAH physician, and the research coordinator will receive all laboratories obtained during clinical care.
ASA-STAT Protocol

Adjustments of warfarin doses based on the INR will be left to the patients’ PAH clinicians and other physicians, who will be aware of the patients’ participation in this study (and the possible assignment to aspirin). If the INR is > 5.0 on any assessment (study or clinical), the aspirin/placebo treatment will be held and the value will be communicated to the patient’s PAH physician for further management. The aspirin/placebo treatment will not be restarted until an INR < 3.0 is documented (locally or at the study center) after warfarin dose reduction. As the vast majority of subjects for this study will be drawn from the clinical practices at the field centers, the PAH clinicians for these patients will commonly be part of the investigative team.

A platelet count of < 75,000/l will constitute an emergent indication to interrupt treatment with aspirin study drug. Platelet counts will be performed at least weekly after such an event. The aspirin study drug may be re-instituted when platelet count exceeds 90,000/l with the agreement of the subject’s pulmonary hypertension physician or primary care physician.

Severe or acute anemia (Hct < 30% or an absolute change from screening > 6%) will be considered an emergent indication to interrupt treatment with aspirin study drug. Complete blood counts will be performed at reasonable intervals, based on the clinical scenario. The aspirin study drug may be re-instituted when the Hct > 30% and is stable and an evaluation has shown no evidence of active bleeding.

9.5 Simvastatin-related laboratory abnormalities and drug interactions

The main laboratory abnormalities which may result from simvastatin include increased CPK and liver transaminases. Patients who develop increased CPK levels (> 2x ULN) will be followed with weekly CPK levels until the abnormalities return to normal. Simvastatin will be continued if CPK values are decreasing on the following week’s blood sample. If persistent elevations (> 2x ULN) occur over two weeks (three assessments) or symptoms such as muscle pain are present, the simvastatin study drug will be stopped. The simvastatin study drug will be stopped immediately if myositis (CPK > 10 x ULN) is documented at any time.

The management of increased liver transaminase levels will depend on whether the patient is also receiving bosentan or other endothelin-1 receptor antagonists. In patients who are not being treated with endothelin antagonists, increased transaminase levels (> 1.5 x ULN) (anticipated to be < 1%) will be followed with repeat liver enzyme assessments weekly until they have returned to normal. An increase of > 3 x ULN for two weeks or a level of < 3 x ULN which is increasing over two weeks (three assessments) will result in withdrawal of simvastatin study drug. A patient with an increase of < 3 x ULN which is stable/decreasing over two weeks (three assessments) will be followed on study drug until normalization. After three assessments which are stable/decreasing, transaminases may be followed as required by the patient’s physician.

In patients who are receiving bosentan or other endothelin-1 receptor antagonists, increased transaminase levels (> 1.5 x ULN) will be followed with repeat liver enzyme assessments every two weeks. Increases > 3 x ULN and < 5 x ULN will result in bosentan dose reduction, as is recommended by the manufacturer. Unchanged or
increasing elevations in transaminases over two weeks will result in simvastatin study drug withdrawal. Increases > 5 x ULN will result in stopping bosentan and simvastatin study drug. After stopping study drug, transaminases will be checked weekly until they return to normal. Transaminase elevations accompanied by symptoms of hepatitis, such as nausea, vomiting, abdominal pain or jaundice, will result in simvastatin drug withdrawal.

There is no known increase in hepatotoxicity with combined simvastatin and endothelin-1 receptor antagonist use. In a pharmacokinetic study in nine healthy male subjects, concomitant therapy with bosentan and simvastatin for 6 days was associated with a 40% reduction in simvastatin and metabolite levels, while no effect on plasma levels of bosentan or its metabolites were noted.50 No clinically relevant treatment-related changes in vital signs, electrocardiographic, or clinical laboratory parameters were observed. In a large study of bosentan therapy in patients with congestive heart failure,51 no increased incidence of hepatic enzyme abnormalities was noted in those subjects receiving statin therapy (Personal communication, Actelion).

There is one published case report of rhabdomyolysis in the setting of a single dose of sildenafil and chronic simvastatin use.98 Other than this report, there are no other published cases of toxicity with the combined use of these drugs, and there is no warning on the FDA-approved insert for simvastatin regarding this interaction. A recent search did not show any mention of this potential interaction on the FDA web site. (http://www.fda.gov/medwatch, Search performed June 1, 2006) Nevertheless, we will closely monitor the combined use of these drugs.

9.6 Assessment of bleeding

At each clinical contact (that is, each clinic visit and telephone call), the research coordinators will ask standard questions about bleeding. In addition, the subjects will be encouraged to promptly contact the local study staff with all episodes of bleeding.

We will use standard definitions of major and minor bleeding. Major bleeding will be defined as 1) symptomatic bleeding in a critical area or organ (e.g., intracranial, intraspinal, intraocular, retroperitoneal, intraarticular, or intramuscular with compartment syndrome) or 2) overt bleeding causing a fall in hemoglobin level of ≥ 2 g/dl or requiring surgery or transfusion, or 3) bleeding resulting in permanent functional disability or death. Minor bleeding will be defined as bleeding which does not meet any of the above criteria for major hemorrhage. We will have three masked experts classify all bleeding events, review deaths due to reported hemorrhage, and determine the relation of bleeding to treatment.

