Biomarkers, broadly defined, are markers of a biological process or state.1 Biomarkers are often used in research studies, but they may also be useful for clinicians and patients if they provide information about current status or future risk of disease. It is not always clear, however, when a novel biomarker provides enough useful information to justify measuring it in the context of clinical care.

Evaluating the clinical utility of a novel biomarker requires a phased approach.2 Early-phase studies must prove that the biomarker is associated statistically with the clinical state of interest and adds information about presence or risk of disease above and beyond established markers. Midphase studies describe how often this incremental information might alter physician prescribing decisions. Early- and mid-phase studies are useful because they help investigators compare biomarker performance in terms that are generic (ie, not dependent on the specifics of the disease state being studied). Generic measures of biomarker performance have been reviewed previously2–16 and are described in Table 1 along with relevant published examples.17–32

Measuring biomarker performance in generic terms, however, is not sufficient for demonstrating clinical utility.6 The decision to use a biomarker in clinical practice should be based on an expectation that it will have a positive net health impact, and measuring health impact, by definition, requires use of measurements that consider the specific disease state being studied and its consequences. The goal of this review is to describe the methods by which evidence about the health impact of measuring a biomarker may be generated (late-phase evidence)3 using examples relevant to cardiovascular disease and with a focus on the use of randomized clinical trials and modeling for estimating health impact.

Mechanisms and Measures of Health Impact

Mechanisms by Which Biomarker Measurement Can Impact Health

There are 3 fundamental mechanisms by which measuring a biomarker in the context of clinical care may improve health (Figure 1): Biomarker measurements may (1) help the patient understand his or her disease or risk of disease and thereby directly improve quality of life and/or mental health; (2) motivate the patient to make behavioral changes that improve health, such as eating a healthier diet, exercising more, or improving adherence to beneficial treatments prescribed by a clinician; or (3) help a clinician make a better clinical decision (eg, about use of some treatment) that leads to improved health of the patient. Of these mechanisms, 1 and 2 are highly dependent on characteristics of the individual, and the improved quality of life or mental health attained via mechanism 1 may be fleeting and difficult to measure. Mechanism 3 is the most commonly cited reason for measuring a biomarker, and the one most under clinician control. Also, note that biomarker measurements can lead to adverse health outcomes through these same mechanisms (eg, a depressed mood from bad news, worsening health-related behaviors from good news, or a worse clinical decision triggered by erroneous or misinterpreted biomarker results). Before ordering a biomarker measurement for a patient, the clinician should have a clear expectation that improved health, on average, will result from the biomarker measurement through 1 or more of these mechanisms.

Measuring Health Impact of a Biomarker Strategy

Deriving a credible and reproducible measurement of health impact requires embedding biomarker measurement into a clinical strategy that employs 1 or more of the mechanisms described above. This biomarker strategy can then be compared with alternative strategies in which the biomarker is not measured. The comparison should be made in terms of impact on health outcomes (Table 2). For example, a strategy that uses B-type natriuretic protein (BNP) results to adjust diuretic intensity in congestive heart failure (CHF) outpatients might be evaluated on the basis of measurements of dyspnea and quality of life, CHF hospitalizations, and/or mortality rate.34

It is sometimes necessary to evaluate and compare scenarios that result in different types of health outcomes, such as when making policy decisions about how to allocate resources in a health system, or when estimating the net health effects of a treatment with both beneficial and adverse effects (eg, coumadin prevents strokes but causes gastrointestinal bleeding). For this purpose, health-related measurements specific to different conditions may be converted into a...
This measure of health impact takes into account both quantity and quality of life by integrating years of life with utility (general quality of life on a 0% to 100% scale) in each year. QALYs can be estimated in any clinical scenario, and this allows direct comparisons of health impact across different health conditions from a utilitarian perspective.35,36

Measuring Health Impact of Biomarker Strategies With a Randomized Trial

Rationale and Fundamental Design of Biomarker Strategy Trials

A well-designed randomized, controlled trial is the best study design for directly measuring the health impact of a biomarker strategy. Observational studies, in which the decision to measure the biomarker is not under the control of the study investigator, can also provide useful information about health outcomes. However, participants for whom the test is recommended and who accept and adhere to this recommendation are often systematically different from those who do not. For this reason, observational comparisons of health impact between such participants are inherently subject to confounding, and isolating the putative effects of the intervention from the effects of other factors can be very difficult. Special study designs (eg, within-person/population time-series37) and advanced analytic methods (eg, instrumental variable analysis,38 propensity scores, inverse probability weighting, and marginal structural models39) for addressing these problems are available, but in practice, we are usually left with some uncertainty about the degree to which results from an observational analysis may be subject to bias. In contrast, random assignment of the biomarker strategy in a randomized controlled trial assures comparability of groups (on average), and the true unconfounded effect of the strategy can be estimated by a simple between-groups comparison of health outcomes.

