Atrial Fibrillation and Death After Myocardial Infarction
A Community Study

Patricia Jabre, MD, PhD; Xavier Jouven, MD, PhD; Frédéric Adnet, MD, PhD; Gabriel Thabut, MD, PhD; Suzette J. Bielinski, PhD; Susan A. Weston, MS; Véronique L. Roger, MD, MPH

Background—Atrial fibrillation (AF) often coexists with myocardial infarction (MI), yet its prognostic influence is disputed. Prior reports studied the relationship of AF during early hospitalization for acute MI to the risk of death and could not address the timing of AF in relation to the MI (ie, before, during, after). Furthermore, as data come mostly from clinical trials, their applicability to the community is uncertain. The aims of our study were to assess the occurrence of AF among MI patients, determine whether it has changed over time, and quantify its impact and the impact of its timing on mortality after MI.

Methods and Results—This was a community-based cohort of 3220 patients hospitalized with incident (first-ever) MI from 1983 to 2007 in Olmsted County, MN. Atrial fibrillation was identified by diagnostic codes and ECG. Outcomes were all-cause and cardiovascular death. Atrial fibrillation before MI was identified in 304 patients, and 729 developed AF after MI (218 [30%] within 2 days, 119 [16%] between 3 and 30 days, and 392 [54%] >30 days post-MI). The cumulative incidence of AF after MI at 5 years was 19% and did not change over the calendar year of MI (the incidence of AF was the same regardless of when the MI occurred). During a mean follow-up of 6.6 years, 1638 deaths occurred. AF was associated with an increased risk of death (hazard ratio [95% confidence interval] 3.77 [3.37 to 4.21]), independently of clinical characteristics at the time of MI and heart failure. This risk differed markedly according to the timing of AF, and was the greatest for AF occurring >30 days post MI (hazard ratio [95% confidence interval] 1.63 [1.37 to 1.93]) for AF within 2 days, 1.81 [0.45 to 2.27] for AF between 3 and 30 days, and 2.58 [2.21 to 3.00] for AF >30 days post MI.

Conclusions—In the community, AF is frequent in the setting of MI. Atrial fibrillation carries an excess risk of death, which is the highest for AF developing >30 days after MI. (Circulation. 2011;123:2094-2100.)

Key Words: atrial fibrillation  ■  myocardial infarction  ■  mortality
Methods

Study Setting
This study was conducted with approval from all institutional review boards. In Olmsted County, MN, a few providers (chiefly Mayo Clinic and Olmsted Medical Center) deliver nearly all medical care to county residents. With the exception of a higher proportion employed in health care, the characteristics of this population are similar to those of US whites. Each provider uses a medical record that captures information for all encounters and can be retrieved, because the Mayo Clinic maintains indexes based on all diagnoses and procedures. Since 1966, similar indexes have been implemented for non-Mayo providers through the Rochester Epidemiology Project, resulting in the linkage of medical records from all sources of care. This provides a unique infrastructure to analyze disease occurrence and outcomes at the population level, with comprehensive access to the records of all hospitalizations and outpatient clinic visits.

Myocardial Infarction Ascertainment
All patients 18 years of age or older hospitalized in Olmsted County for an incident MI between 1983 and 2007 were included in the present study. Myocardial infarction was defined according to validated criteria, including cardiac pain, biomarkers, and Minnesota coding of the ECGs. The procedures used to assemble the MI incidence cohort and their reliability have been described previously. Abstractors verified patients’ residency in Olmsted County and incident status of MI by complete review of the community medical records. Clinical characteristics recorded included demographic data, cardiovascular risk factors, and MI severity indicators. Comorbidities were ascertained through manual data collection from the review of the entire medical record and summarized using the Charlson Index. Heart failure was defined by the Framingham criteria. Recurrent ischemia was defined as hospitalization for recurrent MI or unstable angina using physicians’ diagnosis. Medications used at dismissal, including angiotensin-converting enzyme inhibitors/angiotensin II receptor blockers, β-blockers and aspirin, and reperfusion/revascularization procedures used during hospitalization were recorded.