Major bleeding will result in stopping the aspirin/placebo for the duration of the clinical trial. The patient will be urged to continue to use the simvastatin or placebo and to undergo follow-up testing for the clinical trial as he or she is able.
Minor bleeding episodes (which will be labeled as adverse events or serious adverse events) will be judged individually. The physician who is providing clinical care to the patient will assist in deciding whether the aspirin study drug should be held or withdrawn (under the assumption that the subject has been assigned to aspirin). The decision to restart study drug would likely depend on the results of the medically-necessary evaluation.

9.7 Other events

We will not discontinue study drug for clinical events not thought to be serious drug-related adverse events. For example, a hospitalization for clinical worsening will not result in cessation of trial participation. Such events could result in missing data for primary and secondary endpoints, comprising the integrity of the analysis. As the trial does not prohibit any therapies which are the standard of care in PAH, there is no ethical or safety reason to stop trial participation under such circumstances. Even if patients are withdrawn from the study drug, outcome assessments will continue, allowing analysis by intent-to-treat.

9.8 Adverse events

9.8.1 Definitions

Adverse event (AE): Any untoward or unfavorable medical occurrence in a human subject, including any abnormal sign (for example, abnormal physical exam or laboratory finding), symptom, or disease, temporally associated with the subject’s participation in the research, whether or not considered related to the subject’s participation in the research.

Serious adverse event (SAE): An AE that meets any of the following criteria:

1) results in death,
2) is life-threatening (places the subject at immediate risk of death from the event as it occurred),
3) requires or prolongs hospitalization,
4) causes persistent or significant disability or incapacity,
5) results in congenital abnormalities or birth defects,
6) any other AE that, based upon appropriate medical judgement, may jeopardize the subject’s health and may require medical or surgical intervention to prevent one of the other outcomes listed in this definition.

Unanticipated Problem (UP): Any incident, experience, or outcome that meets all of the following criteria:

1) unexpected (in terms of nature, severity, or frequency) given a) the research procedures that are described in the protocol-related documents, such as the IRB-approved research protocol and informed consent document; and b) the characteristics of the subject population being studied;
2) related or possibly related to participation in the research; and

3) suggests that the research places subjects or others at a greater risk of harm (including physical, psychological, economic, or social harm) than was previously known or recognized.

Possibly related to participation in the research: There is a reasonable possibility that the adverse event, experience, or outcome may have been caused by the procedures involved in the research.

9.8.2 Interpretation of definitions

Adverse event: An unfavorable or unintended medical occurrence that is temporally associated with the study treatment, regardless of whether it is thought to have a causal relationship with the treatment. Temporal association with treatment means that the adverse event occurred after treatment was started, and either when (or soon after) it was stopped.

Examples include the following:
- Bleeding
- Concurrent illness
- Increase in severity or frequency of a medical condition occurring during the trial

9.8.3. Classifying adverse events

Severity:

1) Mild, did not require treatment;
2) Moderate, resolved with treatment;
3) Severe, inability to carry on normal activities, required professional medical attention;
4) Life-threatening or permanently disabling;
5) Fatal

In this grading system, severity is not equivalent to seriousness. A SAE would be any event which was life-threatening or disabling (4) or fatal (5) or was severe (3) and required or prolonged hospitalization.

Expectedness

AEs must be assessed as to whether they were expected to occur or were unexpected, meaning not anticipated based on current knowledge found in the protocol, investigator brochure, product insert, or label.
Unexpected: an AE for which the nature or severity is not consistent with information about the condition under study or intervention in the protocol, consent form, product brochure, or investigator brochure.

Expected: an AE known to be associated with the intervention or condition under study.

OHRP defines an **unexpected AE** as any AE occurring in one or more subjects participating in a research protocol, the nature, severity, or frequency of which is not consistent with either:

1) the known or foreseeable risk of AEs associated with the procedures involved in the research that are described in a) the protocol-related documents, such as the IRB-approved research protocol, any applicable investigator brochure, and the current IRB-approved informed consent document, and b) other relevant sources of information, such as product labeling and package inserts; or

2) the expected natural progression of any underlying disease, disorder, or condition of the subject(s) experiencing the AE and the subject’s predisposing risk factor profile for the AE.

Relatedness:

1) **Definite**: the AE is clearly related to the intervention
2) **Probably**: the AE is likely related to the intervention
3) **Possible**: the AE may be related to the intervention
4) **Unlikely**: the AE is doubtfully related to the intervention
5) **Unrelated**: the AE is clearly not related to the intervention

9.8.4 Reporting procedures for adverse events

For each identified AE, an AE form will be completed. Reporting procedures should be started immediately upon learning of a SAE.