Effect modification

Interaction (size and statistical strength)16
Norat 200851 (AGT M235T, blood pressure in high vs low salt consumers)

Risk of death
All-cause or cause-specific mortality
Life-years
Average years of life expected
QALYs
Model-based integration of life-years with utility

Table 2. Measures of Health Impact

<table>
<thead>
<tr>
<th>Measures and Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incidence or severity of a disease</td>
</tr>
<tr>
<td>Lower incidence of myocardial infarction</td>
</tr>
<tr>
<td>Lower disability score among stroke victims</td>
</tr>
<tr>
<td>Fewer hospitalizations for congestive heart failure</td>
</tr>
<tr>
<td>Quality of life</td>
</tr>
<tr>
<td>SF-36 score</td>
</tr>
<tr>
<td>Lower anxiety or depression score</td>
</tr>
<tr>
<td>Disease-specific quality of life instruments</td>
</tr>
<tr>
<td>Utility (on a scale of 0% to 100%)</td>
</tr>
<tr>
<td>Risk of death</td>
</tr>
<tr>
<td>All-cause or cause-specific mortality</td>
</tr>
<tr>
<td>Life-years</td>
</tr>
<tr>
<td>Average years of life expected</td>
</tr>
<tr>
<td>QALYs</td>
</tr>
<tr>
<td>Model-based integration of life-years with utility</td>
</tr>
</tbody>
</table>

Table 1. Generic Measures of Biomarker Performance

<table>
<thead>
<tr>
<th>Type of Use and Measure</th>
<th>Examples (Biomarker, Outcome)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnostic testing</td>
<td></td>
</tr>
<tr>
<td>Test characteristics</td>
<td>PIIOPED 199017 (V/O Scan, pulmonary embolism diagnosis)</td>
</tr>
<tr>
<td>(sensitivity and specificity,3 positive and negative predictive value4)</td>
<td>Rubinstein 2007 (MDCT angiogram, acute coronary syndrome diagnosis)</td>
</tr>
<tr>
<td>Discrimination (ROC curve, C-statistic)15</td>
<td>Maisel 200218 (BNP, CHF diagnosis)</td>
</tr>
<tr>
<td>Likelihood ratio7</td>
<td>Steinhart 200920 (BNP, CHF diagnosis)</td>
</tr>
<tr>
<td>Risk prediction</td>
<td>Suzukki 200921 (D-dimer, aortic dissection diagnosis)</td>
</tr>
<tr>
<td>Association (relative risk, odds ratio14)</td>
<td>Detrano 200852 (coronary calcium, incident CHD)</td>
</tr>
<tr>
<td>Link 200853 (SLC01B1, incident statin-induced myopathy)</td>
<td></td>
</tr>
<tr>
<td>Newton-Cheh 200954 (rs10757274 at 9p21, incident sudden death)</td>
<td></td>
</tr>
<tr>
<td>Discrimination (ROC curve, C-statistic)5,15</td>
<td>Wang 200828 (multiple, incident CHD)</td>
</tr>
<tr>
<td>Sabatine 200826 (ST2 AND BNP, incident CVD death/heart failure after acute MI)</td>
<td></td>
</tr>
<tr>
<td>Calibration (Hosmer-Lemeshow χ² and others)5</td>
<td>D’Agostino 200157 (Framingham score, incident CHD)</td>
</tr>
<tr>
<td>Blankenberg 201029 (BNP, CRP, and Troponin I, incident CVD)</td>
<td></td>
</tr>
<tr>
<td>Reclassification (net reclassification improvement and others)6,10,12</td>
<td>Cook 200629 (CRP, incident CHD)</td>
</tr>
<tr>
<td>Polonsky 201030 (coronary calcium, incident CHD)</td>
<td></td>
</tr>
<tr>
<td>Effect modification</td>
<td>Norat 200851 (AGT M235T, blood pressure in high vs low salt consumers)</td>
</tr>
<tr>
<td>Ridker 200152 (CRP, incident CHD in statin vs nonstatin users)</td>
<td></td>
</tr>
</tbody>
</table>

*Test of interaction presented within the Results text (P<0.06).