Atrial Fibrillation Ascertainment
We defined and categorized AF using an adaptation of the 2006 Guidelines from the American College of Cardiology, American Heart Association, and European Heart Association. Patients were classified into 3 groups: those with no AF, those with known prior AF, and those with first-ever documented AF at any time or at after MI onset. Patients with atrial flutter were considered to have AF. Prior AF was ascertained using the following codes from the 9th version of the International Classification of Diseases (ICD-9): 427.3 (AF atrial flutter), 427.31 (AF), and 427.32 (atrial flutter). First-ever documented AF at or after MI was defined as first occurrence at the time of the MI or any time after MI onset in the absence of a prior diagnosis, on the basis of 12-lead ECG recordings retrieved from an electronic ECG database. Atrial fibrillation was defined as the absence of P waves, and atrial activity was represented by fibrillatory waves and irregular time elapsing between 2 consecutive R wave (RR) intervals. Atrial flutter on ECG recordings had to meet the following criteria: presence of regular P waves with a rate of 250 to 350/min and regular or irregular RR intervals. ECG diagnoses were assessed by cardiologists or trained ECG-interpreting technicians. Patients with first-ever documented AF post-MI were further classified according to the timing of AF: early for AF occurring at the time of the MI or within 2 days after MI onset, intermediate for AF occurring between 3 and 30 days after the MI, and late for AF occurring beyond 30 days after the MI.

Ascertainment of Death
Follow-up was performed using all inpatient and outpatient medical records and completed until the date of death or, if alive, to the date of the most recent clinical evaluation. Death was ascertained from several sources. In addition to the deaths noted during clinical care, all death certificates for Olmsted County residents are obtained annually from the county office. The Mayo Clinic registration office records the obituaries and notices of death in the local newspapers. Finally, data on all Minnesota deaths are obtained from the State of Minnesota annually. Causes of death were classified as cardiovascular, cancer, or other on the basis of ICD-9 codes. The American Heart Association categories were used to define cardiovascular deaths.

Statistical Analysis
Patient characteristics are presented as frequency or mean±SD. Associations between patient characteristics and time to AF were examined with proportional hazards regression modeling. Trends in patient characteristics with timing of AF post-MI were analyzed with the Mantel-Haenszel χ² test for categorical variables and linear regression models using a 2-level categorical variable for timing of AF for continuous variables. Survival free of AF was assessed treating death as a competing risk. To test for secular trends in AF, proportional hazards regression was used to test for an association between occurrence of AF post-MI and calendar year of MI. Proportional hazards regression was also used to examine the association between outcome (overall death, 30-day mortality, death among 30-day survivors, and cardiovascular death) and AF categories, individually and adjusting for baseline characteristics. Atrial fibrillation preceding MI was modeled with an indicator variable. First-ever documented AF post-MI was modeled as a time-dependent covariate with indicator variables representing early AF (at the time of the MI or within 2 days post-MI), intermediate AF (3 to 30 days post-MI), and late AF (>30 days post-MI) using left-truncated histories with data represented in the counting process style. Heart failure and recurrent ischemic events were modeled as time-dependent covariates. Missing values did not exceed 5% for any variable used in the regression analyses. The proportional hazards assumption was tested using scaled Schoenfeld residuals and found to be valid. All P values were from 2-tailed significance tests, with 0.05 selected as the threshold of statistical significance. Analyses were performed using SAS statistical software, version 9.1 (SAS Institute Inc, Cary, NC) and SPlus version 8 (TIBCO Software Inc, Palo Alto, CA).

Results

Myocardial Infarction Incidence Cohort and the Occurrence of AF
Between 1983 and 2007, 3227 Olmsted County residents were hospitalized with an incident MI. Data for AF diagnosis were not available for 7 patients, resulting in a cohort of 3220 patients that form the basis of all subsequent analyses. The mean age (SD) at the time of MI was 68.15 years, and 58% of the patients were men. The median duration of medical history available in the medical record preceding the incident MI was 39 years. Over that extensive period of observation, 304 people had a history of AF preceding their incident MI (Figure 1).