Within **1 working day** of learning of an SAE, the SAE form will be completed and a fax of the form sent to the DCC. The chair of the DCC will forward all SAE reports to Bayer Health Care and Merck & Co., Inc. within **1 working day** of receipt of the SAE form.

The research coordinator submits the SAE form and pertinent records to his/her IRB within **48 hours** if the SAE is:

1) unexpected,
2) deemed to be possibly, probably, or definitely related to participation in the study or resulting from protocol violations, and
3) an UP.
ASA-STAT Protocol

All reports for SAEs meeting the above three criteria are also sent to the DCC chair who will forward them to 1) the NHLBI and 2) to the other clinical site for submission to the IRB and GCRC within two weeks. The clinical site at which the SAE meeting the three criteria occurs should notify the DCC of any subsequent conclusions of its IRB. The DCC will forward these conclusions to the other clinical site.

SAEs that are also UPs must be reported to the local IRB within 7 days of the investigator becoming aware of the event.

Serious and unanticipated AEs which are fatal or life-threatening must be reported within 7 days to the local IRB and NHLBI.

SAEs or UPs must be reported within two weeks to the NHLBI and the FDA (MedWatch report).

Any UP that is not a SAE must be reported within two weeks to the local IRB and the NHLBI and within 30 days to OHRP and the DCC and the other participating site for IRB notification.

SAEs which are unexpected that are fatal or life-threatening must be reported within 7 days to the local IRB and NHLBI. SAEs which are unexpected and fatal must be reported within 24 hours to the local IRB.

If a participant dies, death report forms must be completed and faxed to the DCC within 1 working day of learning about the SAE. All deaths should be reported to the local IRB within 72 hours of the investigator becoming aware of the event.

Any UP that is not an AE or SAE must be reported to the local IRB and the NHLBI within two weeks of the investigator becoming aware of the problem.

9.8.5 Patient withdrawal

A patient has the right to withdraw from the study entirely at any time for any reason without prejudice to future medical care by the investigator or other physician. The investigator also has the right to withdraw patients from the study in the event of concurrent illness, AEs, or other reasons deemed to be in the patient’s best interest.

A patient should be withdrawn from the study if there is:

Withdrawal of consent
Termination of the study by the funding agency or DSMB

In order to preserve the integrity of the intention-to-treat analysis, even if the subject is withdrawn from the treatment portion of the protocol (either due to patient, physician, or investigator decision), it is imperative to continue with the scheduled follow-up assessments both for the safety of the subject and for completeness of data collection. This will be explained to potential subjects at the time of informed consent. The
importance of compliance with study visits will be reinforced throughout the trial. If either or both treatments are permanently withdrawn, the subject will return to the field center for safety assessment (history, physical examination, and clinical laboratories, if necessary).

In the event of clinical worsening, patients will be continued on their assigned study medication. There is no evidence that either of the medications under study are effective in patients with PAH, so that there is neither reason to unmask the study therapy nor to initiate treatment with aspirin or simvastatin in such patients. If the patient develops an indication for aspirin/statin therapy (such as coronary artery disease, cerebrovascular disease, peripheral vascular disease), the patient would be withdrawn from the treatment portion of the trial (but continue being assessed as per the trial protocol).

9.8.6 Unblinding of treatment assignment

Unblinding or breaking of the randomization code for a specific patient will be considered, prior to the formal study unblinding, only if the following circumstances are met: 1) knowledge of the treatment assignment is required to initiate appropriate therapy for an adverse event or 2) if the safety of the subject is at serious risk if the treatment is continued without the knowledge of treatment assignment. The decision to unmask will be made by the study PI. The DSMB and the NHLBI Project Officer must be notified of the decision as soon as possible.

9.9 Confidentiality of study data

Clinical data will be obtained from the patients and their clinical charts throughout the study period. Records from potential clinical endpoints or adverse events will be obtained and reviewed by study staff. Blood will be drawn from consenting patients specifically for research purposes, and patients will undergo exercise testing. Brachial artery ultrasounds will be performed on patients and recorded. Subjects will be assigned a unique identifier when the screening data are entered into the Web-based database and the “Enroll” button is depressed. The unique identifier will be linked to the subject name only at the respective field center on the Subject Log. All other data entry forms, biologic samples, ultrasound studies, or exercise data will be identified by the subject’s unique identifier. Only the Principal Investigator at each site and the research coordinator will have access to the linkage between the subject identity and the unique identifier. This linkage will be stored in a locked file cabinet.

The DCC at the Columbia University Mailman School of Public Health will oversee the data management procedures for this trial. The team will consist of Emilia Bagiella, Ph.D. (Cointvestigator), Associate Professor in the Department of Biostatistics, a database engineer (Sudhir Marathe) and a database programmer (Veena Singh).