V/O Scan indicates ventilation/perfusion scan for diagnosis of pulmonary embolism; ROC curve, receiver-operator characteristic curve; CVD, cardiovascular disease; and MDCT, multidetector computed tomography scan.

common metric such as quality-adjusted life-years (QALYs). This measure of health impact takes into account both quantity and quality of life by integrating years of life with utility (general quality of life on a 0% to 100% scale) in each year. QALYs can be estimated in any clinical scenario, and this allows direct comparisons of health impact across different health conditions from a utilitarian perspective.35,36

Figure 1. Three mechanisms by which biomarker measurement may improve health outcomes.
participants are randomized to a strategy in which a biomarker is measured and provided to the clinician and/or participant and others are randomized to a strategy in which it is not (Figure 2). Clinical trial designs involving biomarkers that do not use this approach cannot directly estimate health impact. The Justification for the Use of Statins in Prevention: An Intervention Trial Evaluating Rosuvastatin (JUPITER), for example, featured measurement of C-reactive protein (CRP) in all trial participants, with a high CRP level (>2.0 mg/L) required for entry into the trial; participants were then randomized to rosvastatin versus placebo, and clinical event rates (myocardial infarction [MI], stroke, and all-cause mortality) were lower in the rosvastatin arm. JUPITER, therefore, provided evidence of the impact of statin therapy in persons with high CRP, but it did not provide an estimate of the impact of measuring CRP.

Designing the Intervention and Control Strategies

The intervention strategy for a trial should specify not only how and when the biomarker will be measured but the way in which the measurement will be used. For example, knowing the coronary calcium score might improve the efficacy of a CHD–risk-factor counseling intervention (Figure 1, mechanisms 1 and 2). One trial testing this hypothesis found that knowledge of the coronary calcium score (versus no such knowledge) during risk-factor counseling did not result in a difference in participant mental health or CHD risk factor control.

If improved clinical decision making is the goal (Figure 1, mechanism 3), then one must identify clinical decisions that might plausibly change with measurement of the biomarker. Smoking cessation counseling (almost always indicated in smokers) and revascularization (almost never indicated in asymptomatic patients) are 2 examples of decisions that might plausibly change with measurement of the biomarker like coronary calcium that can improve risk prediction beyond what may be possible with standard risk factors alone (eg, Framingham risk score). Persons with a higher coronary calcium score might benefit more from aspirin and/or statin use whereas these medications might be more likely to cause net harm than net benefit in persons with a low or zero score.

Once the key clinical decisions are identified, algorithms for using the biomarker to make those clinical decisions should be specified as clearly as possible in both intervention and control groups. Adherence to the specifics of the biomarker strategy will never be perfect, and some leeway for individualizing clinical decisions is often required to allow for clinical judgment and to enhance overall adherence with the intervention. However, clearly specifying the clinical strategy will enhance interpretability of the study results and facilitate effective translation into practice after the study is published. Note that an important strength of randomized, controlled trials is the ability to measure the degree to which clinicians do or do not adhere to the specifics of a biomarker strategy, and to take into account nonadherence when estimating health impact (assuming the results are analyzed according to the intention-to-treat principle).

Defining the Study Sample and Planning for Subgroup Analyses

Measurement of a biomarker may reclassify patients into higher- or lower-risk groups with different treatment indications, but the consequences of upwards and downwards reclassification may be quite different. This expected heterogeneity of effect has important implications for how the study should be designed and analyzed.

Consider the example of a trial designed to estimate the health impact of measuring coronary calcium in persons at intermediate risk for coronary disease (eg, 10-year CHD risk 6% to 19%30), who are more likely than persons at high or low risk to be reclassified across a treatment threshold once the coronary calcium score is taken into consideration.46 Both intervention and control strategies could follow Adult Treatment Panel III guidelines for prescribing cholesterol-lowering medications,49 but the control strategy would use the pretest CHD risk (calculated on the basis of the Framingham risk score without knowledge of coronary calcium) to guide treatment decisions whereas the intervention strategy might use posttest 10-year CHD risk (using coronary calcium to refine the Framingham risk score).

Even in this relatively focused scenario, the study sample is a mixture of persons who would otherwise get statins (ie, pretest 10-year risk >10% and low-density lipoprotein cholesterol >130 mg/dL, subgroup A) and persons who would not (ie, pretest 10-year risk <20% and low-density lipoprotein cholesterol <130 mg/dL, subgroup B; other specific subgroups also possible). In subgroup A, biomarker measurement can only lead to a change in treatment (and potential benefit) if reclassification is downward and the participant no longer qualifies for statin use; in subgroup B, only upwards reclassification leads to a change in treatment (statin initiation). We would expect the mechanism and size of any benefit from biomarker measurement to be very different in subgroup A (avoidance of statin adverse effects) than in Subgroup B (benefits of statin-mediated CHD risk reduction). The overall result of the trial, therefore, will be a poor estimate of the effect within either subgroup, representing as it does a mix of results from the 2 subgroups weighted by subgroup prevalence within the sample.
Three potential remedies for this problem should be considered. First, the investigators could narrow the inclusion criteria such that only 1 potential mechanism is represented. In the example above, investigators might focus on persons with ≥2 risk factors, whose pretest 10-year risk =6% to 9%, and whose low-density lipoprotein cholesterol =130 to 159 mg/dL who would not qualify for statin treatment per the Adult Treatment Panel III guidelines unless the coronary calcium score increased posttest CHD risk over 10%. Second, the investigators could plan for subgroup analyses, powering the study appropriately so that effect sizes can be estimated with reasonable precision for each important subgroup; this essentially amounts to designing and conducting a series of parallel trials. Third, the investigators might note this limitation and proceed with a mixed sample; in this case, care should be taken to select a sample that is representative of the target population in terms of the prevalence of subgroup A versus subgroup B. In this case, the overall study result will represent a mix of different mechanisms in different subgroups, but at least it will be the right mix to get an average effect estimate for the population; this average effect may be useful for policymakers considering the broad average impact of a policy even if it is not very useful for clinicians making individual patient decisions (ie, the individual patient is in 1 subgroup and not spread across multiple subgroups, so the average effect would not apply).