Among the remaining patients, 729 patients had first-ever documented AF post-MI, and 2187 patients did not develop AF during a mean follow-up of 6.6 years (limits, 0 to 25.9 years), which equated to an incidence of AF of 42 per 1000 person-years. The cumulative incidence of AF at 5 years with death as a competing risk was 19%. The occurrence of AF was not equally distributed during follow-up, given that 218 events (30%) occurred at the time of the MI or within 2 days after the MI, 119 (16%) in the intermediate period of 3 to 30 days after MI, and 392 (54%) beyond 30 days, with a gradual decline in AF over the duration of follow-up (Figure 2). The occurrence of AF post-MI did not change over the study period (P=0.36 for calendar year of MI, adjusted for age, sex,
and reperfusion or revascularization during the hospitalization for the incident MI).

**Risk Factors for the Occurrence of Atrial Fibrillation**

Factors associated with first-ever documented AF at or after MI were older age, female sex, hypertension, diabetes mellitus, and comorbidities, including chronic kidney disease as estimated by creatinine clearance. Among MI characteristics, anterior location of the MI, higher Killip class, and lower ejection fraction were associated with newly identified AF at or after MI, whereas the presence of Q waves was marginally associated with the presence of AF (Table 1). Patients who developed AF early after MI were more likely to be older and to be women, with a lower body mass index, greater comorbidity burden, including chronic kidney disease as estimated by creatinine clearance, and higher Killip class than those developing AF later (P value <0.05 for all comparisons).

**Atrial Fibrillation and Mortality After Myocardial Infarction**

Over the follow-up period, 1638 deaths occurred, 314 of these within the first month after MI, equating to a 30-day case fatality rate of 10% (95% confidence interval [CI], 9% to 11%). At 5 years, mortality was 34% (95% CI 32% to 36%) within the entire MI incidence cohort. Most deaths were from cardiovascular causes (n=933 [57%]) whereas 218 deaths (13%) were attributed to cancer, and 428 (26%) to other causes. The cause of death could not be determined in 59 individuals (4%).

The occurrence of AF at any time after MI was associated with a large increase in overall mortality (hazard ratio 3.77; 95% CI 3.37 to 4.21). Importantly, the excess risk of death conferred by AF differed markedly according to its timing (P<0.001, Table 2). Using patients with no AF as the referent, the risk of death was similar among patients with AF preceding the MI and those with newly identified AF occurring either early or within 3 to 30 days after the MI (P=0.24). Conversely, the risk of death was markedly higher for AF occurring >30 days after the MI, equating to a >5-fold increase in the risk of death. These associations were only partially attenuated by adjustment for age, sex, and comorbidities and for the occurrence of heart failure during follow-up. All results were similar when recurrent ischemic events were included in the models and after further adjustment for reperfusion or revascularization during the hospitalization for the incident MI and dismissal medications. No clinically

---

**Figure 1.** Classification of AF among subjects experiencing a myocardial infarction. Prior AF refers to AF occurring for the first time before the MI. New AF refers to AF detected for the first time during or after the MI. AF indicates atrial fibrillation; MI, myocardial infarction.

**Figure 2.** Time between the first occurrence of AF and MI. A, The period of observation has been truncated at 10 years. B, The period of observation is the first 10 days post-MI. AF indicates atrial fibrillation; MI, myocardial infarction.
relevant interactions between AF and age, sex, and calendar year (ie, year of the index MI) were detected. When considering death within 30 days after MI, similar associations were seen for prior and early AF as were observed for all deaths. However, the association between intermediate AF (3 to 30 days post-MI) and 30-day mortality was much stronger; patients with intermediate AF had a 5-fold increased risk of death within 30 days after adjustment. Among 30-day survivors, the associations between AF and death were similar to those observed for all deaths. For cardiovascular death, results for prior AF were similar to those obtained for overall death, whereas stronger associations were observed for AF post-MI, regardless of its timing (Table 2).