All clinical data will be entered using a Web-based database with appropriate security measures. All data with participant characteristics, tracking data, and information collected at scheduled follow-ups will be stored in a single integrated information system using a web-based software application developed using industry standard Java
Enterprise Edition (JEE) technologies. Several layers of fine-grained access controls regulate user access to one or more data-visualization and data-manipulation functionality. Inbuilt Java-based data encryption-decryption capabilities based on industry-standard encryption-algorithms offers storage of patient-related data in encrypted format. Moreover, all system-logins, data-entries, and data-updates are recorded, enabling efficient data-tracking. Access to the server is available only to authorized users with passwords; overall data security is ensured via 2 sets of firewalls. Additional security is provided by database software requiring a password for data entry, and allowing for password protection at the record level within a database. Secure Sockets Layer (SSL) will be employed which creates a secure connection between the Web Server and the browser. This ensures that all data entered by the user, and then transferred to the Web Server, remain private. Patient confidentiality will be ensured by eliminating from the design of the data systems any information that could be used to identify individual participants. Each participant will be identified in the database only by a sequential, project-specific ID number.

The DCC will also have paper records and computer files containing participant information, but without personal identifying information. All DCC personnel have passed GCP and HIPAA tests and understand the confidential nature of the data collected, processed and stored at the DCC. All DCC personnel will be required to sign a confidentiality certification, concerning the study results. The paper records will be stored in locked cabinets within secure office spaces. The computer files will be stored on the Research Information Services Consortium’s (RISC) server at Columbia University. Computers are password protected in locked offices. Access to computers is available only to authorized users with passwords; overall data security is ensured via two sets of firewalls.

9.10 Potential risks

There are several areas of potential risk in this study. We will obtain several blood samples from each subject. There is a risk of bruising, hematoma, and infection after phlebotomy, which are possible but not considered serious adverse events. Fainting may occur which is unlikely, but considered a serious adverse event. The removal of <50 cc of blood five times during six months is a potential risk, however this amount is routinely taken from patients for clinical indications without adverse effect. Medications will be delayed until after phlebotomy and brachial artery ultrasound on each study day, which would be unlikely to pose a significant risk. Patients must avoid non-steroidal anti-inflammatory medications for two weeks before the baseline visit and throughout the study period.

The 6MWT may cause light-headedness, chest pain, or musculoskeletal discomfort, however the risks of this study to patients are minimal. In addition, patients with PAH routinely undergo 6MWT for clinical indications, so this study procedure does not increase risk above usual clinical care.

Brachial artery ultrasound will entail inflation of a blood pressure cuff to induce arm ischemia which may cause some discomfort, but poses minimal risk in patients without
congenital arm abnormalities. This discomfort has been equated to that experienced during venous phlebotomy.

The administration of aspirin poses an increased risk of gastritis and peptic ulcer. Aspirin in combination with warfarin poses an increased risk of bleeding. The main risks of simvastatin administration are of increased CPK and rhabdomyolysis and increased transaminases. See the detailed discussion of the risks of the study medications in Chapter 4.

The other risk to the subjects is the potential loss of confidentiality during data collection.

9.11 Potential benefits

The results from the study could be applied in the future to patients (including those in the study) who stand to benefit from the information. As the study involves the risks of randomization to simvastatin and/or aspirin, phlebotomy, exercise testing, and brachial artery ultrasound and loss of confidentiality, and there is a potential for future benefit for both subjects in the study and for future patients, the risk/benefit ratio is favorable.

9.12 Alternatives

The use of the medications for this study requires that other medications including aspirin, non-steroidal anti-inflammatory medicines (“NSAIDS”), and statins, not be used. Therefore, the alternative is to not participate in this study and to continue having the option to take these medications.
REFERENCES

51. Kalra PR, Moon JC, Coats AJ. Do results of the ENABLE (Endothelin Antagonist Bosentan for Lowering Cardiac Events in Heart Failure) study spell the end for non-selective endothelin antagonism in heart failure? Int J Cardiol 2002;85:195-7.