Sample Size Considerations and the Unreclassified Fraction

Biomarker trials usually must be larger than treatment trials because the putative beneficial effects of changing treatments for persons who are reclassified to a higher or lower risk category is diluted by the expected null effect in persons who are not reclassified (the unreclassified fraction). This point may be illustrated by extending the example detailed above. If we focus on subgroup B in our coronary calcium measurement trial, we might guess that reclassification upwards would occur in 16% of persons, leaving an unreclassified fraction of 84%. Assuming that the reclassified persons are the only ones who would benefit and that 5-year risk in reclassified persons might be reduced by 40% with a high-potency statin (from 14.8% to 8.9%), the average risk in the intervention group would be reduced from 5.5% to 4.6% (assumes weighted averages of rates measured in the Multi-Ethnic Study of Atherosclerosis [MESA] reclassification study). Detecting this size of risk reduction with 80% power and 2-sided \(\alpha=0.05\) would require randomizing approximately 19,000 persons, half of whom would receive a coronary calcium scan, and following up participants for an average of 5 years. In contrast, a 5-year trial of high potency statin therapy where everyone is treated would require a total sample size of only approximately 3,000 to detect a risk reduction of 40% overall (5.5% to 3.3%).

Other Challenges and Limitations of Randomized Trials for Evaluating Utility of a Biomarker

Because of the inherent expense and time required to conduct an adequately powered randomized trial of a biomarker measurement strategy, it is not feasible to conduct systematic trials of all reasonable test-and-treat strategies in all possible subgroups. Instead, the investigator must choose what seems like the best strategy in an important study population and compare it to a standard strategy. What may be considered reasonable choices for things like biomarker measurement technology, treatment choice, and reclassification thresholds for both best and standard strategies at the time the study was designed may evolve and no longer seem reasonable several years later. The definition of intermediate risk of CHD, for example, seems to have evolved from 10% to 19% to 6% to 19% (10-year risk) in recent years on the basis of better data about the relative safety of risk-reducing treatments and reductions in the price of statins. As statin therapy becomes even less expensive, risk thresholds for treatment may decline even more substantially; if this is the case, withholding statins in a particular subgroup might seem reasonable at the time the trial was designed but no longer reasonable on conclusion of the trial 5 to 10 years later. Thus, even if biomarker performance (Table 1) is stable over time, the clinical utility of measuring that biomarker may change dramatically.

Clinical trials cannot usually assess long-term effects (>5 to 10 years) of a test or subsequent treatment because long-term trials are usually not feasible. Trial participants may lose motivation, long-term funding is difficult to secure, and trial results delayed very far into the future are at even higher risk of becoming irrelevant. This limitation makes estimation of the true long-term average health benefits of a biomarker measurement strategy difficult to capture. For example, a potential carcinogenic effect of radiation from a coronary artery calcium scan would not be reflected in a short-term randomized trial.

Masking treatment assignment in a biomarker utility trial is not usually possible because the mechanisms of biomarker benefit depend on the patient and/or clinician knowing the result of the biomarker test. In an unmasked trial, cointerventions applied differentially by study group are more likely to occur. If such cointerventions also have an effect on the outcome, these effects mix into and bias the overall estimate of the effects of the biomarker measurement. Outcome ascertainment may also be subject to bias; for example, a physician may refer a patient with chest pain more quickly for evaluation if they have not been screened for coronary calcium. Using an independent end point committee masked to treatment assignment to adjudicate study outcomes (eg, by reviewing medical records) helps reduce outcome ascertainment bias but may not completely eliminate this problem.

Because of these inherent challenges to conducting biomarker trials, not many have been published. Some prominent examples have tested use of BNP for CHF diagnosis or management, ultrasound screening for aortic aneurysm, and pulmonary artery catheters for guiding hemodynamic management in intensive care patients.