Further adjustment for Q-wave MI, ST-segment elevation MI, Killip class, and peak CK-MB (creatine kinase myocardial band isoenzyme) resulted in similar associations between the AF categories and each outcome. To examine secular trends in the associations between AF categories and each outcome, the interaction between AF categories and year of MI were tested and found to be not significant (P > 0.10 for all outcomes).

Discussion
Our population-based data pertaining to a large MI incidence cohort indicate that, in the community, AF and MI often coexist, and that approximately one half of first-ever documented AF cases post-MI develop in the first month after MI onset. There was no secular trend in the risk of AF after MI. Atrial fibrillation after MI is associated with a large excess risk of death. Importantly, the excess risk imparted by AF varies markedly according to its timing, with the highest risk of death being noted for AF occurring >30 days after the incident MI.

Atrial Fibrillation and Myocardial Infarction as Co-Occurring Events
Our study showed that AF and MI frequently coexist, given that I out of 10 subjects who present with MI have a documented history of AF and 1 out of 4 subjects without prior AF will develop AF at or after the incident MI. The incidence of AF after MI reported herein was 42 per 1000 person-years. This far exceeded the age- and sex-adjusted AF incidence of 3.68 per 1000 person-years reported in the general Olmsted County population from which this MI cohort was drawn, as well as the incidence of AF reported in the Atherosclerosis Risk In Communities (ARIC) study. Previous studies reported heterogeneous frequencies of new-onset AF (4% to 18%) that were lower than what we report herein. As these studies only captured AF during the initial MI hospitalization, they present an incomplete appraisal of its burden. Data from studies that reported on

Table 1. Characteristics of Patients With Myocardial Infarction According to the Presence of Atrial Fibrillation

<table>
<thead>
<tr>
<th></th>
<th>Total (N=3220)</th>
<th>Prior AF (N=304)</th>
<th>New AF (N=729)</th>
<th>No AF (N=2187)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Age, y, mean±SD</strong></td>
<td>68±15</td>
<td>79±11</td>
<td>72±13</td>
<td>65±15</td>
</tr>
<tr>
<td><strong>Men</strong></td>
<td>1852 (58)</td>
<td>148 (49)</td>
<td>378 (52)</td>
<td>1326 (61)</td>
</tr>
<tr>
<td><strong>BMI, kg/m², mean±SD</strong></td>
<td>28±7</td>
<td>27±7</td>
<td>28±6</td>
<td>28±6</td>
</tr>
<tr>
<td><strong>Former or current smoker</strong></td>
<td>1940 (60)</td>
<td>159 (52)</td>
<td>415 (57)</td>
<td>1386 (63)</td>
</tr>
<tr>
<td><strong>Familial coronary disease</strong></td>
<td>651 (21)</td>
<td>42 (15)</td>
<td>126 (18)</td>
<td>483 (23)</td>
</tr>
<tr>
<td><strong>Hyperlipidemia</strong></td>
<td>1384 (43)</td>
<td>131 (43)</td>
<td>307 (42)</td>
<td>946 (43)</td>
</tr>
<tr>
<td><strong>Hypertension</strong></td>
<td>1919 (60)</td>
<td>236 (78)</td>
<td>474 (65)</td>
<td>1209 (55)</td>
</tr>
<tr>
<td><strong>Diabetes mellitus</strong></td>
<td>692 (22)</td>
<td>82 (27)</td>
<td>181 (25)</td>
<td>429 (20)</td>
</tr>
<tr>
<td><strong>Comorbidity index</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1243 (39)</td>
<td>36 (12)</td>
<td>238 (33)</td>
<td>969 (44)</td>
</tr>
<tr>
<td>1–2</td>
<td>1122 (35)</td>
<td>121 (40)</td>
<td>272 (37)</td>
<td>729 (33)</td>
</tr>
<tr>
<td>≥3</td>
<td>850 (26)</td>
<td>146 (48)</td>
<td>219 (30)</td>
<td>485 (22)</td>
</tr>
<tr>
<td><strong>Creatinine clearance, ml/min, mean±SD</strong></td>
<td>59±27</td>
<td>50±21</td>
<td>54±20</td>
<td>62±29</td>
</tr>
<tr>
<td><strong>MI characteristics and severity indicators</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Anterior location</strong></td>
<td>1125 (37)</td>
<td>114 (39)</td>
<td>273 (39)</td>
<td>738 (36)</td>
</tr>
<tr>
<td><strong>Presence of Q wave</strong></td>
<td>1620 (54)</td>
<td>142 (52)</td>
<td>391 (57)</td>
<td>1087 (54)</td>
</tr>
<tr>
<td><strong>ST elevation</strong></td>
<td>1066 (34)</td>
<td>63 (21)</td>
<td>260 (36)</td>
<td>743 (35)</td>
</tr>
<tr>
<td><strong>Killip class ≥1</strong></td>
<td>1038 (32)</td>
<td>148 (49)</td>
<td>274 (38)</td>
<td>616 (28)</td>
</tr>
<tr>
<td><strong>Ejection fraction ≤50%</strong></td>
<td>695 (51)</td>
<td>75 (51)</td>
<td>173 (58)</td>
<td>447 (49)</td>
</tr>
<tr>
<td><strong>Peak CK-MB, median (25th to 75th percentile)</strong></td>
<td>6.2 (2.2 to 17.1)</td>
<td>4.3 (1.6 to 9.9)</td>
<td>5.8 (2.1 to 17.6)</td>
<td>6.8 (2.5 to 17.6)</td>
</tr>
</tbody>
</table>