Protocol Revisions- Version 6.1

<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
<th>Old Text</th>
<th>New Text</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cover Page</td>
<td></td>
<td>Reda Girgis, MB, BCh Johns Hopkins University Co-Principal Investigator</td>
<td></td>
<td>We added the co-Principal Investigator to the cover page</td>
</tr>
<tr>
<td>3 and 19</td>
<td>Inclusion criteria Section 3.2.1 Inclusion criteria</td>
<td>Pulmonary function tests within</td>
<td>Most recent pulmonary function tests...</td>
<td>We have dropped the time requirement for pulmonary function testing.</td>
</tr>
<tr>
<td>4 and 20</td>
<td>Exclusion criteria Section 3.2.2. Exclusion criteria</td>
<td>Chronic liver disease</td>
<td>Chronic liver disease with portal hypertension</td>
<td>We wish to allow patients with mild liver disease to enroll.</td>
</tr>
<tr>
<td>6</td>
<td>Protocol summary, Study Observations</td>
<td>All serious adverse events will be reported...</td>
<td>All unexpected serious adverse events will be reported...</td>
<td>We specified SAE reporting procedures in accordance with our IRBs.</td>
</tr>
<tr>
<td>19</td>
<td>Protocol, Section 3.1.1</td>
<td>We will perform computerized searches...within the previous two years with an ICD-9 code for pulmonary hypertension.</td>
<td>We will perform computerized searches...with an ICD-9 code for pulmonary hypertension.</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Protocol, Section 3.1.1</td>
<td></td>
<td>We will send recruitment letters to potentially eligible patients who are cared for in the investigators’ clinical practices.</td>
<td>We’ve added an IRB approved recruitment strategy.</td>
</tr>
<tr>
<td>21</td>
<td>Protocol, Section 3.4</td>
<td></td>
<td>The decision to unmask will be made by the study PI. The DSMB and the NHLBI Project Officer must be notified of the decision as soon as possible.</td>
<td>We clarified the process of unmasking.</td>
</tr>
<tr>
<td>Page</td>
<td>Protocol, Section 4.2</td>
<td>We will utilize simvastatin 40 mg by mouth each day and placebo (supplied by Merck, Inc.) This is the identical dose recommended for patients at high risk for a cardiac event due to existing coronary heart disease, diabetes, peripheral vascular disease, history of stroke or other cerebrovascular disease.</td>
<td>As Merck has agreed to donate the simvastatin and placebo for our trial, we’ve modified the protocol accordingly.</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>----------------------</td>
<td>---</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Protocol, Section 4.2</td>
<td>Simvastatin will be purchased as either the Merck brand name product (Zocor) or an FDA-approved bioequivalent generic. Simvastatin is presently undergoing transition from a brand name to a generic product, and the time at which a generic product will become available has been projected to be June, 2006. Although there are already generic products which have received FDA approval as bioequivalent to Zocor, patent litigation may delay commercial distribution. As such the clinical trial may begin using the brand name product, and may switch to a bioequivalent generic product, when the latter becomes available.</td>
<td>Deleted</td>
<td>See above</td>
</tr>
<tr>
<td>Page</td>
<td>Protocol, Section</td>
<td>Description</td>
<td>Modification Details</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
<td>-------------</td>
<td>----------------------</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>4.3</td>
<td>Active tablets and matching placebo tablets will be overencapsulated by the CUMC Research Pharmacy, into interlocking DB gelatin capsules. DBcaps® capsules are two-piece gelatin capsules that are designed for double-blind clinical trials. The wider diameter of opaque DBcaps capsules allows containment and blinding of large-diameter or uniquely-shaped tablets. The shorter length facilitates ease of swallowing. Tablets will be held in place within the capsule shell using microcrystalline cellulose, USP.</td>
<td>As Bayer HealthCare and Merck Inc. have agreed to donate the aspirin and simvastatin drugs/placebo respectively, we’ve modified the protocol accordingly.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Placebo tablets for aspirin and simvastatin which match the active drug will be donated by Bayer HealthCare and Merck, Inc., respectively</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Patients will be asked to return bottles at each clinic visit</td>
<td>We clarified the specific visits on which the bottles will be returned.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>At the end of the study, after accountability has been completed, study product can be destroyed at the clinical site, if the site provides an acceptable drug destruction policy.</td>
<td>We clarified the drug destruction procedure in accordance with our Research Pharmacy’s guidelines.</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>4.6</td>
<td>the Research Pharmacist will supply the DSMB with the drug/placebo identifier.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>the Research Pharmacist will supply the Chair of the DCC with the drug/placebo identifier.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Page</td>
<td>Protocol, Section</td>
<td>Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
<td>-------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>5.1.2</td>
<td>The patient’s primary PAH physician and medical doctor will be alerted to the patient’s participation in the clinical trial.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>5.1.4</td>
<td>The research nurse will call the patient the day before each visit as a reminder.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>5.1.5</td>
<td>The research coordinator will call the patient 1-2 days before each visit as a reminder.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>5.1.6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 29 | 5.2 | a) Screening: Visit 1...Month 7: Visit 6
b) Screening: Day # -28-0
c) Liver Function Tests |
| 29 | | a) Screening: Visit 0...Month 7: Visit 5
b) Screening: Day #-21 +/- 7
c) Transaminases |
| 30 | 5.3 | We will provide other small incentives to the subjects in this trial, such as a $50 reimbursement at each visit for travel expenses and compensation for time. |
| 30 | | We will provide other small incentives to the subjects in this trial, such as a $50 incentive for Visits 1-4 and parking vouchers at each visit. |
| 30 | | We added an additional incentive for the patient. |
| 32 | 6.1.1 | The Borg score for dyspnea and oxygen saturation will be recorded at the conclusion of each test. |
| 32 | | The Borg score for dyspnea and oxygen saturation will be recorded at the beginning and conclusion of each test. |
| 41 | 8.3 | Randomization logs will be maintained at each site to allow |
| | | Deleted |
performance monitoring. For the outcome assessments, the number of participants completing the visits will be reported as well as the number completed on schedule.