Modeling Health Impact and Efficiency of Biomarker Strategies

Overview and General Framework for Modeling Biomarker Utility

Decision-analysis modeling is used to simulate the downstream consequences of a clinical decision and can be used
to estimate the health impact of biomarker strategies. Decision analysis is often used to simulate both health outcomes and economic outcomes. When the primary outcome of a decision analytic model is health impact, we might call this comparative effectiveness modeling; when the primary outcome is cost effectiveness, this type of modeling is called cost-effectiveness modeling (or cost-utility modeling if the outcome is specifically formulated as cost/QALY) and can be used to describe the efficiency of biomarker strategies.

Decision-analysis modeling is designed to capture and weigh the tradeoffs inherent in any decision. The modeling approach described below and in Figure 3 provides a general framework for capturing the essential tradeoffs inherent in the decision of whether or not to measure a biomarker. We will focus here on use of biomarkers for making better clinical decisions (Figure 1, mechanism 3). In the online-only Data Supplement Materials, we illustrate how a published decision analysis that evaluates cost effectiveness of CRP as a screening tool for guiding statin therapy would fit into this framework (see online-only Data Supplement Figure 1 to see how Figure 3 can be adapted for this specific analysis) and provide a brief critique touching on the methodological points discussed below.

Defining Scenarios

Each scenario in a decision analysis should be defined narrowly, in such a way that a single treatment strategy would be clinically reasonable in the absence of the biomarker result. Making the scenario narrow allows the resulting estimate to represent a relatively homogeneous effect that is easy to translate into practice. Because the marginal cost of modeling additional scenarios is relatively low (a key benefit of modeling compared with clinical studies), multiple scenarios can be considered; results can then be presented separately for each scenario or integrated carefully across some population of interest if an average effect is desired for policymaking. For example, The CHD Policy Model, an established decision analytic model, automatically runs in parallel thousands of scenarios that, when combined, produce estimates that are representative of the US population age 35 to 85.55

Simulating the Full Range of Possible Strategies

Just as a receiver-operator characteristic curve is always bounded by 2 extremes (sensitivity 100%/specificity 0% and...
sensitivity 0%/specificity 100%), it is useful to model the 2 logically extreme strategies when modeling biomarker utility: treat none and treat all. Although 1 of these strategies may seem unrealistic in any given scenario, both strategies are clinically feasible to pursue without incurring the cost/harm of the biomarker test, test-and-treat strategies must compete against both extremes, and sometimes either extreme may be rationally preferred depending on society’s willingness to pay. Furthermore, comparing these extremes to each other provides an estimate of treatment effectiveness and efficiency within the biomarker model and a means of validating the model against prior analyses.

Dividing into Subscenarios With Differing Levels of the Biomarker

We assume that any given scenario (even if narrowly defined) consists of a mix of persons with differing levels of the biomarker of interest (subscenarios). Although only the test-and-treat strategies (S_2 and S_3 in Figure 3) will use the biomarker measurement, the subscenarios based on the biomarker distribution (along with potentially differing post-test risk estimates and treatment effects) should be modeled identically in all strategies. This ensures that all intervention simulations for that scenario (ie, S_1 to S_4) are equivalent in all aspects except for key tradeoffs related to testing and treatment (Figure 3). In different scenarios, however, biomarker distribution can be very different (eg, coronary calcium is more common in older men than in younger women) and should be modeled as such in order to simulate realistic reclassification rates.

Figure 3 illustrates a 3-category approach to modeling the distribution of the biomarker based on critical test thresholds (T_1 and T_2). How many categories and what specific thresholds are modeled depends on the particulars of the test and clinical setting. For example, the investigator might use natural thresholds when the test result is naturally categorized (eg, low, high, or intermediate probability scans for ventilation/perfusion scanning for pulmonary embolism17), thresholds used in prior studies (eg, coronary calcium thresholds of 0, 100, and 300, as used in a key article22), or biomarker levels that would lead to a posttest risk, in the given scenario, that is over some established treatment threshold (eg, posttest 10-year CHD risk >20% for statin treatment18).

Modeling the Posttest Risk of Events and Effects of Treatment

The only way a biomarker may be useful for clinical decision making is if the expected benefits of some treatment are different for different levels of the biomarker, and this must be modeled explicitly for different subscenarios. The expected benefit of treatment will be larger for persons with biomarker results indicating a higher risk of disease (assumed that relative-risk reduction from the treatment is constant) and in persons where a biomarker result indicates higher treatment effectiveness (ie, larger relative-risk reduction). Modeling the expected benefits of treatment, therefore, requires (1) estimating posttest disease risk and (2) applying treatment effectiveness (relative-risk reduction) for each subscenario.