AF indicates atrial fibrillation; HR, hazard ratio; MI, myocardial infarction; BMI, body mass index; and CK-MB, creatine kinase myocardial band isoenzyme. Results presented as n (%) unless otherwise specified. Missing values were <8% for all variables except for ejection fraction, where 58% were missing.
the occurrence of AF within 30 days after MI are consistent with the present report.9,10,12,37,38

Little is known about temporal trends of AF in patients with MI. The Worcester Heart Attack Study, which included data generated between 1990 and 2005, reported a decrease in the occurrence of AF during the initial hospitalization for MI during the 1990s and an increase since 2000,16 interpreting this fluctuation as reflecting an increasingly older population with a greater prevalence of comorbidities. However, the duration of hospitalization for MI, which also varied markedly during that time period, could also confound these trends. Conversely, the present data, where the categorization of timing of AF post-MI does not depend on the duration of hospitalization, which cover the entire length of follow-up beyond the initial hospitalization, and which apply to an extended time period (25 years) did not detect any temporal change in the occurrence of AF post-MI. The extended follow-up enabled us to examine the pattern of occurrence of AF, which is characterized by an early surge during the initial days after MI. Importantly, MI characteristics and severity indicators were for the most part not associated with the occurrence of AF, an observation that challenges the historical notion that AF denotes a more extensive and more severe infarction.2,9,39,40 This hypothesis is further supported by the aforementioned temporal stability of AF post-MI, contrasting with profound changes in the epidemiology of MI noted during the same time period.17,18

Atrial Fibrillation and Mortality

Previous studies on the impact of AF on survival in patients with MI reported discrepant results, with some studies showing no adverse effect on mortality9–13 and others reporting an increased risk of death with AF.2,6,7,16,37,41 Our study clearly demonstrates that AF in MI patients is associated with an increased risk of death even after adjustment for relevant confounders. Further, 2 other important findings deserve emphasis. First, patients presenting with acute MI and a history of AF have increased mortality compared with patients without AF. Second, AF developing >30 days post-MI was associated with the highest mortality risk, with a 2-fold increase in the risk of death compared with patients without AF. It has been suggested that the timing of AF onset may represent different mechanisms and, accordingly, may differentially influence outcomes.42–45

Limitations and Strengths

Potential limitations of the current study need to be considered when interpreting the data. Most of these are shared by all studies addressing this topic, underscoring the challenges in studying the epidemiology of AF. Atrial fibrillation can be discovered either in the presence of symptoms triggering an ECG or in the absence of any symptom by an ECG requested by a care provider in the presence of a heart rate abnormality or for an unrelated reason (such as a preanesthesia examination for example). Electrocardiograms were not routinely ascertained for this study; however, there is no apparent reason for symptomatic AF to be detected differentially before and after MI, although the timing of AF in relation to the MI may be misclassified because of delays in seeking medical care after symptom onset. This may not be the case for asymptomatic AF. Conversely, the apparent increased occurrence of AF in the immediate post-MI period could partially reflect previously undetected AF recognized during the hospitalization for MI. Atrial flutter and AF have a complex relationship that has mechanistic similarities, but also differences. They often coexist and share similar throm-
boembolic risk.46–47 In our study, AF and atrial flutter were combined because distinguishing between them was beyond the scope of this project.