<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>43</td>
<td>Protocol, Section 9.4</td>
<td>A platelet count of < 75,000/l will constitute an emergent indication to interrupt treatment with aspirin study drug. Platelet counts will be performed at least weekly after such an event. The aspirin study drug may be re-instituted when platelet count exceeds 90,000/l with the agreement of the subject’s pulmonary hypertension physician or primary care physician. Severe or acute anemia (Hct < 30% or an absolute change from screening > 6%) will be considered an emergent indication to interrupt treatment with aspirin study drug. Complete blood counts will be performed at reasonable intervals, based on the clinical scenario. The aspirin study drug may be re-instituted when the Hct > 30% and is stable and an</td>
</tr>
<tr>
<td>Page</td>
<td>Protocol, Section 9.5</td>
<td>If persistent elevations occur or symptoms are present, the simvastatin study drug will be stopped.</td>
</tr>
<tr>
<td>------</td>
<td>---------------------</td>
<td>---</td>
</tr>
<tr>
<td>43</td>
<td>Protocol, Section 9.5</td>
<td>...will be followed with repeat liver enzyme assessments every two weeks until they have returned to normal. An increase of > 3 x ULN for two weeks or a level of < 3 x ULN which is increasing over two weeks will result in withdrawal of simvastatin study drug. A patient with an increase of < 3 x ULN which is stable/decreasing will be followed on study until normalization.</td>
</tr>
<tr>
<td>44</td>
<td>Protocol, Section 9.5</td>
<td>Transaminases will be checked weekly until they return to normal.</td>
</tr>
<tr>
<td>44</td>
<td>Protocol, Section 9.5</td>
<td>Transaminase elevations accompanied by symptoms of hepatitis, such as nausea, vomiting, abdominal pain or jaundice, will result in simvastatin drug withdrawal.</td>
</tr>
<tr>
<td>----</td>
<td>----------------------</td>
<td>--</td>
</tr>
<tr>
<td>44</td>
<td>Protocol, Section 9.6</td>
<td>We will use definitions of major and minor bleeding employed in other large randomized clinical trials of antiplatelet therapy. Major hemorrhage will be defined as any intracranial bleeding or bleeding requiring transfusion. Minor hemorrhage will be defined as that which does not require transfusion, including gastrointestinal, genitourinary, retroperitoneal, joint, subcutaneous, or muscular, gingival or oral, conjunctival, epistaxis, hemoptysis, ecchymosis, and hemorrhage after trauma. We will have a masked expert classify all bleeding events, review deaths due to reported hemorrhage, and determine the relation of bleeding to treatment. Major hemorrhage (by definition, a serious adverse event) will result in stopping the aspirin/placebo for the duration of the clinical trial. The patient will be urged to continue to We will use standard definitions of major and minor bleeding. Major bleeding will be defined as 1) symptomatic bleeding in a critical area or organ (e.g., intracranial, intraspinal, intraocular, retroperitoneal, intraarticular, or intramuscular with compartment syndrome) or 2) overt bleeding causing a fall in hemoglobin level of ≥ 2 g/dl or requiring surgery or transfusion, or 3) bleeding resulting in permanent functional disability or death. Minor bleeding will be defined as bleeding which does not meet any of the above criteria for major hemorrhage. We will have three masked experts classify all bleeding events, review deaths due to reported hemorrhage, and determine the relation of bleeding to treatment. Major bleeding will result in We have clarified the bleeding definitions and adjudication procedures.</td>
</tr>
<tr>
<td>Page</td>
<td>Section</td>
<td>Text</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>use the simvastatin or placebo and to undergo follow-up testing for the clinical trial as he or she is able.</td>
</tr>
<tr>
<td>45</td>
<td>Protocol, Section 9.6</td>
<td>For example, a patient who has gastrointestinal bleeding (not requiring hospitalization) would have the aspirin/placebo held. The decision to restart study drug would likely depend on the results of the medically-necessary evaluation. For example, findings of peptic ulcer disease would result in withdrawal of the study drug, as aspirin is contraindicated in this instance. Alternatively, resection of a bleeding polyp or findings of hemorrhoids as the bleeding source would allow reinstition of the aspirin study drug after sufficient time as deemed safe by the clinician caring for the patient. Such decisions will be made by the patient’s physician and the study investigator.</td>
</tr>
<tr>
<td>46</td>
<td>Protocol, Section 9.8.3</td>
<td>All safety reports received at the DCC will be forwarded to the clinical sites for submission to their IRBs and sent to the NHLBI. The clinical site at which the serious adverse event occurs should notify the DCC of any subsequent conclusions of its IRB.</td>
</tr>
<tr>
<td>Page</td>
<td>Protocol, Section 9.8.5</td>
<td>Unblinding or breaking of the randomization code for a specific patient will be considered, prior to the formal study unblinding, only if the following circumstances are met: 1) when knowledge of the patient’s treatment group will lead directly to a major change in the management of the patient and 2) when the safety of the patient is at serious risk if the blinded treatment is continued without knowledge of the actual treatment assignment.</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>47</td>
<td>Protocol, Section 9.9</td>
<td>Subjects will be assigned a unique identifier. The unique identifier will be linked to the subject name only at the respective field center. This linkage will be stored in a locked file cabinet an on a password protected computer hard drive.</td>
</tr>
</tbody>
</table>
ASA-STAT Protocol Revisions- Version 6.2