Modification of posttest risk comprises a key mechanism by which biomarker measurement may provide clinical utility; but calculation of posttest risk in different subscenarios is not straightforward. For example, note that a coronary calcium score of 50 may lead to a downward revision of risk in one patient (if it was lower than expected, as in the case of a 70-year-old man) and an upward revision of risk in another (if it was higher than expected, as in the case of a 55-year-old woman).56 Methods are available for estimating posttest risk while maintaining the average event rate by integrating evidence about biomarker distribution (expectation) with the relative-risk estimates associated with different levels of a biomarker.56 Alternatively, direct estimates of risk from follow-up studies may be available for persons who are reclassified upwards or downwards by measurement of a biomarker.29,30 Either way, posttest risk estimates should be handled carefully and realistically and should be based on data-driven biomarker performance estimates from studies that use real-world biomarker measurements that take into account measurement variability (from biological variability and measurement error).

Treatment effectiveness, in terms of relative-risk reduction, is usually assumed to be constant across different persons, but this may not always be the case. The relative-risk reduction for statin therapy, for example, may be larger for persons with a high CRP level than for persons with a lower level.32 Similarly, the risk of adverse effects from statins may vary depending on genetic factors.23 Subscenario-specific treatment effectiveness is then applied to subscenario-specific disease risk to simulate outcome rates for each subscenario (Figure 3).

Modeling Outcomes and Estimating Incremental Differences Between Strategies

Clinical and economic outcomes are then modeled using these subscenario-specific risk estimates using standard decision-analysis techniques. Simple event probabilities can be used to ramify all possible combinations of relevant events, each represented by a terminal node. For example, a single terminal node might represent the unlucky occurrence of both the outcome of interest and an adverse effect from treatment: statin-induced myopathy + nonfatal MI. For each terminal node, the overall probability of occurring is calculated, along with an overall estimate of utility (in QALYs or another measure of health impact [See Table 2] and costs (if relevant). For long-term scenarios, a standard approach is to use a Markov modeling process, which simulates cycles during which persons may transition between different clinical states (eg, healthy, status/post MI, or dead), with QALYs or other outcomes accruing during each cycle at different rates for patients in different states.37 Either way, outcomes (utility + costs) are then summed across all possible terminal nodes or Markov cycles/states for each strategy, weighting by their probability of occurrence, to obtain an estimate of the average expected outcomes associated with any given strategy (Figure 3). For presentation purposes, different strategies are then compared by calculating the difference in average clinical utility between strategies (incremental effectiveness). For cost-effectiveness analysis, the incremental cost is also

Figure 3

Illustrates a 3-category approach to modeling the distribution of the biomarker based on critical test thresholds (T_1 and T_2). How many categories and what specific thresholds are modeled depends on the particulars of the test and clinical setting. For example, the investigator might use natural thresholds when the test result is naturally categorized (eg, low, high, or intermediate probability scans for ventilation/perfusion scanning for pulmonary embolism17), thresholds used in prior studies (eg, coronary calcium thresholds of 0, 100, and 300, as used in a key article22), or biomarker levels that would lead to a posttest risk, in the given scenario, that is over some established treatment threshold (eg, posttest 10-year CHD risk >20% for statin treatment18).
estimated, and the ratio of incremental cost to incremental effectiveness (incremental cost-effectiveness ratio, usually in $/QALY) is presented. Excellent, practical advice on designing and implementing decision analysis is available and directly applicable to biomarker modeling.35,54,57–60

Limitations of Modeling and Use of Sensitivity Analyses

The major limitation of modeling is that data are not always available to support the many assumption parameters required in the construction of the model. Typically, the modeler can find direct evidence to support estimates for some model parameters; indirect evidence for others, and must simply guess (using clinical judgment, for example) for the rest. Even when parameter estimates are based on good scientific evidence, they are associated with some uncertainty (from sampling error ± bias).

Any modeling exercise, therefore, must be accompanied by a series of well-designed sensitivity analyses to see how this uncertainty could affect the results. In the base case, the modeler uses best-guess estimates for all assumption parameters and produces a set of base-case results; in sensitivity analyses, 1 or more of the assumption parameters are varied in order to evaluate how sensitive results are to variation in the parameter(s). By this method, the modeler can describe which parameter assumptions are important in estimating the effectiveness or cost effectiveness of a strategy. For example, in a cost-effectiveness analysis of statin-prescribing strategies, results were relatively insensitive to reasonable variation in the rate of myopathy and hepatitis but were sensitive to an average decrement in quality of life from taking a pill every day.47 When results are critically sensitive to a parameter estimate that is not supported by firm evidence, a good case can be made for further empirical study. Probabilistic sensitivity analysis, where the model is iterated many times varying all parameters simultaneously (drawing from a theoretical distribution for each variable), can be used to estimate global uncertainty for any model result.61

The impact of model structure is more difficult to evaluate. Although numeric assumption parameters are easy to vary, the structure of a model is usually fixed, and implications of the modeler’s decisions about how to simulate occurrence of clinical outcomes, for example, may be hard to assess. With any model, a balance must be struck between realism and simplicity; a model that is too simple may not capture the relevant effects, but a black box model that is too complex may be difficult to understand and troubleshoot and may even obscure the essential tradeoff. Finding the right balance in structuring the model that captures the essential tradeoffs accurately and then designing an appropriate set of sensitivity analyses that bring to light the important assumptions are the key to deriving useful information from decision-analysis modeling.