Although the racial and ethnic composition of Olmsted County may preclude generalizing findings to groups not adequately represented in this population, epidemiological studies in Olmsted County underscore that the results are generalizable to a large portion of the United States population and that cardiovascular disease trends measured in Olmsted County parallel national trends, further supporting its generalizability.48 Migration out of Olmsted County is rare among patients who experience an MI. Among subjects identified under the auspices of our study, 92% remained Olmsted County residents or remained within 30 miles of the city of Rochester and continued to receive care in Olmsted County, with the result that complete follow-up was available through the medical record. Medications beyond discharge were not collected as part of this study.

Our study has several important strengths. Our population-based design reflects the experience of an entire community and thus is less subject to selection biases.14 This, in turn, optimizes the clinical relevance of our data. The internal validity of the present data is quite robust because our ascertainment identified all consecutive incident MIs in the community validated through rigorous criteria, and follow-up ascertained identified all consecutive incident MIs in the community validated through rigorous criteria, and follow-up was extensive and comprehensive with few missing data. This allowed the comprehensive characterization of the occurrence of AF over an extended period of time, including any time before the MI and any time after hospital discharge.

Conclusions

These data from a large MI community cohort indicate that AF and MI often coexist, and that AF frequently develops in the first month after MI. Atrial fibrillation is associated with a large excess risk of death after MI, which varies markedly according to its timing, with the highest risk of death being noted for AF occurring >30 days after the incident MI. This underscores the importance of long-term follow-up after MI.

Sources of Funding

This study was supported in part by grants from the Public Health Service and the National Institutes of Health (RO1 HL 59205) and the National Institute on Aging (AG034676). Dr Jabre is supported by INSERM, U970, Paris-Descartes University, France, and the French Emergency Physician Society (SFMU).

Disclosures

None.

References


**CLINICAL PERSPECTIVE**

Atrial fibrillation (AF) often coexists with myocardial infarction (MI), yet its prognostic influence is in dispute. Prior reports studied the role of AF during the early hospitalization for acute MI on the risk of death and could not address the timing of AF in relation to the MI. Furthermore, the applicability of existing data to the community was uncertain. We assessed the occurrence of AF among MI patients, determined whether it has changed over time, and quantified its impact on mortality after MI. Among 3220 patients hospitalized with incident (first-ever) MI from 1983 to 2007 in the community, AF preceding MI was identified in 304 patients, and 729 developed AF after MI. The cumulative incidence of AF after MI at 5 years was 19%, and did not change over the calendar year of MI (the incidence of AF was the same regardless of when the MI occurred). During follow-up, 1638 deaths occurred, and AF was associated with a large increase in risk of death, independently of clinical characteristics at the time of MI and heart failure. This risk was the greatest for AF occurring later after the MI. Thus, in the community, AF is frequent in the setting of MI and carries an excess risk of death.
Atrial Fibrillation and Death After Myocardial Infarction: A Community Study
Patricia Jabre, Xavier Jouven, Frédéric Adnet, Gabriel Thabut, Suzette J. Bielinski, Susan A.
Weston and Véronique L. Roger

Circulation. 2011;123:2094-2100; originally published online May 2, 2011;
doi: 10.1161/CIRCULATIONAHA.110.990192

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2011 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://circ.ahajournals.org/content/123/19/2094

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published
in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial
Office. Once the online version of the published article for which permission is being requested is located,
click Request Permissions in the middle column of the Web page under Services. Further information about
this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org/subscriptions/