<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
<th>Old Text</th>
<th>New Text</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Protocol Summary</td>
<td>Patients will be evaluated in person at screening, baseline, six weeks, 3, 6, and 7 months. Telephone calls will be made at 1 and 4.5 months.</td>
<td>Patients will be evaluated in person at screening, baseline, six weeks, 3, and 6 months. Telephone calls will be made at 1, 4.5, and 7 months.</td>
<td>We will change the 7 month visit to a telephone call. Saving a visit will decrease patient burden and facilitate patient recruitment.</td>
</tr>
<tr>
<td>6</td>
<td>Protocol Summary</td>
<td>Laboratory tests including a complete blood count, routine chemistry tests (creatinine, transaminases, CPK, HCG), and coagulation studies will be performed at screening.</td>
<td>Laboratory tests including a complete blood count, routine chemistry tests (creatinine, transaminases, CPK, HCG), and coagulation studies will be performed at screening or at baseline.</td>
<td>Screening labs may be performed at the baseline visit if the screening visit is > 28 days and < 120 days from the baseline visit.</td>
</tr>
<tr>
<td>19</td>
<td>3.1.1</td>
<td>After the initial screening and review of laboratory results, the patient will provide informed consent according to the local IRB before any study procedures are performed.</td>
<td>After the initial screening, the patient will provide informed consent according to the local IRB before any study procedures are performed.</td>
<td>Screening laboratories will be obtained at the baseline visit (or within 28 days of the baseline visit) if the screening visit is > 28 days before the baseline visit.</td>
</tr>
<tr>
<td>19</td>
<td>3.1.1</td>
<td>We will send recruitment letters to potentially eligible patients who are cared for in the investigators’ clinical practices.</td>
<td>We will send recruitment letters to potentially eligible patients who are cared for in the investigators’ clinical practices, and post signs in patient areas.</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>5.1.1</td>
<td>Labs:</td>
<td>Labs (if baseline visit is scheduled within)</td>
<td>Clinical labs will be</td>
</tr>
<tr>
<td>Page</td>
<td>Section</td>
<td>Text</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>5.1.1</td>
<td>After review of the screening criteria and laboratories, if the patient is eligible, he or she will be scheduled for a baseline study visit between 14 and 28 days at the respective study center. The coordinator will call the patient and the PAH clinician 24 hours after the study visit to discuss the clinical lab results.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>After consent, the patient will be scheduled for a baseline study visit within 120 days (and > 14 days) at the respective study center. The coordinator will call the patient and the PAH clinician 24 hours after the study visit if laboratories were obtained. The coordinator will call the patient more than two weeks before the baseline visit as a reminder to avoid NSAID- and aspirin-containing products. Screening (except for laboratories) and consent may be performed up to three months before baseline. This will potentially save an extra-screening visit, facilitating patient recruitment.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.1.2</td>
<td>Some information from the screening procedure will be used as baseline measurements. All baseline data will be collected prior to randomization to treatment group.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>If laboratories were obtained at the screening visit or at an outpatient laboratory within 28 days of the baseline visit, these will be used as baseline measurements. All baseline data will be collected prior to randomization to treatment group. Clinical screening labs must be obtained at a screening visit within 28 days of the baseline visit, locally within 28 days of the baseline visit (if clinically warranted), or at the baseline visit.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>5.1.2</td>
<td>Blood samples for study assays and lipid profiles will be processed and banked, whereas samples for safety monitoring will be sent to the hospital laboratory.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blood samples for study assays and lipid profiles will be processed and banked, whereas screening labs (if not previously performed) will be sent STAT to the hospital laboratory.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Page</td>
<td>Section</td>
<td>Text</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>5.1.2</td>
<td>The patients will be randomized to a treatment group. After confirmation that laboratories meet screening criteria, the patients will be randomized to a treatment group. Clinical laboratories obtained at the baseline visit must be confirmed to meet inclusion criteria before randomization.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>5.1.2</td>
<td>The patient’s primary PAH physician and medical doctor will be alerted to the patient’s participation in the clinical trial. The patient’s primary PAH physician and medical doctor will be alerted to the patient’s participation in the clinical trial and the clinical laboratory results (if performed).</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 28 | 5.1.6 | **5.1.6 Study Day (Seven Months)**
The research coordinator will call the patient 1-2 days before the visit as a reminder. Patients will be instructed to bring their regular medications with them. The patient will arrive at the study site outpatient clinic. The following procedures will be performed:
 • Interim medical history
 • Vital signs
 • Review current medications
 • WHO functional class assessment

5.1.6 Phone Call (Seven Months)
The research coordinator will call the patient. The coordinator will collect the following:
 • Interim medical history
 • Review current medications
 • WHO functional class assessment