The use of a common interpretable health-impact metric (QALYs) is a strength of modeling, but it does assume a utilitarian philosophy. This has important implications. Net QALY impact may be positive if it results in a tiny benefit in many people even if it results in substantial harm in a small number of people. If a disadvantaged population is disproportionately represented in the harmed minority, for example, disparities in health may widen even while average population health improves. Similarly, QALY modeling implies that saving the life of a younger person (who will subsequently accrue more QALYs) is more valuable than saving the life of an older person. Furthermore, there is no consensus about the value of a QALY (and therefore no consensus about the threshold $/QALY below which an intervention is deemed cost effective), although presenting the $/QALY metric does allow the reader to decide for themselves. These and other limitations must be considered any time that QALYs are used as a measure of health impact.36

Summary

Research that identifies cardiovascular biomarkers and measures their performance is plentiful, but evidence of biomarker utility in terms of health impact is harder to find. Evaluating biomarker utility requires accounting for biomarker performance but also estimating the downstream health consequences of having the biomarker information. For example, it is not enough to know what proportion of persons are reclassified by a biomarker into a different risk category; one must also know whether reclassification leads to health benefits that outweigh the downsides of biomarker measurement.

In this review, we discuss different options for generating evidence of biomarker effectiveness in terms of health impact. The randomized, controlled trial, when designed appropriately, is the best means of directly measuring the health impact of a biomarker strategy. Randomized trials, however, are expensive and time consuming, do not capture long-term effects, cannot be completely masked, and require that treatment implications of biomarker results are well defined. Decision-analysis modeling can also provide clinically actionable information about the health impact of using a biomarker. In contrast to randomized clinical trials, they are much easier and cheaper to conduct, can be used for systematic analysis of all reasonable strategies in all relevant subgroups, and can incorporate data on long-term effects. The quality of information from a decision analysis, however, depends on how well a simplified model captures the essential tradeoffs and how much data are available to inform key assumptions.

As the age of personalized medicine is ushered in by an ever-increasing capacity to measure biomarkers relevant to cardiovascular disease, we need a strategy for translating biomarker discovery into better health for patients. We believe that randomized, controlled trials should be conducted where there is significant uncertainty about short-term net health impact and that decision-analysis modeling should play an increasing role in biomarker evaluation,8,62 both in generating actionable information for clinicians and policymakers and for identifying key areas of uncertainty where more evidence is required from randomized trials and other clinical studies.

Acknowledgments

The authors would like to thank Thomas Newman, Michael Kohn, and Kirsten Bibbins-Domingo for their critical appraisal of the manuscript and help with referencing.
Disclosures
The authors have submitted grant applications relevant to this review; they have no other conflicts of interest to disclose.

References

Mark J. Pletcher and Michael Pignone

Circulation. 2011;123:1116-1124
doi: 10.1161/CIRCULATIONAHA.110.943860
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2011 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/123/10/1116

Data Supplement (unedited) at:
http://circ.ahajournals.org/content/suppl/2011/03/14/123.10.1116.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation_ is online at:
http://circ.ahajournals.org/subscriptions/
SUPPLEMENTAL MATERIAL

Example of a decision analysis model used to evaluate clinical utility of a biomarker

In 2003, Blake, Ridker and Kuntz published results of a decision analytic model for evaluating proposed use of C-reactive protein (CRP) to target statin therapy in persons without overt hyperlipidemia (LDL<149 mg/dL). Here we describe how this model fits within our framework, and provide a brief critique following the subsections in our review.

Supplemental Figure 1 demonstrates how the authors’ model fits into the basic framework we present in Figure 3, and illustrates some of the key assumptions and tradeoffs. In Strategy S₂, for example, the cost of the CRP test is incurred, but this allows targeting of statins only to persons with high CRP, who should benefit more from statins than those with a low CRP.

The base case scenario was a 58 year-old man with LDL cholesterol < 149 mg/dL. This LDL cutoff, as well as the CRP cutoff for treatment, CRP-specific event rates for men and women, and CRP-specific statin efficacy, were derived from single primary prevention statin trial² and a post-hoc analysis of that trial³. The analysis considered other scenarios varying age and sex, with event rates adapted from other population-based studies. The scenarios tested were defined broadly in terms of the LDL cholesterol level and overall coronary heart disease (CHD) risk level. For example, one might consider statin therapy for a 58 year-old man with LDL cholesterol level of 140 if he were also a diabetic hypertensive smoker (and thus at very high CHD risk), but not for a person at lower risk and/or lower LDL cholesterol level. Considering a wider range of more narrowly-defined scenarios might have provided more clinically relevant, actionable results. Sensitivity analyses varying 10-year risk ameliorate this concern to some extent.

The full range of strategies is compared in the base-case scenario (Treat None, Test-and-Treat, and Treat All, see Supplemental Figure 1). No attempt was made to compare the Treat All to Treat None strategy (to validate the model in terms of the overall cost-effectiveness of statin therapy, which can then be compared with prior similar estimates); using numbers provided in Table 3 of the publication¹, this estimate would be $97,500 per quality-adjusted life-year (QALY). Also, different CRP cutoffs were not considered.
Sub-scenarios (persons with high vs. low CRP) were modeled explicitly, and presumably with parallel methodology for each strategy. The prevalence of a CRP level ≥ 0.16 was 50% (median split) for the base-case scenario (Supplemental Figure 1). It is unclear, however, if this key biomarker distribution parameter was varied in the different scenarios. If the prevalence of a high CRP level is very low in some age/sex groups, this would be expected to negatively impact the cost-effectiveness of the Test-and-Treat strategy (many more tests performed to find one that is positive).

The post-test risk of events and effects of treatment were modeled carefully in the base-case scenario using data from the statin trial analysis. We derived risk estimates from the tables of assumptions in the publication to show post-test risks both with and without statin treatment in persons with high and low CRP, and show these in the Supplemental Figure 1. Note that statin treatment effectiveness for myocardial infarction (MI) is assumed to be higher in persons with high CRP vs. low CRP for two reasons: the post-test risk is higher (6.30 vs. 2.90 per 1000 person-years), and the treatment effectiveness is higher (relative risk reduction of 45% vs. 0%). In contrast, statin treatment effectiveness for stroke is higher only because post-test stroke risk is higher in persons with high vs. low CRP (2.21 vs. 1.74 per 1000 person-years); the relative risk reduction is assumed to be constant for these two groups (10%).

Outcomes were modeled using a simple and logical Markov Model with 5 different states: event-free, post-MI, post-stroke, both post-MI and post-stroke, and dead. The key transition probabilities varied in the different treatment strategies were those leading from the event-free state to post-MI and to post-stroke states (see "post-test risks", above); other transitions were based on other data sources (e.g., U.S. life tables) and were not varied by strategy. Costs and utility penalties for events were age- and sex-specific and not varied. It is unclear if total costs and event rates for the outcome model were calibrated or validated against population-level estimates from external sources. Model results were presented in terms of incremental cost-effectiveness ratios.

Most assumptions were data-driven. Key assumptions were derived from a single statin trial (because it had been used in a prior analysis of the interaction between statin effectiveness and CRP level3); others were derived for various external sources such as population-based cohort studies and national vital statistics, as is typical for this type of analysis model. Assumptions about the cost of statins
were derived from the average wholesale price of statins in 2000 by standard methods. Some assumptions were made with imperfect, anecdotal, or completely missing data, as is typical; this includes the price of CRP testing, a key assumption.

The authors performed a set of one-way sensitivity analyses varying key parameters and a three-way analysis varying 10-year risk of MI, statin efficacy and statin price. An important shortcoming is that the results of these sensitivity analyses were presented almost exclusively in terms of Test-and-Treat compared with Treat None; the Treat All strategy, which would be expected to dominate other strategies when statin prices are very low, was mostly not considered in sensitivity analyses. Also, note that the analysis results were not sensitive to the cost of the CRP test itself; the primary downside of the Test-and-Treat strategy, the way the model was structured, is the cost of statins.

This decision analysis model provides potentially important information about the clinical utility of CRP measurement. In short, CRP measurement in persons with LDL<149 mg/dl who are not already on a statin, and initiation of statin therapy when the CRP measurement is high, should lead to important improvements in health outcomes (fewer MIs, strokes and deaths). These improvements are worth the additional costs associated with this strategy when 10-year risk is relatively high and/or the cost of statins is relatively low. Key assumptions are based on a single analysis showing an interaction between CRP and statin effectiveness, and the analysis does not provide an adequate comparison of the Test-and-Treat strategy with the Treat All strategy.
REFERENCES FOR SUPPLEMENTAL MATERIAL

SUPPLEMENTAL FIGURE LEGEND

Supplemental Figure 1. Example of a decision analysis model used for evaluating the clinical utility of C-reactive protein screening

Model structure and numeric parameters derived from a publication by Blake, Ridker and Kuntz1.