If there is a significant increase in symptoms or worsened clinical status since the previous assessment, the patient will be asked to come to the study center for evaluation. We will change the seven month visit to a telephone call. This will decrease patient burden. |
<table>
<thead>
<tr>
<th>29</th>
<th>5.2</th>
<th>See Table for changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>5.3</td>
<td>If a patient wishes to drop-out from the treatment phase of the study or has a serious adverse event (whether related to the drug or not), If a patient wishes to drop-out from the treatment phase of the study or has a serious adverse event (whether related to study drugs or not),</td>
</tr>
<tr>
<td>42</td>
<td>9.3</td>
<td>The following clinical laboratory tests will be measured at the screening, six week and six month visits and as clinically indicated. The following clinical laboratory tests will be measured at the screening (or baseline), six three and six month visits and as clinically indicated.</td>
</tr>
<tr>
<td>42</td>
<td>9.4</td>
<td>For this study, the INR will be checked at the screening visit, Week 6, Month 3, and Month 6 For this study, the INR will be checked at the screening (or baseline) visit, Week 6, Month 3, and Month 6</td>
</tr>
<tr>
<td>45</td>
<td>9.8</td>
<td>Adverse events</td>
</tr>
</tbody>
</table>

Extensive changes have been made throughout this section to comply with revised HHS regulations at 45 CFR part 46 and the Interim Policy of the NHLBI for Adverse Events and Unanticipated Problems Reporting.
<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
<th>Old Text</th>
<th>New Text</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>3.1.1.</td>
<td>Columbia University Medical Center and Johns Hopkins Hospital.</td>
<td>Columbia University Medical Center, Johns Hopkins Hospital, the University of Pennsylvania Medical Center, and Tufts-New England Medical Center.</td>
<td>Planned addition of two Field Centers.</td>
</tr>
<tr>
<td>29</td>
<td>5.2</td>
<td>General Testing (Baseline)</td>
<td>(if ND)</td>
<td>Clinical lab testing will be performed at baseline visit if not performed within 28 days of baseline</td>
</tr>
<tr>
<td>29</td>
<td>5.2</td>
<td></td>
<td>Assessment of Adverse Events and success of masking at Month 7</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>9.8.4.</td>
<td></td>
<td>Serious and unanticipated AEs which are fatal or life-threatening must be reported within 7 days to the local IRB and NHLBI.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SAEs or UPs must be reported within two weeks to the NHLBI and the FDA (MedWatch report).</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>9.8.4.</td>
<td>Any UP that is AE but not a SAE must be reported within two weeks to the local IRB and within 30 days to OHRP and the NHLBI and to the DCC and the other participating site for IRB notification.</td>
<td>Any UP that is not a SAE must be reported within two weeks to the local IRB and within 30 days to OHRP and the DCC and the other participating site for IRB notification.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SAEs which are unexpected and fatal must be reported within 24 hours to the local IRB.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>All deaths should be reported to the local IRB within 72 hours of the investigator becoming aware of the event.</td>
<td></td>
</tr>
<tr>
<td>Page</td>
<td>Section</td>
<td>Old Text</td>
<td>New Text</td>
<td>Rationale</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>----------</td>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td>2</td>
<td>Study Design</td>
<td>Randomized, double-blind, placebo-controlled, 2 X 2 factorial study of 128 patients.</td>
<td>Randomized, double-blind, placebo-controlled, 2 X 2 factorial study of 92 patients.</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Sample Size and Power</td>
<td>A total of 128 patients will be enrolled. Assuming a 20% drop-out rate, this sample size will provide 80% power to detect a 60-80 meter difference in the primary outcome between groups at six months with or without an interaction.</td>
<td>A total of 92 patients will be enrolled. Assuming a 10% drop-out rate, this sample size will provide 80% power to detect a 57-82 meter difference in the primary outcome between groups at six months with or without an interaction.</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Table 1</td>
<td>N=128</td>
<td>N=92</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>7.2.9</td>
<td>20% drop out</td>
<td>10% drop out</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>7.3</td>
<td>We expect 128 patients to enroll in the study (32-AS, 32-A0, 32-0S, 32-00) (Table 1). We have performed our sample size calculations while anticipating a 20% drop-out rate. Therefore, all detectable differences are actually based on having 100 patients at the completion of the trial.</td>
<td>We expect 92 patients to enroll in the study (23-AS, 23-A0, 23-0S, 23-00) (Table 1). We have performed our sample size calculations while anticipating a 10% drop-out rate. Therefore, all detectable differences are actually based on having 80 patients at the completion of the trial.</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>7.3.1 and Table 2</td>
<td>We have sufficient power to detect these clinically significant effect estimates with or without an interaction between drugs (Table 2).</td>
<td>The correlation coefficient (r) between baseline and follow-up six minute walk testing was > 0.60 in our preliminary data, and other clinical trial data have suggested r values > 0.68 for the correlation between baseline and post-treatment six minute walk test distance. Under these conditions, we have sufficient power to detect clinically significant effect estimates with or without an interaction between drugs (Table 2).</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>7.6</td>
<td>A total of 128 patients is sufficient to estimate the rate of serious adverse events to within ± 8.6% (95% confidence interval).</td>
<td>A total of 92 patients is sufficient to estimate the probability of serious adverse events to within ± 15% (95% confidence interval) within each treatment arm.</td>
<td></td>
</tr>
</tbody>
</table>